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Abstract

We consider the problem of fairly dividing a set
of heterogeneous divisible resources among agents
with different preferences. We focus on the setting
where the resources correspond to the edges of a
connected graph, every agent must be assigned a
connected piece of this graph, and the fairness no-
tion considered is the classical envy freeness. The
problem is NP-complete, and we analyze its com-
plexity with respect to two natural complexity mea-
sures: the number of agents and the number of
edges in the graph. While the problem remains
NP-hard even for instances with 2 agents, we pro-
vide a dichotomy characterizing the complexity of
the problem when the number of agents is constant
based on structural properties of the graph. For the
latter case, we design a polynomial-time algorithm
when the graph has a constant number of edges.

1 Introduction

Cake cutting is, without a doubt, among the most influ-
ential problems in social choice and has received signifi-
cant attention in computer science, mathematics, and eco-
nomics [Brams and Taylor, 1996; Robertson and Webb, 1998;
Moulin, 2004; Procaccia, 2013]. The cake corresponds to a
heterogeneous divisible resource that is to be divided between
a set of n agents with different preferences in a “fair” man-
ner. In this paper, the fairness concept we focus on is envy-
freeness, where every agent prefers the piece of the cake they
get allocated over the piece any other agent gets.

In the classical formulation of the problem, the cake is
represented as an interval and the preference of every agent
over the cake is given via a valuation over any subinterval of
the cake. In this setting, Dubins and Spanier (1961) showed
that an envy-free allocation always exists for arbitrary valua-
tions for the agents, where the piece an agent gets consists
of a countable number of subintervals. Stromquist (1980)
strengthened this result by removing the possibility of pieces
that consist of a “union of crumbs”. In fact, he showed that
there is an envy-free allocation where the piece of every agent
is contiguous, i.e., it is a single subinterval.

Recently, Bei and Suksompong (2021) considered a gener-
alized version cake cutting on graphs. This augmented model

allows to capture more general scenarios which cannot be
represented by splitting an interval into connected pieces—
consider, e.g., the task of splitting road or railway networks
between companies. We note that these settings do not always
give rise to large graphs: for instance, the ICE train network
in Germany can be modeled as a graph with merely 23 edges.
Or, for yet another example, suppose that one wants to sched-
ule time on a high-performance computing cluster between
teams (agents). Suppose furthermore that the day is parti-
tioned into, e.g., four time-slots, with each time-slot being
less or more desirable for different agents. This setting, too,
can easily be modeled using a graph with four edges. In these
as well as other examples, it is still desirable to ensure that
each agent receives a connected piece of the graph, but the
natural model for the cake is a graph where each individual
edge may be split and behaves as a single, uniform piece.

Observe that depending on the setting, it may either be the
case that a vertex is allocated to only a single agent (as in the
case of junctions in the division of road networks over main-
tenance companies), or that a vertex merely acts as a bridge
between edges and may be used by multiple agents (as in the
case of train stations in division of railway networks over rail
companies). We call the former setting “graph cutting” and
the latter “vertex-disjoint graph cutting”.

While both fair division problems always admit a contigu-
ous envy free solution when the underlying graph is a path
(since they are special cases of the classical cake cutting prob-
lem), this is no longer true for more general graphs. In fact,
it is not hard to construct graphs with no envy-free solutions;
this holds even for stars with three leafs and two agents with
identical valuations. Hence, in the setting studied here, the
natural task is to decide if a solution exists, and if it does to
efficiently compute one.

Our Contributions. In this work, we explore the frontiers
of tractability for both variants of graph cutting under the
envy free solution concept; we refer to these problems as EF-
GC and EF-VDGC, respectively. While it is not difficult to
show that both problems are NP-complete in general, here we
analyze the problem with respect to two of the most natural
complexity measures that characterize the input: the number
of agents and the number of edges.

