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A B S T R A C T

Many decisions can be represented as interrelated discrete and continuous choices, i.e. what and
how much to choose from a set of finite alternatives (incidence and quantity of consumption).
In the last twenty years, several models of Karush–Kuhn–Tucker demand systems have been
developed and used to study these kinds of decisions. While strongly grounded in economic
theory, most of these models have two limitations: they require specifying a budget, and
usually omit any complementarity effects. In this paper, we propose two extensions to the
Multiple Discrete Continuous (MDC) modelling framework: (i) an MDC model including explicit
complementarity and substitution effects, and (ii) an MDC model with complementarity,
substitution that requires no budget definition. Model (ii) relies on the hypothesis that total
expenditure on the alternatives under consideration is small compared to the overall budget.
This allows using a linear utility function for the numeraire good, leading to a likelihood
function without the budget or numeraire good in it. The lack of a budget is specially useful
when forecasting, as it avoids cascading errors due to an inaccurate budget specifications. The
inclusion of complementarity and substitution effects enriches the interpretability of the models,
while the resulting functional form avoids theoretical issues present in previous formulations.
Alongside the derivation of the models, we discuss their main properties and propose an efficient
forecasting algorithm for (ii). We also report four applications to datasets about time use,
household expenditure, supermarket scanner data, and trip generation. Free estimation code
for both models is made available online.

. Introduction

Many choices can be represented as multiple discrete continuous decisions. In these, a decision maker faces a finite set of
lternatives, and must choose how much to ‘‘consume’’ of each one, potentially consuming none, one, or multiple alternatives.
xamples of these situation include activities performed during a day, grocery shopping, investment allocation, etc. Traditional
hoice models are not well suited for these situations, as they only allow the choice of a single alternative. Continuous models,
n the other hand, often underestimate the probability of zero consumption for individual alternatives, also known as the ‘‘corner
olution’’. Joint models, where the continuous choice is conditional on the discrete one, usually lack a strong grounding in economic
heory, though there are exceptions (Hausman et al., 1995).
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The Karush-Kuhn-Tucker multiple discrete continuous (MDC) consumer demand models (Hanemann, 1978; Wales and Woodland,
983; Chintagunta, 1993; Phaneuf and Herriges, 1999; Kim et al., 2002; Song and Chintagunta, 2007; Bhat, 2008; Mehta and Ma,
012; Bhat, 2018) attend to the issues mentioned in the previous paragraph. These models begin by explicitly formulating the
onsumer utility maximisation problem, assuming either a direct or indirect utility function with associated randomness. Then the
ptimal solution is derived through the use of Karush–Kuhn–Tucker conditions. Finally, the likelihood function of these conditions
s written given the distributional assumptions on the utility function. Nowadays, one of the most popular models of this category
s the Multiple Discrete Continuous Extreme Value (MDCEV) model (Bhat, 2008). It has been applied in different areas, such as
ransport (Jäggi et al., 2012), time use (Enam et al., 2018), social interactions (Calastri et al., 2017), alcohol purchase (Lu et al.,
017), energy consumption (Jeong et al., 2011), investment decisions (Lim and Kim, 2015), household expenditure data (Ferdous
t al., 2010), price promotions (Richards et al., 2012), and tourism (Pellegrini et al., 2017).

In this paper, we propose two extensions to the MDC modelling framework. First, we propose a new non-additive functional form
or the utility that includes explicit complementarity and substitution effects. Secondly, we present an MDC model formulation
that does not require the definition of a budget, while still allowing for explicit complementarity and substitution. The second
approach is a suitable approximation of a full MDC model for (the relatively common) situation where the expenditure on all
alternatives that are included in the model (i.e. inside goods) is small compared to the overall budget, which allows us to drop the
budget from the model likelihood. To allow for a tractable likelihood function, we do not include a stochastic error term in the
marginal utility of the outside good in any of the two proposed models.

Substitution and complementarity define relationships between the demand for pairs of products. If the demand for one of them
increases, then the demand for the other is reduced in the case of substitution and increased in the case of complementarity (Hicks
and Allen, 1934). While the budget constraint naturally induces substitution between products due to income effects, this is only an
indirect effect. The inclusion of complementarity and substitution is necessary for a more realistic representation of behaviour in
applications as diverse as time use or grocery shopping. For example, in the first case, it could be that going to the cinema makes it
more likely for individuals to also eat at a restaurant. In the second case, it could be that products such as pasta and tomato sauce
are usually bought together. On the other hand, it could be that the more hours an individual works, the fewer hours they allocate
to leisure activities; or purchasing more bread leads to a reduction in the consumption of biscuits.

