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Abstract. A homomorphism f from a guest graph G to a host graph H

is locally bijective, injective or surjective if for every u ∈ V (G), the
restriction of f to the neighbourhood of u is bijective, injective or surjec-
tive, respectively. The corresponding decision problems, LBHom, LIHom

and LSHom, are well studied both on general graphs and on special
graph classes. Apart from complexity results when the problems are
parameterized by the treewidth and maximum degree of the guest graph,
the three problems still lack a thorough study of their parameterized
complexity. This paper fills this gap: we prove a number of new FPT,
W[1]-hard and para-NP-complete results by considering a hierarchy of
parameters of the guest graph G. For our FPT results, we do this through
the development of a new algorithmic framework that involves a general
ILP model. To illustrate the applicability of the new framework, we also
use it to prove FPT results for the Role Assignment problem, which
originates from social network theory and is closely related to locally
surjective homomorphisms.

1 Introduction

A homomorphism from a graph G to a graph H is a mapping φ : V (G) →
V (H) such that φ(u)φ(v) ∈ E(H) for every uv ∈ E(G). Graph homomorphisms
generalise graph colourings (let H be a complete graph) and have been intensively
studied over a long period of time, both from a structural and an algorithmic
perspective. We refer to the textbook of Hell and Nešetřil [34] for a further
introduction.

We write G → H if there exists a homomorphism from G to H; here, G is
called the guest graph and H is the host graph. We denote the corresponding
decision problem by Hom, and if H is fixed, that is, not part of the input, we
write H-Hom. The renowned Hell-Nešetřil dichotomy [33] states that H-Hom
is polynomial-time solvable if H is bipartite, and NP-complete otherwise. We
denote the vertices of H by 1, . . . , |V (H)| and call them colours.



Instead of fixing the host graph H, one can also restrict the structure of
the guest graph G by bounding some graph parameter. Here it is known that,
if FPT 6= W[1], then Hom can be solved in polynomial time if and only if the
so-called core of the guest graph has bounded treewidth [31].

Locally constrained homomorphisms. We are interested in three well-studied
variants of graph homomorphisms that occur after placing constraints on the
neighbourhoods of the vertices of the guest graph G. Consider a homomorphism
φ from a graph G to a graph H. We say that φ is locally injective, locally bijective
or locally surjective for u ∈ V (G) if the restriction φu to the neighbourhood
NG(u) = {v | uv ∈ E(G)} of u is injective, bijective or surjective. We say that
φ is locally injective, locally bijective or locally surjective if it is locally injective,
locally bijective, or locally surjective for every u ∈ V (G). We denote these locally
constrained homomorphisms by G B−→ H, G I−→ H and G S−→ H, respectively.

The three variants have been well studied in several settings over a long
period of time. For example, locally injective homomorphisms are also known
as partial graph coverings and are used in telecommunications [23], in distance
constrained labelling [22] and as indicators of the existence of homomorphisms of
derivative graphs [46]. Locally bijective homomorphisms originate from topological
graph theory [4,45] and are more commonly known as graph coverings. They
are used in distributed computing [2,3,7] and in constructing highly transitive
regular graphs [5]. Locally surjective homomorphisms are sometimes called colour
dominations [41]. They have applications in distributed computing [11,12] and
in social science [20,50,53,54]. In the latter context they are known as role
assignments, as we will explain in more detail below.

Let LBHom, LIHom and LSHom be the three problems of deciding, for
two graphs G and H, whether G B−→ H, G I−→ H or G S−→ H holds, respectively.
As before, we write H-LBHom, H-LIHom and H-LSHom in the case where
the host graph H is fixed. Out of the three problems, only the complexity of
H-LSHom has been completely classified, both for general graphs and bipartite
graphs [26]. We refer to a series of papers [1,6,23,25,38,39,44] for polynomial-time
solvable and NP-complete cases of H-LBHom and H-LIHom; see also the survey
by Fiala and Kratochvíl [24]. Some more recent results include sub-exponential
algorithms for H-LBHom, H-LIHom and H-LSHom on string graphs [48] and
complexity results for H-LBHom for host graphs H that are multigraphs [40] or
that have semi-edges [9].

In our paper we assume that both G and H are part of the input. We note a
fundamental difference between locally injective homomorphisms on one hand
and locally bijective and surjective homomorphisms on the other hand. Namely,
for connected graphs G and H, we must have |V (G)| ≥ |V (H)| if G B−→ H or
G S−→ H, whereas H might be arbitrarily larger than G if G I−→ H holds. For
example, if we let G be a complete graph, then G I−→ H holds if and only if H
contains a clique on at least |V (G)| vertices.