When considering the number of agents (i.e., n), we be-
gin by extending the NP-completeness lower bounds for both
variants to the case of n = 2 even on very simple graphs—as



simple as two vertices plus a matching (Theorem 3). How-
ever, here we can show that the two variants do sometimes
behave differently: while EF-GC is also NP-hard on stars
when n = 2 (Theorem 2), we design a polynomial-time al-
gorithm for EF-VDGC on trees when n is upper-bounded
by an arbitrary but fixed constant (Theorem 6). In order to
achieve tractability for EF-GC, we need to restrict ourselves
to instances with a constant number of agents and where the
graph is a tree with a constant maximum degree (Theorem 7).

tw ∆ EF-GC EF-VDGC

2 3 NP-c (Th. 4) NP-c (Th. 4)
2 2 P (Th. 8) P (Th. 8)
1 arbitrary NP-c (Th. 2) P (Th. 6)
1 constant P(Th. 7) P (Th. 6)

Table 1: Complexity of EF-GC and EF-VDGC for a constant num-
ber of agents for different restrictions on the treewidth (tw) and the
maximum degree (∆). All NP-completeness (NP-c) results hold
already for only 2 agents.

In fact, we prove this is the best one can do from this per-
spective. Both problems become NP-hard on instances with
two agents and graphs of maximum degree 3 which are “al-
most trees”—in particular, have treewidth 2 (Theorem 4). On
the other hand, we show that both problems are polynomial-
time solvable on cycles, which are graphs of maximum de-
gree and treewidth 2 (Theorem 8); this provides a complete
dichotomy for the complexity of both problems with respect
to treewidth and maximum degree (see Table 1).

Next, we target instances where the number of edges is
bounded by a constant. As the main technical contribution
of this article, we show that both problems under consider-
ation become polynomial-time tractable under this restric-
tion (Theorem 9). The algorithm is non-trivial and com-
bines insights into the structure of a hypothetical solution
with branching techniques, linear programming subroutines
and insights from multidimensional geometry.

Related Work. Bei and Suksompong (2021) studied graph
cutting under the fairness notions of proportionality and equi-
tability; this was the first paper that considered a graph struc-
ture with divisible items. For indivisible items there are sev-
eral different graph-based approaches. In the most common
modelling scenario the items correspond to the vertices of the
graph and each agent must get a connected subgraph [Bei et
al., 2019; Bilò et al., 2021; Bouveret et al., 2017; Deligkas et
al., 2021; Elkind et al., 2021a; Igarashi and Peters, 2019].

A different line of work uses graphs to denote the re-
lationships between the agents, where an agent compares
their bundle only against the bundles of the agents they
are connected with [Abebe et al., 2017; Aziz et al., 2018;
Bei et al., 2017; Bei et al., 2020; Chevaleyre et al., 2017;
Eiben et al., 2020].

In addition to the above, there are many other works that
study variants of cake cutting [Elkind et al., 2021c; Elkind
et al., 2021b; Segal-Halevi et al., 2016; Menon and Larson,
2017; Marenco and Tetzlaff, 2014; Caragiannis et al., 2011;
Bei et al., 2021; Balkanski et al., 2014; Aumann and Dombb,
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Figure 1: Examples of pieces of edges and of a graph.

2015; Brânzei and Miltersen, 2015].

2 Preliminaries and Problem Definition

Notation. For rational numbers i, j ∈ Q, we use the stan-
dard notation [i, j] = {k ∈ Q | i ≤ k ≤ j} for inter-
vals and for an interval I = [i, j] we denote its length by
|I| = max{j − i, 0}. We denote the set of all non-negative
rational numbers by Q+. Throughout the paper we will con-
sider simple undirected graphs.

Graph Cutting. Consider a set A of n agents, a connected
graph G = (V,E), and for each agent a ∈ A an edge weight
function ua : E → Q+ over the edges of G; ua is the utility
(function) of agent a, and for a specific edge e ∈ E we call
ua(e) the utility of a for e.

A piece of an edge e is a tuple (e, I) where I ⊆ [0, 1] is
a possibly empty interval. We assume an arbitrary but fixed
order V of the vertices of G, and say that pieces (e, I) and
(e′, I ′) of two different edges e, e′ ∈ E are adjacent if

• there is some v ∈ V such that e = uv and e′ = vu′ (i.e.
e and e′ are adjacent in G), and

• if u has a smaller index in the ordering of V than v, then
1 ∈ I and 0 ∈ I otherwise, and

• similarly, if u′ has a smaller index in the ordering of V
than v, then 1 ∈ I ′ and 0 ∈ I ′ otherwise.