Concerning the budget, while determining it can be easy in some applications, it can be challenging in others. For example, in
purchase decisions, the budget will rarely be an individual’s full income, as there is likely mental accounting and recurring expenses
to account for, all of which are not observable. Investment decisions face a similar problem, as the total budget may expand or shrink
as a function of expected performance of the investment alternatives. There are other scenarios where even the simple definition
of a budget is problematic, for example when modelling the number of recreational trips during a year, or the number of activities
performed by an individual during a week. The problem becomes more acute in forecasting. Any predictions from a model require a
budget, and predicting the budget, e.g. the income of individuals in the future, is another problem in itself, and introduces cascading
errors in the forecast values.

While other models including complementarity and substitution effects through non-additive separable utility functions have
been proposed in the literature, they either require complementarity and substitution effects to add up to zero (Song and Chintagunta,
2007), or pose specific constraints on their parameters, making either estimation or model transferability difficult (Mehta and Ma,
2012; Bhat et al., 2015; Pellegrini et al., 2021a). Models with implicit (also called infinite) budget have also been proposed by Bhat
(2018) and Saxena et al. (2022) for models with neither complementarity or substitution effects. A detailed comparison between
the models in this paper and those already in the literature is presented in Section 5.

The remainder of this document is structured as follows. The next section introduces the formulation, derivation, likelihood
function and forecasting algorithm of the model with complementarity and substitution. Section 3.2 presents the same for the model
with complementarity, substitution and an implicit budget. Section 4 discusses the identification of both model parameters, some
constraints that theory and estimation imposes on them, and compares the forecasting performance of both models to each other.
Section 5 compares the proposed models’ formulation to that of similar models in the literature. Section 6 presents applications of
the proposed models to four different datasets, dealing with time use, household expenditure, supermarket scanner data, and number
of trips, respectively. The paper closes with a brief summary of the proposed model formulations capabilities and limitations.

2. An MDC model with complementarity and substitution

2.1. Model formulation

Consider the classical (consumer) utility maximisation problem, where an individual 𝑛 must decide what products 𝑘 to consume
rom a set of alternatives, by maximising his or her utility subject to a budget constraint (Eq. (1)).

𝑀𝑎𝑥𝑥𝑛 𝑢0(𝑥𝑛0) +
𝐾
∑

𝑘=1
𝑢𝑘(𝑥𝑛𝑘) +

𝐾−1
∑

𝑘=1

𝐾
∑

𝑙=𝑘+1
𝑢𝑘𝑙(𝑥𝑛𝑘, 𝑥𝑛𝑙) (1)

𝑠.𝑡. 𝑥𝑛0𝑝𝑛0 +
𝐾
∑

𝑘=1
𝑥𝑛𝑘𝑝𝑛𝑘 = 𝐵𝑛

where 𝑛 = 1...𝑁 indexes individuals and 𝑘 = 1...𝐾 alternatives, 𝑥𝑛 = [𝑥𝑛0, 𝑥𝑛1,… , 𝑥𝑛𝐾 ] is a vector grouping the consumed amount of
each alternative (product), 𝑝 is the price of alternative 𝑘 faced by individual 𝑛, and 𝐵 is the total budget available to individual
14
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𝑛. 𝑥𝑛0 is an outside or numeraire good, i.e. a good that aggregates all consumption outside of the category of interest. For example,
if the researcher is interested in modelling demand for food, 𝑥𝑛1,… , 𝑥𝑛𝐾 would represent consumption of different food categories
(the inside goods), while 𝑥𝑛0 would represent the aggregate consumption of housing, transport, leisure, etc. It is usually assumed
that 𝑝𝑛0 = 1, so that 𝑥𝑛0 becomes the total expenditure on categories other than the one of interest. To simplify the notation, we use
this convention henceforth. It is assumed that the numeraire good is always consumed, so 𝑥𝑛0 > 0 always.