The above difference is also reflected in the complexity results for the three
problems under input restrictions. In fact, LIHom is closely related to the
Subgraph Isomorphism problem and is usually the hardest problem. For
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example, LBHom is Graph Isomorphism-complete on chordal guest graphs,
but polynomial-time solvable on interval guest graphs and LSHom is NP-complete
on chordal guest graphs, but polynomial-time solvable on proper interval guest
graphs [32]. In contrast, LIHom is NP-complete even on complete guest graphs G,
which follows from a reduction from the Clique problem via the aforementioned
equivalence: G I−→ H holds if and only if H contains a clique on at least |V (G)|
vertices.

To give another example, LBHom, LSHom and LIHom are NP-complete
for guest graphs G of path-width at most 5, 4 and 2, respectively [14] (all three
problems are polynomial-time solvable if G is a tree [14,27]). Note that these
hardness results imply that the aforementioned polynomial-time result on Hom
for guest graphs G of bounded treewidth [15,30] does not carry over to any of
the three locally constrained homomorphism problems. It is also known that
LBHom [37], LSHom [41] and LIHom [23] are NP-complete even if G is cubic
and H is the complete graph K4 on four vertices, but polynomial-time solvable
if G has bounded treewidth and one of the two graphs G or H has bounded
maximum degree [14].

An Application. Locally surjective homomorphisms from a graph G to a graph
H are known as H-role assignments in social network theory. Role assignments
were introduced by White and Reitz [54] (we refer to the full version for more
context and related work on role assignments). A connected graph G has an h-role
assignment if and only if G S−→ H for some connected graph H with |V (H)| = h,
as long as we allow H to have self-loops (while we assume that G is a graph with
no self-loops). The Role Assignment problem is to decide, for a graph G and
an integer h, whether G has an h-role assignment. If h is fixed, we denote the
problem h-Role Assignment. h-Role Assignment is NP-complete for planar
graphs (h ≥ 2) [51], cubic graphs (h ≥ 2) [52], bipartite graphs (h ≥ 3) [49],
chordal graphs (h ≥ 3) [35] and split graphs (h ≥ 4) [16].

Our Focus. We continue the line of study in [14] and focus on the following
research question: For which parameters of the guest graph do LBHom, LSHom
and LIHom become fixed-parameter tractable?

We will also apply our new techniques towards answering this question for the
Role Assignment problem. In order to address our research question, we need
some additional terminology. A graph parameter p dominates a parameter q if
there is a function f such that p(G) ≤ f(q(G)) for every graph G. If p dominates
q but q does not dominate p, then p is more powerful (less restrictive) than
q. We denote this by p ⊲ q. If neither p dominates q nor q dominates p, then
p and q are incomparable (orthogonal). Given the para-NP-hardness results on
LBHom, LSHom and LIHom for graph classes of bounded path-width [14], we
will consider a range of graph parameters that are more restrictive than path-
width. In this way we aim to increase our understanding of the (parameterized)
complexity of LBHom, LSHom and LIHom.

For an integer c ≥ 1, a c-deletion set of a graph G is a subset S ⊆ V (G) such
that every connected component of G \ S has at most c vertices. The c-deletion
set number dsc(G) of a graph G is the minimum size of a c-deletion set in G. If
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c = 1, then we obtain the vertex cover number vc(G) of G. The c-deletion set
number is also known as vertex integrity [18]. It is closely related to the fracture
number fr(G), introduced in [19], which is the minimum k such that G has a
k-deletion set on at most k vertices. Note that fr(G) ≤ max{c, dsc(G)} holds
for every integer c. The feedback vertex set number fv(G) of a graph G is the
size of a smallest set S such that G \ S is a forest. We write tw(G), pw(G) and
td(G) for the treewidth, path-width and tree-depth of a graph G, respectively;
see [47] for more information, in particular on tree-depth. It is known that
tw(G)⊲ pw(G)⊲ td(G)⊲ fr(G)⊲ dsc(G)(fixed c)⊲ vc(G)⊲ |V (G)|, where the
second relationship is proven in [8] and the others follow immediately from their
definitions (see also Section 2). It is readily seen that tw(G) ⊲ fv(G) ⊲ ds2(G)
and that fv(G) is incomparable with the parameters pw(G), td(G), fr(G) and
dsc(G) for every fixed c ≥ 3 (consider e.g. a tree of large path-width and the
disjoint union of many triangles).