A piece of G is a collection P of pieces of edges of e such that
for every pair of pieces of edges (e0, I0), (eℓ, Iℓ) in P there is
a sequence of pieces of edges (e1, I1), . . . , (eℓ−1, Iℓ−1) in P
such that for all j with 0 ≤ j < ℓ, (ej , Ij) and (ej+1, Ij+1)
are adjacent. An example is provided in Figure 1.

The utility of an agent a for a piece P is given as ua(P ) =∑
(e,I)∈P |I| · ua(e). Note that {(e, [0, 1]) | e ∈ E} is also a

piece of G. As is standard, our algorithms will assume nor-
malized utilities, i.e., ua(G) = 1 for all a ∈ A1.

A partition of G into pieces is a set Π of pieces such that
for every edge e ∈ E and every real 0 ≤ α ≤ 1, there is
precisely one piece P ∈ Π and one (e, I) ∈ P such that
α ∈ I . In some cases it is also necessary to allocate each
vertex to a single piece: a partition of G into pieces is vertex-
disjoint if all pieces of edges containing a vertex belong to
the same piece of the graph. See Figure 2 for an example.

Finally we are ready to define our problem of interest. In
(piecewise) envy-free graph cutting (EF-GC) we are given
agents A, graph G and utilities ua : E → Q+ for each agent

1Instances with non-normalized utilities can be trivially trans-
formed into equivalent ones with normalized utilities.
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This partition is not vertex-disjoint as v1
is contained in both the orange and pink
piece of the graph. Already if one or-
ange edge piece was pink, the remain-
ing orange edge piece could be given
by an open interval, making the partition
vertex-disjoint.

Figure 2: Non-vertex-disjoint partition of a graph into seven con-
nected pieces of different colors.

a ∈ A. Our task is to construct a partition Π of G into pieces
and a bijection (called an assignment) π : A → Π such that
for every pair of agents a, a′ ∈ A, it holds that ua(π(a)) ≥
ua(π(a

′)). This condition is commonly referred to as envy-
freeness in assignment and allocation problems, and when it
is violated for some a and a′, we say that a envies a′.

We can analogously define the problem of (piecewise)
envy-free vertex-disjoint graph cutting (EF-VDGC) by ad-
ditionally requiring Π to be vertex-disjoint. In fact, by re-
placing each vertex in an instance of EF-GC with a clique
of size |E(G)|, we obtain a simple reduction from the former
problem to EF-VDGC.

Observation 1. EF-GC can be reduced to EF-VDGC in
polynomial time.

Bounding the Number of Cells in Metric Spaces. One
prominent tool our main algorithm for solving EF-GC and
EF-VDGC uses is a theorem that applies to the behavior
of polynomials in higher-dimensional spaces. To provide a
high-level intuition, consider a d-dimensional space that is cut
into regions by s-many hyperplanes or, more generally, “well-
behaved cuts” defined by bounded-degree polynomials. The
combination of these cuts splits the whole space into “cells”,
each consisting of points that lie on the same side of each
of the s-many cuts. While the trivial bound for the number
of these cells is 2s, it can be shown that the number of such
cells is in fact polynomial in s for fixed d and that represen-
tatives of these cells can be computed efficiently. The result
we use here is formalized in the book of Basu et al. (2006,
Thm.13.22), see also Simonov et al. (2019). (⋆)

3 Instances with Few Agents

In this section we consider the complexity of EF-GC and EF-
VDGC for instances with only a few agents. Interestingly,
we will show that while both problems are NP-hard even for
instances with only two agents, EF-GC turns out to be sig-
nificantly harder when additional restrictions are considered
for the input graph. In particular, while EF-GC is already
NP-hard on stars, EF-VDGC can be solved in polynomial-
time (for a fixed number of agents) even on trees and only be-
comes NP-hard on graphs that have a vertex deletion set into
a matching. Moreover, the problem becomes much harder if
we relax the graph structure from trees to “tree-like graphs”:
both problems become NP-hard on graphs that have treewidth
2 and maximum degree 3 (see Figure 3 for an illustration).

All three NP-hardness results follow from polynomial-
time reductions from the NP-complete NUMBER PARTI-
TIONING problem: given a multi-set S = {s1, . . . , sn} of
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Figure 3: The graph used in the proof of Theorem 4.

non-negative integers, decide whether there is a partition of S
into two subsets S1 and S2 such that

∑
s∈S1

s =
∑

s∈S2
s.