The formulation in Eq. (1) is consistent with a two-stage budgeting approach, where the individual first allocates expenditure
to broad groups (e.g. food, utilities, transport, entertainment, etc.) based on price indices representative for each group, followed
by independent within-group allocations to individual products. According to Edgerton (1997), such an approach is sensible and
subject to only small approximation errors when (i) the preferences for groups are weakly separable, i.e. the utility provided by each
group is not affected by the level of consumption of other groups; and (ii) the group price indices being used do not vary too greatly
with the utility or expenditure level. The first condition can be satisfied as long as the inside goods are reasonably separable from
excluded goods. Edgerton (1997) argues that empirical and theoretical arguments support the fulfilment of the second condition.

We assume the following functional forms for the different parts of the utility function.

𝑢0(𝑥𝑛0) = 𝜓𝑛0 log
(

𝑥𝑛0
)

(2)

𝑢𝑘(𝑥𝑛𝑘) = 𝜓𝑛𝑘𝛾𝑘 log
(

𝑥𝑛𝑘
𝛾𝑘

+ 1
)

(3)

𝑢𝑘𝑙(𝑥𝑛𝑘, 𝑥𝑛𝑙) = 𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑛𝑘 ) (1 − 𝑒−𝑥𝑛𝑙 ) (4)

e take the definition of 𝑢𝑘 from Bhat (2008). In this formulation, 𝜓𝑛𝑘 represents alternative 𝑘’s base utility, i.e. its marginal utility
t zero consumption. This parameter could be interpreted as the scale of the utility of product 𝑘. The 𝛾𝑘 parameters, on the other
and, relate mainly to consumption satiation, by altering the curvature of alternative 𝑘’s utility function. In general, a higher 𝛾𝑘

indicates higher consumption of alternative 𝑘, when consumed. While a common interpretation is that 𝜓𝑛𝑘 and 𝛾𝑘 determine what
and how much of alternative 𝑘 to consume, respectively, this is not completely true. There is a level of interaction between these
parameters, and in some circumstances a low value of 𝜓𝑛𝑘 can be compensated by a high value of 𝛾𝑘 (Bhat, 2008, 2018).

Parameters 𝜓𝑛𝑘 must always be positive, as they represent the marginal utility of alternatives at the point of zero consumption.
We ensure this using the following definition.

𝜓𝑛0 = 𝑒𝛼𝑧𝑛0 (5)
𝜓𝑛𝑘 = 𝑒𝛽𝑘𝑧𝑛𝑘+𝜀𝑛𝑘

where 𝑧𝑛0 is a column vector of characteristics of the decision maker that are expected to correlate with that individual’s marginal
utility of the outside good (e.g. socio-demographics); 𝛼 is a row vector of parameters representing the weights of those characteristics
on the marginal utility of the outside good; 𝑧𝑛𝑘 are attributes of alternative 𝑘; 𝛽𝑘 are vectors of parameters representing weights
of those attributes on the alternative’s base utility; and 𝜀𝑛𝑘 is a random disturbance term. We only include random disturbances in
the base utility of the inside goods, as this leads to a computationally tractable likelihood function. We discuss the inclusion of a
random disturbance in the marginal utility of the outside good in Section 4.1.

The final component of the utility function, 𝑢𝑘𝑙(𝑥𝑛𝑘, 𝑥𝑛𝑙), captures the complementarity and substitution effects between inside
goods. This particular functional form is inspired by the translog function, and previous formulations by Vásquez Lavín and
Hanemann (2008) and Bhat et al. (2015). Fig. 1 presents the behaviour of this component for a set of 𝛿𝑘𝑙 parameters, and different
values of 𝑥𝑛𝑘 and 𝑥𝑛𝑙, which are assumed to be equal. If 𝛿𝑘𝑙 > 0, there is complementarity between alternatives 𝑘 and 𝑙, as this
component will increase the overall utility. If 𝛿𝑘𝑙 < 0, there is a substitution effect between alternatives 𝑘 and 𝑙, as 𝑢𝑘𝑙 becomes more
negative as 𝑥𝑛𝑘 and 𝑥𝑛𝑙 increase. If 𝛿𝑘𝑙 = 0, the consumption of both alternatives is independent of each other. The value of 𝑢𝑘𝑙 is
bounded to the interval [0, 𝛿𝑘𝑙), ensuring transferability of estimated models to other datasets, a point we discuss in Section 4.2.