guest graph parameter LIHom LBHom LSHom

|V (G)| XP, W[1]-hard [17] FPT FPT

vertex cover number XP (⋆)1, W[1]-hard FPT FPT

c-deletion set number (fixed c) para-NP-c (c ≥ 2) (⋆) FPT FPT

fracture number para-NP-c FPT (Theorem 4) FPT (Theorem 4)
tree-depth para-NP-c para-NP-c (⋆) para-NP-c (⋆)
path-width para-NP-c [14] para-NP-c [14] para-NP-c [14]
treewidth para-NP-c para-NP-c para-NP-c
maximum degree para-NP-c [23] para-NP-c [37] para-NP-c [41]
treewidth plus maximum degree XP, W[1]-hard XP [14] XP [14]
feedback vertex set number para-NP-c para-NP-c (⋆) para-NP-c (⋆)

Table 1. Table of results. The results in blue are the new results proven in this paper.
The results in black are either known results, some of which are now also implied by
our new results, or follow immediately from other results in the table; in particular, for
a graph G, dsc(G) ≥ fr(G) if c ≤ fr(G)− 1, and dsc(G) ≤ fr(G) if c ≥ fr(G). Also note
that LIHom is W[1]-hard when parameterized by |V (G)|, as Clique is W[1]-hard when
parameterized by the clique number [17], so as before, we can let G be the complete
graph in this case.

Our Results. We prove a number of new parameterized complexity results for
LBHom, LSHom and LIHom by taking some property of the guest graph G as
the parameter. In particular, we consider the graph parameters above. Our two
main results, which are proven in Section 4, show that LBHom and LSHom are
fixed-parameter tractable parameterized by the fracture number of G. These two
results cannot be strengthened to the tree-depth of the guest graph, for which
we prove para-NP-completeness.Note that the latter results imply the known
para-NP-completeness results for path-width of the guest graph [14]. We also
prove that LBHom and LSHom are para-NP-complete when parameterized by
the feedback vertex set number of the guest graph. This result and the para-

1 Statements where proofs or details are provided in the appendix are marked with (⋆).
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NP-hardness for tree-depth motivated us to consider the fracture number as a
natural remaining graph parameter for obtaining an fpt algorithm.

Concerning LIHom, we prove that it is in XP and W[1]-hard when parame-
terized by the vertex cover number, or equivalently, the c-deletion set number
for c = 1. We then show that the XP-result for LIHom cannot be generalised to
hold for c ≥ 2. In fact, in Section 4, we will determine the complexity of LIHom
on graphs with c-deletion set number at most k for every fixed pair of integers c
and k. Our results for LBHom, LSHom and LIHom are summarised, together
with the known results, in Table 1.

Algorithmic Framework. The FPT algorithms for LBHom and LSHom are
proven via a new algorithmic framework (described in detail in Section 3) that
involves a reduction to an integer linear program (ILP) that has a wider applica-
bility. To illustrate this, in Section 4 we also use our general framework to prove
that Role Assignment is FPT when parameterized by c+ dsc.

Techniques. The main ideas behind our algorithmic ILP framework are as
follows. Let G and H be the guest and host graphs, respectively. First, we observe
that if G has a c-deletion of size at most k and there is a locally surjective
homomorphism from G to H, then H must also have a c-deletion set of size at
most k. However it does not suffice to compute c-deletion sets DG and DH for G
and H, guess a partial homomorphism h from DG to DH , and use the structural
properties of c-deletion sets to decide whether h can be extended to a desired
homomorphism from G to H. This is because a homomorphism from G to H
does not necessarily map DG to DH . Moreover, even if it did, vertices in G \DG

can still be mapped to vertices in DH . Consequently, components of G \DG can
still be mapped to more than one component of H \DH . This makes it difficult
to decompose the homomorphism from G to H into small independent parts. To
overcome this challenge, we prove that there are small sets DG and DH of vertices
in G and H, respectively, such that every locally surjective homomorphism from
G to H satisfies:

1. the pre-image of DH is a subset of DG,
2. DH is a c′-deletion set for H for some c′ bounded in terms of only c+ k, and
3. all but at most k components of G \DG have at most c vertices and, while

the remaining components can be arbitrary large, their treewidth is bounded
in terms of c+ k.