Theorem 2 (⋆). EF-GC is NP-hard even when restricted to
instances with two agents where the graph is a star.

Theorem 3 (⋆). EF-VDGC is NP-hard even when restricted
to instances with two agents where the graph consists of a
matching plus two additional vertices.

Theorem 4 (⋆). EF-VDGC and EF-GC are NP-hard even
when restricted to instances with two agents where the graph
has treewidth 2 and maximum degree 3.

Proof Sketch. Given an instance of NUMBER PARTITIONING

with n positive integers, we create a graph with 4n vertices as
follows (see also Fig. 3). For every i ∈ [n], we construct the
vertices ai, bi, ci, and di and the edges (ai, ci), (ci, bi) and
(ci, di). In addition, for every i ∈ [n − 1] we create the
edges (ai, ai+1) and (bi, bi+1). We create two agents with
identical valuations: for every i ∈ [n], both agents value the
edge (ci, di) with si, while every other edge has value 0.

Next, we move on to the aforementioned algorithmic result
for EF-VDGC. To establish that, we first prove the following
technical lemma.

Lemma 5 (⋆). Let I = (A,G, {ua}a∈A) be an instance of
EF-GC (EF-VDGC) and let G be a tree, or a cycle, and let
F be a set of edges of G. There is an algorithm that runs in
time polynomial in |A||F |+1 · |F ||A| · |I|, and either outputs
an assignment π that is envy-free such that each connected
component of G−F is assigned to exactly one agent (and, for
EF-VDGC, π(A) is additionally a vertex-disjoint partition)
or correctly identifies that such an assignment does not exist.

Proof Sketch. Observe that G − F consists of most |F | + 1
connected components and that there are at most |A||F |+1

many assignments of these connected components to agents.
By careful branching, we can determine for each agent
whether they are (1) assigned to a specific single edge of F
and their piece is fully inside some e ∈ F , or (2) are assigned
all edges in a subgraph T of G induced by a union of some
connected component of G − F and edges of F . For each
branch, we design an instance of Linear Programming (LP)
and solve it; if the instance has a solution, we can translate it
into an assignment π with the desired properties, and other-
wise no such assignment exists for the current branch.

Lemma 5 allows us to solve EF-VDGC on trees by apply-
ing initial branching to reach a situation satisfying the pre-
conditions of Lemma 5.



Theorem 6 (⋆). For each c ∈ N, EF-VDGC restricted to
instances with at most c agents is polynomial-time solvable
on trees.

Proof Sketch. Let πSOL be an arbitrary vertex-disjoint envy-
free assignment. Since G is a tree and agents do not share
vertices, one can show that there is a set F of at most |A| − 1
edges with the following properties: (I) each of the exactly
|F | + 1 components of G − F is assigned to a single agent,
and (II) every edge e ∈ F is split between the two agents as-
signed to the components that contain a vertex incident with e
plus some of the agents who are not assigned any of these
components.

We can now enumerate all of the at most |V (G)||A| possi-
ble sets of edges F ⊆ E(G) such that |F | ≤ |A| − 1. The
theorem then follows by applying Lemma 5 to G and F .

Using the notation and the running time bound from the
proof of Lemma 5, it follows that the overall complexity lies

in O(|V (G)||A| · |A||A| · (|A| − 1)|A| · T (|A|2)).

To complete our understanding of EF-GC and EF-VDGC
for instances with only boundedly-many agents, we show that
both problems are also polynomial-time solvable on graphs
of maximum degree 2 (i.e., cycles) and that the former is
polynomial-time solvable on bounded-degree trees. These re-
sults follow a similar approach as the proof of Theorem 6,
which is a combination of initial branching and Lemma 5.

Theorem 7 (⋆). For each c, d ∈ N, EF-GC restricted to in-
stances with at most c agents is polynomial-time tractable on
trees with maximum degree at most d.

Theorem 8 (⋆). For each c ∈ N, EF-GC and EF-VDGC
restricted to instances with at most c agents is polynomial-
time solvable on cycles.