In summary, the proposed MDC model has two main characteristics. First, it contains no stochastic error in the marginal utility
of the outside good, allowing for a tractable likelihood function. Second, its non-additive utility function allows for interaction
(complementarity and substitution) among alternatives.

2.2. Model derivation

To solve the optimisation problem, we begin by writing its Lagrangian (Eq. (6)) and Karush–Kuhn–Tucker conditions of optimality
(Eqs. (7) and (8)). We drop the 𝑛 subindex to simplify the notation.

𝐿𝑎𝑔𝑟(𝑥) = 𝑢0(𝑥0) +
𝐾
∑

𝑘=1
𝑢𝑘(𝑥𝑘) +

𝐾−1
∑

𝑘=1

𝐾
∑

𝑙=𝑘+1
𝑢𝑘𝑙(𝑥𝑘, 𝑥𝑙) − 𝜆

(

𝑥0 +
𝐾
∑

𝑘=1
𝑥𝑘𝑝𝑘 − 𝐵

)

(6)

𝜕𝐿𝑎𝑔𝑟
𝜕𝑥0

= 0 ∶
𝜓0
𝑥0

= 𝜆 (7)

𝜕𝐿𝑎𝑔𝑟
𝜕𝑥

≤ 0 ∶
𝜓𝑘

𝑥𝑘 + 1
+ 𝑒−𝑥𝑘

∑

𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 ) ≤ 𝜆𝑝𝑘 (8)
15
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Fig. 1. Complementarity/substitution component of the utility.

Eq. (8) will be an equality when alternative 𝑘 is consumed (i.e. 𝑥∗𝑛𝑘 > 0, with 𝑥∗𝑛𝑘 the consumption at the optimum, i.e. the observed
consumption). Eq. (8) will be an inequality when 𝑥∗𝑛𝑘 = 0. In other words, the marginal utility of any consumed product 𝑘 at the
optimum level of consumption will be 𝜆 scaled by the alternative’s price 𝑝𝑛𝑘. Instead, if the product is not consumed, its marginal
utility will be lower. By combining Eqs. (7) and (8), we obtain:

𝜓𝑘
𝑥𝑘
𝛾𝑘

+ 1
+ 𝑒−𝑥𝑘

∑

𝑙≠𝑘
𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 ) ≤

𝜓0
𝑥0
𝑝𝑘 (9)

Replacing 𝜓0 and 𝜓𝑘 by their definitions (Eq. (5)), and isolating the random component 𝜀𝑘, we obtain

𝜀𝑘 ≤ −𝑊𝑘 (10)

𝑊𝑘 = 𝑧𝑘𝛽𝑘 − log
(

𝑥𝑘
𝛾𝑘

+ 1
)

− log

(

𝜓0
𝑥0
𝑝𝑘 − 𝑒−𝑥𝑘

∑

𝑙≠𝑘
𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 )

)

ow, if we assume all 𝜀𝑘 disturbances to follow identical and independent distributions, we only need to apply the Change of
ariable Theorem from 𝜀𝑘 to 𝑥𝑘 (only over the consumed alternatives) to obtain the likelihood function of the model. Then, if 𝑓
nd 𝐹 are the density and cumulative distribution functions of 𝜀𝑘, respectively, we can write the likelihood function as follows:

𝐿𝑖𝑘𝑒(𝑥𝑘) = |𝐽 |
𝐾
∏

𝑘=1
𝑓 (−𝑊𝑘)

𝐼𝑥𝑘>0𝐹 (−𝑊𝑘)
𝐼𝑥𝑘=0 (11)

𝐽𝑖𝑖 =
1

𝑥𝑖 + 𝛾𝑖
+

𝜓0
𝑥20
𝑝2𝑖 + 𝐸𝑖

𝜓0
𝑥0
𝑝𝑖 − 𝐸𝑖

(12)

𝐽𝑖𝑗 =

𝜓0
𝑥20
𝑝𝑖𝑝𝑗 − 𝛿𝑖𝑗𝑒−𝑥𝑖𝑒

−𝑥𝑗

𝜓0
𝑥0
𝑝𝑖 − 𝐸𝑖

𝐸𝑖 = 𝑒−𝑥𝑖
∑

𝛿𝑖𝑙(1 − 𝑒−𝑥𝑙 )
16
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In this set of equations, |𝐽 | is the value of the determinant of the Jacobian 𝐽 of vector −𝑊𝑚, where 𝑚 indexes consumed alternatives.
The elements of this Jacobian are defined in Eq. (12) (𝑖 indexes rows, and 𝑗 columns). No obvious compact form exists for this
determinant. 𝐼𝑥𝑘>0 and 𝐼𝑥𝑘=0 are binary variables taking value 1 if 𝑥𝑘 > 0 or 𝑥𝑘 = 0, respectively, or zero in other case. If no
alternative is consumed, the Jacobian drops out of Eq. (11).