As DG and DH are small, we can enumerate all possible homomorphisms from
some subset of DG to DH . Condition 2 allows us to show that any locally
surjective homomorphism from G to H can be decomposed into locally surjective
homomorphisms from a small set of components of G \ DG (plus DG) to one
component of H \DH (plus DH). This enables us to formulate the question of
whether a homomorphism from a subset of DG to DH can be extended to a
desired homomorphism from G to H in terms of an ILP. Finally, Condition 3
allows us to efficiently compute the possible parts of the decomposition, that is,
which (small) sets of components of G \DG can be mapped to which components
of H \DH .
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2 Preliminaries

Let G be a graph. We denote the vertex set and edge set of G by V (G) and E(G),
respectively. Let X ⊆ V (G) be a set of vertices of G. The subgraph of G induced
by X, denoted G[X], is the graph with vertex set X and edge set E(G) ∩ [X]2.
Whenever the underlying graph is clear from the context, we will sometimes refer
to an induced subgraph simply by its set of vertices. We use G \X to denote the
subgraph of G induced by V (G) \X. Similarly, for Y ⊆ E(G) we let G \Y be the
subgraph of G obtained by deleting all edges in Y from G. For a graph G and
a vertex u ∈ V (G), we let NG(u) = {v | uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}
denote the open and closed neighbourhood of v in G, respectively. We let ∆(G)
be the maximum degree of G. Recall that we assume that the guest graph G does
not contain self-loops, while the host graph H is permitted to have self-loops. In
this case, by definition, u ∈ NH(u) if uu ∈ E(H).

A (k, c)-extended deletion set for G is a set D ⊆ V (G) such that: (1) every
component of G \D either has at most c vertices or has a c-deletion set of size
at most k and (2) at most k components of G \D have more than c vertices. We
need the following well-known fact:

Proposition 1 ([42]). Let G be a graph and let k and c be natural numbers.
Then, deciding whether G has a c-deletion set of size at most k is fixed-parameter
tractable parameterized by k + c.

Locally Constrained Homomorphisms. Here we show some basic properties
of locally constrained homomorphisms.

Observation 1 (⋆). Let G and H be non-empty connected graphs and let φ be
a locally surjective homomorphism from G to H. Then φ is surjective.

Observation 2 (⋆). Let G and H be graphs, let D ⊆ V (G), and let φ be a
homomorphism from G to H. Then, for every component CG of G \D such that
φ(CG)∩φ(D) = ∅, there is a component CH of H \φ(D) such that φ(CG) ⊆ CH .
Moreover, if φ is locally injective/surjective/bijective, then φR = φ|D∪CG

is a
homomorphism from G′ = G[D ∪ CG] to H ′ = H[φ(D) ∪ CH ] that is locally
injective/surjective/bijective for every v ∈ V (CG).

Lemma 1 (⋆). Let G and H be non-empty connected graphs, let D ⊆ V (G) be
a c-deletion set for G, and let φ be a locally surjective homomorphism from G to
H. Then φ(D) is a c-deletion set for H.

Integer Linear Programming. Given a set X of variables and a set C of linear
constraints (i.e. inequalities) over the variables in X with integer coefficients,
the task in the feasibility variant of integer linear programming (ILP) is to
decide whether there is an assignment α : X → Z of the variables satisfying all
constraints in C. We will use the following well-known result by Lenstra [43].

Proposition 2 ([21,29,36,43]). ILP is fpt parameterized by the number of
variables.
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3 Our Algorithmic Framework

Here we present our main algorithmic framework that will allow us to show
that LSHom, LBHom and Role Assignment are fpt parameterized by k + c,
whenever the guest graph has c-deletion set number at most k. To illustrate the
main ideas behind our framework, let us first explain these ideas for the examples
of LSHom and LBHom. In this case we are given G and H and we know that G
has a c-deletion set of size at most k. Because of Lemma 1, it then follows that
if (G,H) is a yes-instance of LSHom or LBHom, then H also has a c-deletion
set of size at most k. Informally, our next step is to compute a small set Φ of
partial locally surjective homomorphisms such that (1) every locally surjective
homomorphism from G to H augments some φP ∈ Φ and (2) for every φP ∈ Φ,
the domain of φP is a (k, c)-extended deletion set of G and the co-domain of
φP is a c′-deletion set of H, where c′ is bounded by a function of k + c. Here
and in what follows, we say that a function φ : V (G) → V (H) augments (or is
an augmentation of) a partial function φP : VG → VH , where VG ⊆ V (G) and
VH ⊆ V (H) if v ∈ VG ⇔ φ(v) ∈ VH and φ|VG

= φP . This allows us to reduce
our problems to (boundedly many) subproblems of the following form: Given a
(k, c)-extended deletion set DG for G, a c′-deletion set DH for H, and a locally
surjective (respectively bijective) homomorphism φP from DG to DH , find a
locally surjective homomorphism φ from G to H that augments φP . We will
then show how to formulate this subproblem as an integer linear program and
how this program can be solved efficiently. Importantly, our ILP formulation will
allow us to solve a much more general problem, where the host graph H is not
explicitly given, but defined in terms of a set of linear constraints, which will
allow us to solve the Role Assignment problem.