4 Instances with Few Edges

In the section we provide an algorithm showing that both EF-
GC and EF-VDGC are in XP parametrized by the number of
edges in the input graph G.

Theorem 9. EF-GC and EF-VDGC can be solved in time
|A|O(|E(G)|2).

The algorithm can be divided into three main steps. We
start with a direct brute-force branching over all assignments
of agents that span more than one edge, and for these spe-
cial agents we identify precisely the edges from which they
will receive a piece. We also branch to determine the exact
number of agents that will be assigned to each edge. This

will result in |A|O(|E(G)|) many initial branches, and each
branch already provides useful information about a hypothet-
ical sought-after solution—but not enough to solve the prob-
lem. Crucially, every solution to the original instance corre-
sponds to one of the branches.

Our aim in the second step will be to construct, for each
branch, a Linear Program (LP) to determine the exact lengths
of all the pieces in an envy-free partitioning. In particular,
if the branch corresponds to a solution, then we require that
the LP outputs a partitioning that can be matched to agents
in a way which also produces a solution. Unfortunately, the

branching carried out in the previous step is not yet sufficient
to construct such an LP: during the construction, we need
to apply an additional advanced branching step to identify a
small number of envy-critical agents that are assigned com-
pletely to a single edge. The property of these agents is that
they will be the “closest” to envying agents assigned to other
edges in the graph, and in the LP these will serve as anchors
which ensure that an envy-free assignment will exist as long
as the assignment of agents is carried out in a way which re-
spects the selected envy-critical agents. Defining, bounding
the number of, and branching on these envy-critical agents is
the most challenging part of the algorithm, and is also where
Theorem 13.22 [Basu et al., 2006] is used.

Finally, based on the branching decisions and a solution to
the constructed LP, we design an instance of bipartite match-
ing that matches the remaining unassigned agents with the
pieces given by the LP instance. If a matching exists we are
guaranteed to have found a solution; if not, then our branch
does not correspond to a valid solution.

Initial Branching. For the remainder of this section, we fix
an instance I of EF-GC or EF-VDGC given by the set of
agents A, graph G = (V,E), and utilities ua : E → Q+ for
each agent a ∈ A. Denote k = |E(G)|. We can now start
with the branching phase. Let us assume I admits an envy-
free assignment πSOL into some partition of G into pieces;
we will describe the branching as a series of “guesses” of the
properties of this solution I and its interactions with G.

First, observe that for each edge e there are at most 2 agents
that can be assigned a piece of the edge e together with a piece
of some other edge. These are the agents in πSOL that receive
the piece (e, [0, c]) and the piece (e, [d, 1]) for some constant
c, d ∈ [0, 1]. For each edge e, we guess the agent that gets
the piece (e, [0, c]) (for some unspecified c ∈ [0, 1]) and say
that this is the guess for pair (e, 0); analogously, we guess
the agent that gets the piece (e, [d, 1]) (for some unspecified
d ∈ [0, 1]) and say that this is the guess for pair (e, 1). This
results in |A|2k many branches. Let AV be the set of the at
most 2k agents guessed in the previous step.

All the remaining agents are assigned by πSOL a piece
{(e, [c, d])} for some edge e. For every such agent, we say
that it gets a piece fully contained inside edge e. While it
is too computationally expensive to guess precisely which
agents get a piece fully contained in an edge e, we will guess
the number of agents that get a piece fully contained in an
edge e. This results in |A| + 1 many guesses for each edge,
amounting to a branching factor of at most (|A|+1)k. Let us
denote by ne the number of agents that get a piece fully con-
tained in the edge e. We now perform a set of sanity checks
on our branching; in particular, we discard branches which do
not fulfil the following conditions:

1. |AV |+
∑

e∈E(G) ne = |A|.

2. For every agent a ∈ AV , the guesses of pieces as-
signed to a form a connected subset of G. More for-
mally, whenever our branch assigns an agent a to two
distinct pairs (e, i) and (f, j), where e, f ∈ E(G) and
i, j ∈ {0, 1}, there must exist a path P = e1e2 . . . eq
from e[i] to f [j] such that for each ι ∈ [q] it holds that



(I) neι = 0 and (II) the agent a is also the guess for
both (eι, 0) and (eι, 1).

