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A B S T R A C T

In this work we present first principles study of the effect of stoichiometric pairs of antisite defects, V
occupying Al site (VAl) and Al occupying V site (AlV), on the electronic structure and Seebeck coefficient of
the Fe2VAlHeusler alloy. We show that introduction of these defects opens the bandgap of Fe2VAl, changing
it from semi-metal to semiconductor, which results in an increase of the Seebeck coefficient for a range of
doping concentrations and temperatures. We calculated Seebeck coefficients at different doping concentrations
and temperatures shows good agreement with experimental data.

1. Introduction

Improving the efficiency of our energy usage is one of the steps
required to solve number of energy related problems the world is
facing currently. Moreover industrial processes, transport, household
appliances, etc. are well known sources of heat waste. Hence harvesting
this heat waste is rather important to address global issues such as
climate change. Thermoelectric materials can play a major role in the
improvement of energy efficiency, in all temperature ranges [1]. These
materials possess the unique ability to convert a temperature differ-
ence into electricity or vice versa without mechanical moving parts.
Providing excellent opportunities for harvesting waste heat [2–6].

Current thermoelectric devices found in the market rely on Bi–Te
based materials, although it shows marketable efficiency, its widespread
application are limited since they are not earth-abundant materials
[7,8].

Hence materials systems that are based on abundant elements are of
particular interest for thermoelectric applications. Fe2VAlis a material
system that has attracted a great deal of attention due to its potentials
as a thermoelectric [7]. Fe2VAlhas higher power factor compared to
Bi–Te based thermoelectrics, although due to its higher thermal con-
ductivity the figure of merit ZT is significantly lower than that of Bi–Te
based materials. In the past significant experimental efforts have been
made to improve the ZT of Fe2VAlby nanostructuring [9], for example,
by introducing point defects in the pristine structure of Fe2VAl. Among
the possible point defects that can occur some of the most energetically
favourable are the antisite defects VAl, and AlV [10].

In this work, we use first principle calculations to evaluate how
the presence of stoichiometric pairs of VAl, and AlV antisites, as an
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Al/V inversion defects changes the thermoelectric properties of Fe2VAl,
specifically the Seebeck coefficient and its temperature dependence. We
also compare the results with experimental data available in the litera-
ture [11–15], and predict Seebeck coefficient trends and magnitude as
a function of the concentration of point defects.

2. Methods

The Fe2VAlfalls in the group of Heusler alloys, which have the
chemical formula 𝑋2𝑌 𝑍, where X and Y are transition metals and
Z is a p-block element. The structure of Fe2VAlis face-centred cubic,
with space group 𝐹𝑚3̄𝑚 (225). There are four Fe2VAlformula units
(f.u.) in the cubic unit cell, i.e. 16 atoms in the unit cell. A primitive
rhombohedral unit cell contains 1 f.u., this reduces the number of
atoms to 4, hence it is more convenient to be used for computational
reasons, Fig. 1. In the rhombohedral cell, the Fe atoms fractional
coordinates are (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4), while Al and V
are at (1/2, 1/2, 1/2) and (0, 0, 0), respectively. In order to include
the defects in a low concentration we have constructed supercells based
on Fe2VAlrhombohedral cell. To introduce the inversion defects we
implemented a 3 × 3 × 3 supercell. The lowest energy arrangement
for a sequence of inversion defects is to have them formed around one
of the Fe atoms [16]. Fig. 2 shows the position of the defects with
respect to the rhombohedral supercell we highlight the cubic unit cell
embedded in the supercell, . The size of the chosen supercell allows us
to simulate antisite defects with concentrations of 2/57, 4/57, 6/57 and
8/57, which represents the fraction of V and Al atoms that are forming
the inversion defects.
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Fig. 1. Schematic of the cubic and rhombohedral (dashed lines) possible unit cells of
Fe2VAlunit cell.

Fig. 2. Schematics of the rhombohedral supercell used in the calculations, the cubic
structure is outlined.

We performed first-principles calculations using the CASTEP [17]
code with the GGA-PBE exchange–correlation functional [18], using
plane-wave cut-off energy of 800 eV with a grid-scale of size 2.0 and
a fine grid scale of size 3.0, that was necessary to ensure that the
calculation agrees with the variational principle. The Brillouin zone was
sampled using a Monkhorst–Pack [19] grid with a 5 × 5 × 5 k-points
mesh, for the 3 × 3 × 3 supercells. On-the-fly ultrasoft pseudopo-
tentials (C19 set) were used. The structure was fully optimized until
pressure and energy were converged to 0.01 GPa and 0.02 meV/atom,
respectively.

We calculated the transport properties using the semi-classical
Boltzmann transport formalism within the constant relaxation time
approximation as implemented in the BoltzTraP2 code [20].

3. Results

First we present the calculations of Seebeck coefficient as a function
of concentration of antisite defects. Fig. 3 shows calculated Seebeck
coefficients for 3.7%, 7.4%, 11.11% and 16.6% antisite defect con-
centrations and pristine structure. Calculated values of the Seebeck
coefficients with respect to charge carriers are compared to experi-
mental values found in the literature, where modulation of the charge
carriers in Fe2VAlis obtained by doping with Si, Ir and Ti, where
𝑥 represent the percentage of doping element [11–14]. The defect
percentages refer to the number of the total of V and Al atoms that
participate in the swap defects.