Partial Homomorphisms for the Deletion Set. For a graph G and m ∈ N

we let Dm
G := {v ∈ V (G) | degG(v) ≥ m}. We will show in Lemma 4 that there

is a small set Φ of partial homomorphisms such that every locally surjective
(respectively bijective) homomorphism from G to H augments some φP ∈ Φ
and, for every φP ∈ Φ, the domain of φP is a (k, c)-extended deletion set for G
of size at most k and its co-domain is a c′-deletion set of size at most k for H.
The main idea behind finding this set Φ is to consider the set of high degree
vertices in G and H, i.e. the sets Dk+c

G and Dk+c
H . As it turns out (see Lemma 2),

for every subset D ⊆ Dk+c
G , D is a (k − |D|, c)-extended deletion set for G of

size at most k and Dk+c
H is a c′-deletion set for H of size at most k, where

c′ = kc(k + c). Moreover, as we will show in Lemma 3, every locally surjective
(respectively bijective) homomorphism from G to H has to augment a locally
surjective (respectively bijective) homomorphism from some induced subgraph of
G[Dk+c

G ] to DH = Dk+c
H . Intuitively, this holds because for every locally surjective

homomorphism, only vertices of high degree in G can be mapped to a vertex of
high degree in H and every vertex in H must have a pre-image in G.

Lemma 2 (⋆). Let G be a graph. If G has a c-deletion set of size at most k,
then the set Dk+c

G is a kc(k+ c)-deletion set of size at most k. Furthermore, every

subset D ⊆ Dk+c
G is a (k − |D|, c)-extended deletion set of G.
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Lemma 3. Let G and H be non-empty connected graphs such that G has a c-
deletion set of size at most k. If there is a locally surjective homomorphism φ from
G to H, then there is a set D ⊆ Dk+c

G and a locally surjective homomorphism φP

from G[D] to H[Dk+c
H ] such that φ augments φP . If φ is locally bijective, then

D = Dk+c
G and φP is a locally bijective homomorphism.

Proof. By Lemma 2, Dk+c
G is a kc(k+c)-deletion set of size at most k. Furthermore,

observe that for a locally surjective homomorphism φ from G to H, the inequality
degG(v) ≥ degH(φ(v)) holds for every v ∈ V (G) (degG(v) = degH(φ(v)) holds
in the locally bijective case). Since φ is surjective by Observation 1, this implies
that φ(Dk+c

G ) ⊇ Dk+c
H (and if φ is locally bijective, then φ(Dk+c

G ) = Dk+c
H ). By

Lemma 1, φ(Dk+c
G ) is a kc(k + c)-deletion set for H. Let D = φ−1(Dk+c

H ), so

D ⊆ Dk+c
G (note that D = Dk+c

G if φ is locally bijective). Now φ|D is a surjective

map from D to Dk+c
H . Furthermore, φ(Dk+c

G \D)∩φ(D) = φ(Dk+c
G \D)∩Dk+c

H = ∅.

Moreover, for every v ∈ V (G) \Dk+c
G , φ(v) /∈ Dk+c

H = φ|D(D), since degG(v) ≥

degH(φ(v)). Furthermore, φ|D is a homomorphism from G[D] to H [Dk+c
H ] because

φ is a homomorphism. We argue that φ|D is locally surjective (bijective resp.)
by contradiction. Suppose φ|D is not locally surjective. Then there is a vertex
u ∈ D and a neighbour v ∈ Dk+c

H of φ|D(u) such that v /∈ φ|D(NG(u)∩D). Since
φ is locally surjective, there must be w ∈ NG(u) \D such that φ(w) = v. This
contradicts the fact that φ(V (G)\D)∩Dk+c

H = ∅. Hence φ|D is a locally surjective
homomorphism. In the bijective case we just need to additionally observe that
φ|D restricted to the neighbourhood of any vertex v ∈ D must be injective. This
completes the proof. ⊓⊔

Lemma 4 (⋆). Let G and H be non-empty connected graphs and let k, c be non-
negative integers. For any D ⊆ Dk+c

G , we can compute the set ΦD of all locally

surjective (respectively bijective) homomorphisms φP from G[D] to H[Dk+c
H ] in

O(|D||D|+2) time. Furthermore, |ΦD| ≤ |D||D|.

ILP Formulation. We will show how to formulate the subproblem obtained
in the previous subsection in terms of an ILP instance. More specifically, we will
show that the following problem can be formulated in terms of an ILP: given a
partial locally surjective (respectively bijective) homomorphism φP from some
induced subgraph DG of G to some induced subgraph DH of H, can this be
augmented to a locally surjective (respectively bijective) homomorphism from
G to H? Moreover, we will actually show that for this to work, the host graph
H does not need to be given explicitly, but can instead be defined by a certain
system of linear constraints.