3. In the case of EF-VDGC, we will also verify that the
branching corresponds to a vertex-disjoint partition. In
particular, for each vertex v let Ev,0 be the set of edges
incident to v and a vertex preceding v in the ordering
and Ev,1 be the set of edges incident to v and a vertex
succeeding v in the ordering. We check that there is a
single agent a such that for each edge e ∈ Ev,0, a is
the guess for (e, 0), and at the same time for each edge
e′ ∈ Ev,1, a is the guess for (e′, 1).

Linear Programming. We can now begin describing the
instance of LP that we will use to determine the partition. For
this, it will be useful to observe that agents fully contained in
the same edge must receive a segment of the same length.

Observation 10. Let e ∈ E(G) be an edge and a1, a2 ∈
A two agents such that πSOL(a1) = {(e, [x1, y1])} and
πSOL(a2) = {(e, [x2, y2])}, then |y1 − x1| = |y2 − x2|.

For each edge e ∈ E(G), the LP instance will have vari-
ables x0

e, δe, and x1
e. The variable δe represents the length of

each piece (e, [c, d]) assigned to any agent that gets a piece
fully inside e. The variable xi

e represents the length of the
piece of the edge e that was assigned to the agent a ∈ AV

which is the guess for pair (e, i). We start by adding con-
straints ensuring that all pieces have non-negative length and
that the sum of lengths of pieces on each edge is exactly 1.
For each agent a ∈ AV , let Piecesa denote the set of
pieces that a is the guess for: Piecesa = {(e, i) | e ∈
E(G), i ∈ {0, 1}, and a is the guess for (e, i)}. Given the
intended meaning of variables x0

e, δe, and x1
e, we can now

add constraints to guarantee envy-freeness between agents in
a ∈ AV . For all a, a′ ∈ AV we create the constraint

∑

(e,i)∈Piecesa

ua(e) · x
i
e ≥

∑

(e′,i′)∈Piecesa′

ua(e
′) · xi′

e′ , (1)

and for every a ∈ AV and e ∈ E(G) we create the constraint

∑

(f,i)∈Piecesa

ua(f) · x
i
f ≥ ua(e) · δe. (2)

Next, for every (ordered) pair of edges e, f such that ne > 0
and nf > 0, need to guarantee that agents that get a piece of
length δe do not envy agents with pieces fully inside edge f .
If we knew that a ∈ A\AV gets a piece fully inside e, then for
this agent we could express this via the constraint ua(e)·δe ≥
ua(f) · δf . Unfortunately, we do not know which agents get
a piece fully inside e and cannot obtain this information by
exhaustive branching in view of our time bounds.

To overcome this obstacle, let us order the agents in A\AV

by the ratio
ua(e)
ua(f)

and consider two agents a1, a2 such that

ua1
(e)

ua1 (f)
≥

ua2
(e)

ua2 (f)
. It is easy to see that ua2

(e)·δe ≥ ua2
(f)·δf

implies ua1(e)·δe ≥ ua1(f)·δf . Hence to capture the desired
constraint it will be sufficient to guess, for each ordered pair
of edges (e, f) the agent a(e,f) that is assigned a piece fully
inside e (by πSOL), and has the smallest value for the fraction
ua(e,f)

(e)

ua(e,f)
(f) among all the agents that are assigned a piece fully

inside e. Intuitively, this corresponds to guessing an envy-
critical agent a: among all the agents fully assigned to e, the
agent a is “closest” to envying agents fully assigned to f .
Note that the guessed envy-critical agents will later preclude
some agents from receiving a piece of e (in particular, those
that precede a in the linear order defined by the fractions).

The procedure described above introduces at most k2 many
guesses of agents, which amounts to an additional branching

factor of at most |A \ AV |
k2

. For each agent a(e,f), we then
add the following constraint to the LP instance

ua(e,f)
(e) · δe ≥ ua(e,f)

(f) · δf . (3)

We also perform additional consistency checks for this
branching. First of all, we discard branches which select the
same agent as being envy-critical in multiple pieces (i.e., if
e 6= e′ then we require a(e,f) 6= a(e′,f ′)). Moreover, since we
have guessed at most k−1 agents for an edge e, we also check
that the intended meaning of the choice of the agent a(e,f) is

satisfied so far: for all triples of edges e, f, f ′ we check that

ua(e,f′)
(e)

ua(e,f′)
(f)