Fig. 3. Seebeck coefficient against doping composition, were Fe2VAl1-xSix (circles)
and Fe2-xVAlIrx (triangles), are used for the n-type side (positive composition) and
Fe2V1-xTixAl (squares), is used for the p-type side (negative composition), all results
are for 300 K.

We can see that the calculated results show a good agreement with
the experimental data for a V/Al substitution rate of around 3.7%, for
the n type of doping, e.g. the maximum values of the Seebeck peak
and its dependence on the composition (x) match well. On the other
hand there is a small discrepancy between calculated results to the
experimental data on the p-doped side. This indicates that different
dopants concentration may effect the antisite defects formation ener-
gies, hence variations of Seebeck coefficient as a function of the carriers
concentration.

Next we follow the trend and magnitude of Seebeck coefficient
by increasing the defect concentrations. The increase of the defect
concentration results in a higher peak for the Seebeck coefficient. This
comes from the tendency of the antisite defects to turn Fe2VAlfrom a
semimetal to a small gap semiconductor as illustrated in Fig. 4. The
Figs. 4(a–c) shows the evolution of band structure of Fe2VAlas a func-
tion of a concentration of the antisite defects. As can be seen in Fig. 4(a)
the pristine Fe2VAlhas semimetal states and as concentration increases
(from 3.7% to 16.6%) a sizable band gap opens. As expected, this trend
has a negative effect on the electrical conductivity as depicted in Fig. S1
in the supplemental information. Previous reports have discussed a gap
opening by introduction of different exchange–correlation functionals
such as meta-GGA mBJ [21] and the hybrid functional B1-WC [22],
and also by the inclusion of Hubbard U potentials [23]. In addition,
our calculations capture the asymmetry of the Seebeck coefficient for
n and p-type doping which is present in experimental results. However
this effect is not present in calculations when defects are not considered
(see Fig. 3 for pristine cell).

Next we evaluate how the antisite defects affect the Seebeck co-
efficient of Fe2VAlfor different ranges of temperatures, i.e. tempera-
ture dependence of Seebeck coefficient. The results are presented as
heatmaps that graphically show the variation of the calculated Seebeck
coefficient for a range of compositions and temperatures, for 3.7%,
7.4%, 11.11% and 16.6% antisite defect concentrations and pristine
structure, Fig. 5(a–d). Within the temperature range between 100 K and
500 K Seebeck coefficient has the highest value, as shown by the sharp
change in colour from blue to red, where the blue region (i.e. negative
of x axis) corresponds to p-type doping and the red region (positive x-
axis) to n-type doping. For the temperatures above 500 K for all defects
concentrations the Seebeck coefficient decreases and its variation with
carrier concentrations is smaller than the lower by 500 K temperatures.
Another important finding is that the maximum of the Seebeck co-
efficient increases with the increase of defect concentration, and the
maxima are moving towards the zero of the composition axis (x-axis),
as seen by the sharpness of colour change from blue to red, which is
particularly sharp in Fig. 5(c–d). This show that the increase of defects
increases the thermoelectric conversion capability of Fe2VAl, and more
importantly reduces the amount of doping required for an optimum
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Fig. 4. Bandstructure and density of states plot of Fe2VAl, for (a) pristine and (b) 3.7% and (c) 16.6% of Al/V inversion defects. The energy axis corresponds to E-EF, where EF
is the Fermi energy.

Seebeck coefficient in the range of medium temperatures (300 K–600
K). In order to make comparison of these results with experimental
data for Fe2VAlavailable in the literature, in Fig. 5(e) we show the
calculated Seebeck coefficient of Fe2VAlfor different antisite defects
concentrations, starting from pristine to 16.6% defects concentrations,
as well as experimental data from x=0 and x=0.05 [11,14,15]. A very
good agreement with experimental data is found in both cases with
presence of 3.7% of inversion defects, for a range of temperatures.
For the case of a doping composition of x=0.05 in Fig. 5(f) again we
have a remarkable agreement between the calculated values and the
experimental data. These comparison validates the overall conclusion
and results based on the undertaken calculations.

4. Conclusion

In summary, by using first principle calculations we have shown
that the band gap of Fe2VAlopens with the introduction of antisite
stoichiometric disorder on the V/Al sublattice, changing it from a
semimetal to a semiconductor. This leads to a sharp increase of the
maximum value of the Seebeck coefficient, which is proportional to the
concentration of the antisite defects. The presence of antisite defects
suppress the level of doping required to increase the Seebeck coef-
ficient maxima. The calculations performed at different temperatures
show that for all concentrations of antisite defects, Fe2VAlhas a higher
Seebeck coefficient for the temperatures between 100 K–500 K. In
addition, the calculated Seebeck coefficients are in good agreement

with the experimental data in the literature, when comparison was
done for range of compositions and temperatures. This work show that
the inclusion of disorder in the V/Al sublattice is a potential pathway
to increase the power factor of Fe2VAl, by tuning both the inversion
defects and doping concentrations.
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Fig. 5. Heatmap plots of the composition and temperature for pristine (a), and Al/V inversion defect concentrations of 3.7% (b), 7.4% (c) and 16.6% (d). Seebeck coefficient
against temperature compared with literature experimental values [11,14,15], in the figures (e) and (f).
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