In the remainder of this paper, we assume all 𝜀𝑘 disturbances to follow identical and independent Normal distributions with
ean fixed to zero and a standard deviation 𝜎, which is estimated. Assuming other distributions is possible, where the use of Gumbel
istribution leads to a closed-form likelihood, but has the disadvantage of generating a high rate of outliers during prediction, due
o the thick tails of the distribution. The Normal distribution, on the other hand, has thinner tails and it is a natural choice due to
he Central limit theorem, while being computationally tractable.

.3. Forecasting

Once the model has been estimated, forecasting requires solving the original maximisation problem proposed in Eq. (1) several
imes, each time using different draws of 𝜀𝑘 from a Normal distribution with mean zero and standard deviation 𝜎, and then averaging

the result across these draws. This must be done separately for each observation in the sample. The optimisation problem can be
solved using any algorithm, with the Newton or gradient descent algorithms being the most common type.

This forecasting procedure is demanding from a computational perspective, especially if a high number of draws are used for
each individual. However, due to the forecast for each individual and draw being independent from one another, calculating them in
parallel can significantly reduce the overall processing time. The software implementation in Apollo (ApolloChoiceModelling.com)
uses parallel computing to speed up the forecasting.

3. An MDC model with complementarity, substitution and an implicit budget

In this section we introduce an extension of the model presented in Section 2, such that it does not require defining a budget.
The formulation and derivation of the model is very similar to that presented in the previous section, so in this section we only
highlights the points where the two models differ.

3.1. Model formulation

Considering the classical consumer utility maximisation problem described in Eq. (1), we now assume a different utility
formulation for the outside good, while all other definitions remain as in the previous section (i.e. as in Eqs. (3), (4), and (5)).

𝑢0(𝑥𝑛0) = 𝜓𝑛0𝑥𝑛0 (13)

We assume a linear utility function for the outside good (Eq. (13)), as this will later on allow us to drop both the outside good
consumption 𝑥0 and the budget 𝐵 from the final model formulation.

While a linear utility function does not comply with the law of diminishing marginal utility (a common assumption in demand
models), it should be considered as an approximation of a function that does, when most of the budget is spent on the outside good,
and only a relatively small amount is spent on the inside goods. In such a case, changes in the total expenditure of inside goods
would lead to a relatively small change in the consumed amount for the outside good, and therefore a negligible change in the
marginal utility of it.

More formally, we can write changes in the utility of the outside good using a second degree Taylor expansion as 𝑢0(𝑥0 + 𝛥) ≃
𝑢0(𝑥0) + 𝑢′0(𝑥0)𝛥 + 1

2 𝑢
′′
0(𝑥0)𝛥2, where 𝑢′0 and 𝑢′′0 are the first and second derivatives of 𝑢0, respectively, and 𝛥 is a small change

in the consumption of the outside good. If 𝑢0 is continuous, monotonically increasing, and satisfies the law of diminishing returns,
then lim𝑥0→+∞ 𝑢′0 is a constant equal to or bigger than zero, because the slope must smoothly decrease as 𝑥0 increases, without ever
becoming negative. It then follows that lim𝑥0→+∞ 𝑢′′0 = 0. Therefore, for a large value of 𝑥0, we can assume that 𝑢′′0(𝑥0) is small,
and approximate 𝑢0 using a linear function, making 𝑢′0 ≃ 𝜓0.

Assuming a linear utility function for the outside good does not necessarily imply that all individuals have the same marginal
utility for it, nor that absolutely no information on the budget can be included in the model. The proposed formulation allows for
parameterisation of the 𝜓0 parameter. The modeller could make 𝜓0 a function of socio-demographics, or other proxies of the budget.
For example, 𝜓0 could be explained by an individual’s full income, occupation, or their level of education.