The main ideas behind our translation to ILP are as follows. Suppose that
there is a locally surjective (respectively bijective) homomorphism φ from G
to H that augments φP . Because φ augments φP , Observation 2 implies that
φ maps every component CG of G \ V (DG) entirely to some component CH of
H \ V (DH), moreover, φ|V (DG)∪V (CG) is already locally surjective (respectively
bijective) for every vertex v ∈ V (CG). Our aim now is to describe φ in terms of
its parts consisting of locally surjective (respectively bijective) homomorphisms
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from extensions of DG in G, i.e. sets of components of G\DG plus DG, to simple
extensions of DH in H, i.e. single components of H \DH plus DH . Note that
the main difficulty comes from the fact that we need to ensure that φ is locally
surjective (respectively bijective) for every d ∈ DG and not only for the vertices
within the components of G \DG. This is why we need to describe the parts of φ
using sets of components of G \DG and not just single components. However,
as we will show, it will suffice to consider only minimal extensions of DG in G,
where an extension is minimal if no subset of it allows for a locally surjective
(respectively bijective) homomorphism from it to some simple extension of DH

in H. The fact that we only need to consider minimal extensions is important
for showing that we can compute the set of all possible parts of φ efficiently.
Having shown this, we can create an ILP that has one variable xExtGExtH for
every minimal extension ExtG and every simple extension ExtH such that there
is a locally surjective (respectively bijective) homomorphism from ExtG to ExtH
that augments φP . The value of the variable xExtGExtH now corresponds to the
number of parts used by φ that map minimal extensions isomorphic to ExtG to
simple extensions isomorphic to ExtH that augment φP . We can then use linear
constraints on these variables to ensure that:

(SB2’) H contains exactly the right number of extensions isomorphic to ExtH
required by the assignment for xExtGExtH ,

(B1’) G contains exactly the right number of minimal extensions isomorphic to
ExtG required by the assignment for xExtGExtH (if φ is locally bijective),

(S1’) G contains at least the number of minimal extensions isomorphic to ExtG
required by the assignment for xExtGExtH (if φ is locally surjective),

(S3’) for every simple extension ExtG of G that is not yet used in any part of φ,
there is a homomorphism from ExtG to some simple extension of DH in H
that augments φP and is locally surjective for every vertex in ExtG \DG (if
φ is locally surjective).

Together, these constraints ensure that there is a locally surjective (respectively
bijective) homomorphism φ from G to H that augments φP . To do so, we need
the following additional notation.

Given a graph D, an extension for D is a graph E containing D as an induced
subgraph. It is simple if E \D is connected, and complex in general. Given two
extensions Ext1,Ext2 of D, we write Ext1 ∼D Ext2 if there is an isomorphism τ
from Ext1 to Ext2 with τ(d) = d for every d ∈ D. Then ∼D is an equivalence
relation. Let the types of D, denoted TD, be the set of equivalence classes of ∼D

of simple extensions of D. We write T c
D to denote the set of types of D of size at

most |D|+ c, so |T c
D| ≤ (|D|+ c)2(

|D|+c

2 ).
Given a complex extension E of D, let C be a connected component of E \D.

Then C has type T ∈ TD if E[D ∪ C] ∼D T (depending on the context, we
also say that the extension E[D ∪ C] has type T ). The type-count of E is the
function tcE : TD → N such that tcE(T ) for T ∈ TD is the number of connected
components of E \D with type T (in particular if E is simple, the type-count is
1 for E and 0 for other types). Note that two extensions are equivalent if and
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only if they have the same type-counts; this then also implies that there is an
isomorphism τ between the two extensions satisfying τ(d) = d for every d ∈ D.
We write E � E′ if tcE(T ) ≤ tcE′(T ) for all types T ∈ TD. If E is an extension
of D, we write TD(E) = {T ∈ TD | tcE(T ) ≥ 1} for the set of types of E and
ED(E) for the set of simple extensions of E. Moreover, for T ∈ TD, we write
ED(E, T ) for the set of simple extensions in E having type T .