≥
ua(e,f)

(e)

ua(e,f)
(f)

. (A)

At this point we have added constraints which prevent—
assuming our guesses were correct—an agent in AV from
envying any other agent, and agents outside of AV from en-
vying each other. Finally, for every edge e and every agent
a ∈ AV we would like to guarantee that the agents that get
a piece fully inside e do not envy the agent a. Similarly as
before, for each specific agent a′ that gets a piece fully in-
side e we could hypothetically ensure this via the constraint
ua′(e) · δe ≥

∑
(f,i)∈Piecesa

ua′(f) · xi
f . However, we again

do not know the agents that are assigned a piece fully inside
e. Unfortunately, while for two edges e and f it was not
too difficult to define and identify envy-critical agents and
write linear constraints only for those, when comparing the
envy of agents fully assigned to e towards an agent a ∈ AV

that receives multiple pieces of edges, the notion of “envy-
criticality” we need depends on the size of the pieces a gets
from each edge. In particular, there is no fixed total ordering
of the agents that allows us to define envy-criticality. To give
a concrete example of this issue, for two different instantia-
tions of the xi

f variables, say xi
f := cif and xi

f := dif , and

two agents a1 and a2 it may hold that
∑

(f,i)∈Piecesa
ua1

(f) · cif

ua1(e)
≥

∑
(f,i)∈Piecesa

ua2(f) · c
i
f

ua2(e)
,

but
∑

(f,i)∈Piecesa
ua1

(f) · dif

ua1
(e)

≤

∑
(f,i)∈Piecesa

ua2
(f) · dif

ua2
(e)

.

On the other hand, the assignment πSOL does define some
specific instantiation of xi

e’s for which there is a (not neces-
sarily strict) total ordering on the agents a′ in A capturing
how “close” they are to envying a, i.e., based on the value of
∑

(f,i)∈Piecesa
ua′ (f)·xi

f

ua′ (e)
. While we have no way of computing

which total ordering arises from the hypothetical assignment



πSOL, we will later (in Lemma 11) use Theorem 13.22 [Basu
et al., 2006] described in the Preliminaries to show that only

|A|O(k) many such orderings are possible, and moreover that

we can enumerate all of these in time |A|O(k). For now, let us
complete the description of the LP with this in mind. Since

the number of relevant orderings is bounded by |A|O(k), we
can apply branching to guess the ordering that arises from a
hypothetical targeted assignment. At that point we can also
guess, for each edge e and agent a ∈ AV , the envy-critical
(according to this ordering) agent αe,a that is assigned to the
edge e and envies the agent a the most—and later use this
guess to preclude some agents from being fully assigned to e.

For each guess, we add constraints to the LP which will
ensure that the guess will be consistent with whatever solution
the LP produces. In particular, we add the constraint

ua′(e) · δe ≥
∑

(f,i)∈Piecesa

ua′(f) · xi
f (4)

for every agent a′ that envies a at most as much as αe,a ac-
cording to the guessed ordering. More precisely, with each
guess we will get some instantiation xi

e = yie witnessing this
guess, and we will insert a copy of Constraint 4 for every
agent a′ satisfying the following property:

∑
(f,i)∈Piecesa

uαe,a
(f) · yif

uαe,a
(e)

≥

∑
(f,i)∈Piecesa

ua′(f) · yif

ua′(e)
.

(B)
Our last task in this step is to provide a way to perform the

branching over total orders described above. Recall that each
instantiation of the variables xi

e, for i ∈ {0, 1} and e ∈ E(G),
gives rise to a set of total orderings of all agents in A. In
particular, each ordering is associated with precisely one pair
(a ∈ AV , e ∈ E(G)). Here, each ordering captures the rel-
ative envy towards a under the assumption that the agents
would be assigned to e (see Inequality B). We call a set of
such orderings a portfolio. Moreover, since πSOL also corre-
sponds to an instantiation of the variables xi

e, it too gives rise
to a set of total orderings, which we call a portfolio of πSOL.

Lemma 11 (⋆). It is possible to construct, in time AO(k), a
set R of at most kkAO(k)-many portfolios which is guaran-
teed to contain the portfolio of πSOL.