3.2. Model derivation

Proceeding in the same way as in Section 2.2, we first find a difference when calculating the derivative of the Lagrangean
(Eq. (6)) with respect to the outside good, as follows.

𝜕𝐿𝑎𝑔𝑟
𝜕𝑥0

= 0 ∶ 𝜓0 = 𝜆 (14)

hich combined with Eq. (8) leads to Eq. (15)
𝜓𝑘

𝑥𝑘 + 1
+ 𝑒−𝑥𝑘

∑

𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 ) ≤ 𝜓0𝑝𝑘 (15)
17
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Replacing 𝜓0 and 𝜓𝑘 by their definitions (Eq. (5)), and isolating the random component 𝜀𝑘, we obtain

𝜀𝑘 ≤ −𝑊𝑘 (16)

𝑊𝑘 = 𝑧𝑘𝛽𝑘 − log
(

𝑥𝑘
𝛾𝑘

+ 1
)

− log

(

𝜓0𝑝𝑘 − 𝑒−𝑥𝑘
∑

𝑙≠𝑘
𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 )

)

ssuming all 𝜀𝑘 disturbances follow identical and independent distributions, and applying the Change of Variable Theorem from 𝜀𝑘
o 𝑥𝑘 for the consumed alternatives, to obtain the likelihood function of the model, as described in Eq. (11), except this time the
efinition of the Jacobian elements is as in Eq. (17), with 𝐸𝑖 the same as in Eq. (12).

𝐽𝑖𝑖 =
1

𝑥𝑖 + 𝛾𝑖
+

𝐸𝑖
𝜓0𝑝𝑖 − 𝐸𝑖

(17)

𝐽𝑖𝑗 =
−𝛿𝑖𝑗𝑒−𝑥𝑖𝑒

−𝑥𝑗

𝜓0𝑝𝑖 − 𝐸𝑖

Just as with the model with observed budget, we assume all 𝜀𝑘 disturbances to follow identical and independent Normal
distributions with mean zero and a standard deviation 𝜎 to be estimated.

3.3. Forecasting

Once the model has been estimated, forecasting requires solving the original maximisation problem proposed in Eq. (1) several
times, each time using different draws of 𝜀𝑛𝑘 from a Normal(0, 𝜎) distribution, and then averaging the result across these draws.

To solve the optimisation problem we once again use the Lagrangian in Eq. (6) and the KKT conditions in Eqs. (14) and (8),
leading us to Eq. (15). Assuming an equality and isolating 𝑥𝑘, we obtain

𝑥𝑘 = ℎ(𝑥𝑘) = 𝛾𝑘

(

𝜓𝑘
𝜓0𝑝𝑘 − 𝐸𝑘

− 1
)

(18)

where the definition of 𝐸𝑘 can be found in Eq. (17), and where it depends on the value of all 𝑥𝑛. Eq. (18) is a fixed point problem,
i.e. a problem of the form 𝑥 = ℎ(𝑥). According to the Existence and Uniqueness theorem, as the right part of Eq. (18) is continuous
in 𝑥𝑛 over the closed interval [0, 𝐵𝑛𝑝𝑛𝑘 ], at least one solution to the problem exists. However, we cannot ensure that the solution is
unique. We solve Eq. (18) through the following iterative approach:

1. Set 𝑟 = 0 and 𝑥(𝑟) = [𝑥(𝑟)1 ,… , 𝑥(𝑟)𝐾 ] to zero.
2. For each 𝑘 ∈ {1, 2,… , 𝐾}

2.1. Set 𝑠 = 0 and calculate 𝐸(𝑟)
𝑘 .

2.2. Set 𝑥(𝑟)(𝑠)𝑘 to a random starting value.
2.3. Make 𝑥(𝑟)(𝑠+1)𝑘 = ℎ(𝑥(𝑟)(𝑠)𝑘 ).
2.4. If |𝑥(𝑟)(𝑠+1)𝑘 − 𝑥(𝑟)(𝑠)𝑘 | > 𝜏 and 𝑠 < 𝑆, go to step 2.3
2.5. If 𝑥(𝑟)𝑘 < 0 or |