A target description is a tuple (DH , c,CH) where DH is a graph, c is an integer
and CH is a set of linear constraints over variables xT , T ∈ T c

DH
. A type-count for

DH is an integer assignment of the variables xT . A graph H satisfies the target
description (DH , c,CH) if it is an extension of DH , tcH(T ) = 0 for T /∈ T c

DH
, and

setting xT = tcH(T ) for all T ∈ T c
DH

satisfies all constraints in CH.
In what follows, we assume that the following are given: the graphs DG,

DH , an extension G of DG, a target description D = (DH , c,CH), and a locally
surjective (respectively bijective) homomorphism φP : DG → DH . Let ExtG
be an extension of DG with ExtG � G and let TH ∈ T c

DH
; note that we only

consider TH ∈ T c
DH

, because we assume that TH is a type of a simple extension
of a graph H that satisfies the target description D. We say ExtG can be weakly
φP -S-mapped to a type TH if there exists an augmentation φ : ExtG → TH of
φP such that φ is locally surjective for every v ∈ ExtG \DG. We say that ExtG
can be φP -S-mapped (respectively φP -B-mapped) to a type TH if there exists an
augmentation φ : ExtG → TH of φP such that φ is locally surjective (respectively
locally bijective). Furthermore, ExtG can be minimally φP -S-mapped (respectively
minimally φP -B-mapped) to TH if ExtG can be φP -S-mapped (respectively φP -
B-mapped) to TH and no other extension Ext′G with Ext′G � ExtG can be φP -S-
mapped (respectively φP -B-mapped) to TH . Let wSM(G,DG,D, φP ) be the set of
all pairs (TG, TH) such that TG ∈ TDG

(G) can be weakly φP -S-mapped to TH . Let
SM(G,DG,D, φP ) be the set of all pairs (ExtG, TH) with ExtG � G, TH ∈ T c

DH

such that ExtG can be minimally φP -S-mapped to TH and let BM(G,DG,D, φP )
be the set of all pairs (ExtG, TH) with ExtG � G, TH ∈ T c

DH
such that ExtG can

be minimally φP -B-mapped to TH .
We now build a set of linear constraints. To this end, besides variables

xT for T ∈ TH , we introduce variables xExtGTH
for each (ExtG, TH) ∈ SM

(respectively BM), where here and in what follows wSM = wSM(G,DG,D, φP ),
SM = SM(G,DG,D, φP ) and BM = BM(G,DG,D, φP ).

(S1)
∑

(ExtG,TH)∈SM
tcExtG(TG) ∗ xExtGTH

≤ tcG(TG) for every TG ∈ TDG
(G),

(B1)
∑

(ExtG,TH)∈BM
tcExtG(TG) ∗ xExtGTH

= tcG(TG) for every TG ∈ TDG
(G),

(S2)
∑

ExtG:(ExtG,TH)∈SM
xExtG,TH

= xTH
for every TH ∈ TDH

,
(B2)

∑
ExtG:(ExtG,TH)∈BM

xExtG,TH
= xTH

for every TH ∈ TDH
,

(S3)
∑

(TG,TH)∈wSM
xTH

≥ 1 for every TG ∈ TDG
(G).

Lemma 5 (⋆). Let DG and DH be graphs, let G be an extension of DG and let
D = (DH , c,CH) be a target description. Moreover, let φP : V (DG) → V (DH)
be a locally surjective (respectively bijective) homomorphism from DG to DH .
There exists a graph H satisfying D and a locally surjective (respectively bijective)
homomorphism φ augmenting φP if and only if the equation system (CH, S1, S2,
S3) (respectively (CH, B1, B2)) admits a solution.
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Constructing and Solving the ILP. We show the following theorem.

Theorem 3 (⋆). Let G be a graph, let DG be a (k, c)-extended deletion set
(respectively a c-deletion set) of size at most k for G, let D = (DH , c′,CH) be
a target description and let φP : DG → DH be a locally surjective (respectively
bijective) homomorphism from DG to DH . Then, deciding whether there is a
locally surjective (respectively bijective) homomorphism that augments φP from
G to any graph satisfying CH is fpt parameterized by k + c+ c′.

To prove Theorem 3, we need to show that we can construct and solve the
ILP instance given in the previous section. The main ingredient for the proof of
Theorem 3 is Lemma 7, which shows that we can efficiently compute the sets
wSM, SM, and BM. A crucial insight for its proof is that if (ExtG,ExtH) ∈ SM
(or (ExtG,ExtH) ∈ BM), then ExtG consists of only boundedly many (in terms of
some function of the parameters) components, which will allow us to enumerate
all possibilities for ExtG in fpt-time. We start by showing that the set TDG

(G)
can be computed efficiently and has small size.

Lemma 6 (⋆). Let G be a graph and let DG be a (k, c)-extended deletion set of

size at most k for G. Then, TDG
(G) has size at most k+ (|DG|+ c)2(

|DG|+c

2 ) and
computing TDG

(G) and tcG is fpt parameterized by |DG|+ k + c.