To formalize the description provided earlier, we now

branch over all at most kk|A|O(k) many portfolios obtained
from Lemma 11, or equivalently, points in the described met-
ric space. Given some point y ∈ R2k, we guess for each
pair of edge e ∈ E(G) and agent a ∈ AV an agent ae,a
as described above and introduce the LP instance constraints
described in (4). Finally, similarly as after introducing Con-
straints (3), we can again check that the intended meaning
of guessed agents for each edge e hold by checking Inequali-
ties (A) and (B) for every pair of agents guessed for each edge
e. If at least one of the inequalities do not hold, then we reject
the branch. This finishes the construction of the LP instance.

Bipartite Matching. Now, we can solve each LP instance
in at most cubic time [Cohen et al., 2019]. If the instance
is unsatisfiable, then the algorithm rejects this branch and

continues to the next one. Else, given an LP solution x, we
can assign the values for the agents that we already guessed.
Namely for each agent a ∈ AV , we let

π(a) =
⋃

(e,0)∈Piecesa

{(e, [0, x0
e])}∪

⋃

(e,1)∈Piecesa

{(e, [1−x1
e, 1])}.

Every other agent a that we identified via a guess was fully
assigned to some particular edge e. Moreover, we can split
the interval [x0

e, 1− x1
e] into ne pieces of length δe; note that

if ne > 0 then δe cannot be equal to 0. Let Ia ⊆ [x0
e, x

1
e] be

any of the pieces that has not been assigned to another agent
yet and let π(a) = (e, Ia).

Finally, we are left with some unassigned agents and some
unassigned pieces of the graph, each consisting of a single
piece of an edge. Since, |AV | +

∑
e∈E(G) ne = |A|, the

number of unsigned pieces equals the number of unassigned
agents. Moreover, since at this point we have a concrete par-
tition, for every pair of agent a and piece (e, I) we can in
polynomial time check whether a would envy a piece in the
partition or not (since this check can be performed without
knowing the assignments of the other agents); in the former
case we say that a is compatible with (e, I), and otherwise
we say that they are incompatible. We can thus create an
auxiliary bipartite graph H = (X ⊎ Y, F ) such that each ver-
tex in X is identified with an unassigned agent, each vertex
in Y is identified with an unassigned piece, and there is an
edge between an agent a ∈ X and a piece (e, I) ∈ Y if
and only if they are compatible. We compute a maximum
matching M in H in time at most O(|A|3). If M is not a
perfect matching, then we reject the branch of our algorithm
and try another branch. Else for each unassigned agent a, we
let π(a) = M(a), where M(a) denotes the piece (e, I) ∈ Y
matched with the agent a ∈ X by the matching M . In this
case the algorithm outputs Yes and optionally also the assign-
ment π as a witness. If none of the branches lead to a positive
outcome, the algorithm outputs No.

This concludes the description of the algorithm. It now
remains to prove correctness and verify the running time. (⋆)

5 Concluding Remarks

Our results provide a significantly improved understanding of
the classical complexity of envy-free graph cutting. One di-
rection that may be of interest for future work is to analyze
the complexity of this problem through the more refined pa-
rameterized complexity paradigm. Indeed, in that setting the
algorithmic results presented here can be viewed as XP al-
gorithms. An immediate question in this context is whether
these results can be strengthened to show fixed-parameter
tractability. Most prominently, is there a fixed-parameter al-
gorithm for EF-GC parameterized by the number of edges?

For the special case where the underlying graph is a path,
the complexity of the problem is an even more intriguing
question. As EF-GC on a path is a special case of EF CON-
TIGUOUS CAKE CUTTING, we know that it always admits a
solution and hence the decision version of the problem can-
not be W[1]-hard (for any parameterization). If the problem
of computing an envy-free solution does not admit a fixed-
parameter algorithm, would showing this require a variation
of the W-hierarchy tailored specifically to TFNP problems?
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Michele Flammini, Ayumi Igarashi, Gianpiero Monaco,
Dominik Peters, Cosimo Vinci, and William S Zwicker.
Almost envy-free allocations with connected bundles.
Games and Economic Behavior, 2021.

[Bouveret et al., 2017] Sylvain Bouveret, Katarı́na
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