𝜕𝑈
𝜕𝑥𝑘

− 𝜕𝑈
𝜕𝑥0

| > 𝜏, or |𝑥(𝑟)(𝑠+1)𝑘 − 𝑥(𝑟)(𝑠)𝑘 | > 𝜏 make 𝑥(𝑟)𝑘 = 0, otherwise make 𝑥(𝑟)𝑘 = 𝑥(𝑟)(𝑠+1)𝑘

3. If |𝑥(𝑟) − 𝑥(𝑟)| > 𝜏 and 𝑟 < 𝑆 go to 2.

where 𝑆 is the maximum number of iterations allowed, and 𝜏 indicates the convergence tolerance parameter, which can be set to
the desired precision. This procedure must be performed multiple times for each observation, each time with a different set of draws
for the 𝜀𝑘 disturbances. Then results for each set of draws must be averaged.

As this model assumes a very large budget, in practice, there is no bound on the magnitude of the forecast consumption.
Therefore, we recommend only forecasting for values of the explanatory variables in a reasonable vicinity of the values observed
in the estimation dataset. What defines reasonable is difficult to quantify, but, for example, if an explanatory variable 𝑧1 ∈ [0, 1]
in the estimation dataset, forecasting for 𝑧1 = 10 could lead to unreasonably high consumption levels. This is similar to how linear
models are usually valid only in the vicinity of values on which they were estimated.

4. Model properties

In this section, we discuss some of the most relevant properties of the model, namely the identifiability of its parameters, including
the possibility of using random coefficients; some theoretical constraints on its parameters; and the performance of the model with
implicit budget as compared to the model with observed budget.
18



Transportation Research Part B 161 (2022) 13–35D. Palma and S. Hess

p

d

a

i
d
o
a

t
g
t
t
w

i
𝛿
F
e
t

p
e

f
i
r

o
c
d
b
p
v

4.1. Identification of parameters

When estimating the proposed models, the modeller should consider the following six points regarding identifiability of
arameters.

First, observations who do not consume any inside good should not be excluded from the sample. Even though these observations
o not provide any information on the value of 𝜓𝑘, they do provide information of the value of 𝜓0 in relation to the inside goods.

Second, there should be no constant (intercept) in the definition of 𝜓0, i.e. 𝑧0 should not contain an element equal to 1 for every
individual. As utility does not have any meaningful units, we require setting a base against which all other utilities are measured.
To do this, we recommend setting the intercept of the outside good to zero. Any variable that changes across observations can be
included in 𝑧0, even if they are not centred around zero. We recommend populating 𝑧0 with characteristics of decision makers, such
s socio-demographics.

In the case of the model with implicit budget (see Section 3) we recommend including the individual’s income in 𝑧0. Including
ncome in this way does not imply that the budget is equal to the income, but only that the marginal utility of the outside good
epends on it. We would expect a negative coefficient for income if included in 𝜓0, as an increase of income usually leads to increased
verall consumption, and therefore a smaller marginal utility of the outside good. In general, a negative coefficient 𝛼 indicates that
n increase in the corresponding explanatory variable leads to increased consumption. The opposite is true for a positive coefficient.

Third, just as most other MDC models, the two formulations presented in this paper are not scale-independent. This means that
he magnitude of the dependent variable influences the results of the model. For example, expressing the dependent variable in
rammes or kilogrammes might lead to different forecasts and marginal rates of substitution. This is due to the non-linear nature of
he utility functions used in the models. We recommend testing different scalings of the dependent variable, favouring those making
he dependent variable range between zero and five, so as to match the range of maximum variability of the transformation in 𝑢𝑘𝑙,
hich is mostly flat for values 𝑥𝑘 > 5 (see Fig. 1).

Fourth, in the case of the model with implicit budget, complementarity and substitution effects can be confounded with
ncome effects. In the model with implicit budget, all interactions between the consumption of alternatives are captured by the
𝑘𝑙 parameters. The cause of interaction could be complementarity or substitution, but it could also be due to income effects.
or example, a restricted budget could induce increased demand for an inexpensive product while decreasing the demand for an
xpensive one. This could be captured by the model as substitution between the two products. This problem will be attenuated if
he budget is large in comparison with the expenditure on the inside good.