Lemma 7 (⋆). Let G be a graph, let DG be a (k, c)-extended deletion set (re-
spectively a c-deletion set) of size at most k for G, let D = (DH , c′,CH) be a
target description and let φP be a locally surjective (respectively bijective) ho-
momorphism from DG to DH . Then, the sets wSM = wSM(G,DG,D, φP ) and
SM = SM(G,DG,D, φP ) (respectively the set BM = BM(G,DG,D, φP )) can be
computed in fpt-time parameterized by k + c+ c′ and |SM| (respectively |BM|)
is bounded by a function depending only on k + c+ c′. Moreover, the number of
variables in the equation system (CH, S1, S2, S3) (respectively (CH, B1, B2)) is
bounded by a function depending only on k + c+ c′.

4 Applications of Our Algorithmic Framework

Here we show the main results of our paper, which are simple applications of our
framework from the the previous section. Our first result implies that LSHom
and LBHom are fpt parameterized by the fracture number of the guest graph.

Theorem 4. LSHom and LBHom are fpt parameterized by k + c, where k and
c are such that the guest graph G has a c-deletion set of size at most k.

Proof. Let G and H be non-empty connected graphs such that G has a c-deletion
set of size at most k. Let DH = H[Dk+c

H ]. We first verify whether H has a
c-deletion set of size at most k using Proposition 1. Because of Lemma 1, we
can return that there is no locally surjective (and therefore also no bijective)
homomorphism from G to H if this is not the case. Therefore, we can assume in
what follows that H also has a c-deletion set of size at most k, which together
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with Lemma 2 implies that V (DH) is a kc(k + c)-deletion set of size at most k
for H. Therefore, using Lemma 6, we can compute tcH in fpt-time parameterized
by k + c. This now allows us to obtain a target description D = (DH , c′,CH)
with c′ = kc(k + c) for H, i.e. D is satisfied only by the graph H, by adding the
constraint xT = tcH(TH) to CH for every simple extension type TH ∈ T c′

DH
; note

that T c′

DH
can be computed in fpt-time parameterized by k + c by Lemma 6.

Because of Lemma 3, we obtain that there is a locally surjective (respectively
bijective) homomorphism φ from G to H if and only if there is a set D ⊆ Dk+c

G and
a locally surjective (respectively bijective) homomorphism φP from DG = G[D]
to DH such that φ augments φP . Therefore, we can solve LSHom by checking, for
every D ⊆ Dk+c

G and every locally surjective homomorphism φP from DG = G[D]
to DH , whether there is a locally surjective homomorphism from G to H that
augments φP . Note that there are at most 2k subsets D and because of Lemma 4,
we can compute the set ΦD for every such subset in O(kk+2) time. Furthermore,
due to Lemma 2, D is a (k− |D|, c)-extended deletion set of size at most k for G.
Therefore, for every D ⊆ Dk+c

G and φp ∈ ΦD, we can use Theorem 3 to decide
in fpt-time parameterized by k + c (because c′ = kc(k + c)), if there is a locally
surjective (resp. bijective) homomorphism from G to a graph satisfying D that
augments φP . As H is the only graph satisfying D, we proved the theorem. ⊓⊔

The proof of our next theorem is similar to that of Theorem 4. The difference
is that H is not given. Instead, we use Theorem 3 for a selected set of target
descriptions. Each target description enforces that graphs satisfying it have to be
connected and have precisely h vertices, where h is part of the input for Role
Assignment. We ensure that every graph H satisfying the requirements of Role
Assignment satisfies at least one of the selected target descriptions. The size of
the set of considered target descriptions depends only on c and k, as it suffices
to consider any small graph DH and types of small simple extensions of DH .

Theorem 5 (⋆). Role Assignment is fpt parameterized by k+ c, where k and
c are such that G has a c-deletion set of size at most k.

We also obtain the following dichotomy, where the c = 1, k ≥ 1 case (vertex
cover number case) follows from our ILP framework: we first find, in XP time, a
partial mapping from a vertex cover of the host graph G to the guest graph H
and then use our ILP framework to map the remaining vertices in FPT-time.

Theorem 6 (⋆). Let c, k ≥ 1. Then LIHom is polynomial-time solvable on guest
graphs with a c-deletion set of size at most k if either c = 1 and k ≥ 1 or c = 2
and k = 1; otherwise, it is NP-complete.

5 Conclusions

We aim to extend our ILP-based framework. If successful, this will then also
enable us to address the parameterized complexity of other graph homomorphism
variants such as quasi-covers [28] and pseudo-covers [10,12,13]. We also recall the
open problem from [14]: are LBHom and LSHom in FPT when parameterized by
the treewidth of the guest graph plus the maximum degree of the guest graph?
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