Fifth, concerning the number of complementarity and substitution parameters (𝛿𝑘𝑙), while the model formulation defines one
arameter per pair of products, the modeller can easily impose restrictions to reduce the number of parameters to estimate. For
xample, if alternatives can be grouped into non-overlapping sets, the modeller could impose all 𝛿𝑘𝑙 parameters to be the same

within each group, and across the same pair of groups. Alternatively, the modeller could perform a Principal Component Analysis
on the dependent variables, identifying the most important interactions between alternatives, and then estimating only those 𝛿𝑘𝑙
parameters and fix all others to zero (as done in Section 6.2). These or other strategies are recommended when the number of
alternatives is large.

Finally, as recommended by Manchanda et al. (1999), the proposed models allow for complementarity, substitution, and
coincidence effects, both in a deterministic and random way. Complementarity and substitution effects are captured by the 𝛿𝑘𝑙
parameters. Coincidence effects are shocks to demand influencing either one or multiple alternatives at the same time, and they
can be captured by either 𝜓0 (common shocks to all alternatives), or 𝜓𝑘 and 𝛾𝑘 (independent shocks). All of these parameters allow
or deterministic heterogeneity, for example defining 𝛿𝑘𝑙 as a function of socio-demographic characteristics. It is also possible to
ncorporate random heterogeneity in 𝜓𝑘 and 𝛾𝑘 by using simulated maximum likelihood techniques (Train, 2009), but we do not
ecommend including such heterogeneity in 𝜓0 nor 𝛿𝑘𝑙 as it could lead to violations of Eqs. (23) and (24) (see Section 4.2).

To test identifiability of the model through simulation, we created 50 datasets using the generation process of the model with
bserved budget, and another 50 datasets using the generation process of the model with implicit budget. We then estimated the
orresponding model on each generated dataset to check if we were able to recover the parameters used during data generation. All
atasets were composed of 500 observations with four alternatives each. All models shared the specification described in Eq. (19),
ut with the value of their parameters randomly drawn on each occasion from the distributions defined in Table 1. The range of
arameters was influenced by other models estimated in Section 6 and considerations discussed in Section 4.2. All explanatory
ariables (𝑧, 𝑥, 𝑦) followed a U(0,1) distribution, except for 𝑧1 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5). Prices were drawn from a U(0.1, 1) distribution,

while the budget was set to 10 for the models with observed budget.

𝜓0 = 𝑒𝛼1𝑧1+𝛼2𝑧2+𝜀0 (19)
𝜓𝑘 = 𝑒𝛽𝑘0+𝛽𝑘1𝑥𝑘1+𝛽𝑘2𝑥𝑘2+𝜀𝑘

𝛾𝑘 = 𝛾 ′𝑘 + 𝛾
′
𝑘1𝑦𝑘1 + 𝛾

′
𝑘2𝑦𝑘2

Figs. 2 and 3 summarise the true and estimated parameter for the model with observed and implicit budget, respectively. In
the graphs, the horizontal axis indicates the true value of the parameter, while the vertical axis indicates the estimated value. In
these graphs, a perfect recovery of a parameter is represented by a dot along the identity line (in blue). The graph also contains the
95% confidence interval for each estimated parameter. Both figures offer a similar perspective: while all parameters are recovered
19

correctly, 𝛼 and 𝛽 parameters are recovered more precisely, while 𝛾 and 𝛿 parameters (specially the latter) are harder to recover.
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Table 1
Distributions used to draw parameters from when simulating datasets.

Observed budget Implicit budget

𝛼1 U(0.1, 1.0) U(0.1, 0.2)
𝛼2 U(−1.0, −0.1) U(−0.2, −0.1)
𝛽𝑘 U(−1.0, 1.0) U(0.1, 1.0)
𝛽1 U(0.1, 1.0) U(0.1, 0.5)
𝛽2 U(−1.0, −0.1) U(−0.5, −0.1)
𝛾 ′𝑘 U(5.0, 10.0) U(0.1, 1.0)
𝛾 ′1 U(2.0, 5.0) U(0.1, 0.5)
𝛾 ′2 U(2.0, 5.0) U(0.1, 0.5)
𝛿𝑘𝑙 U(−0.1, 0.1) U(−0.03, 0.03)
𝜎 U(0.5, 1.0) U(0.25, 0.1)

Fig. 2. Recovery of parameters for the model with observed budget. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

4.2. Constraints on estimated parameters

The derivation of the likelihood function relies on the assumption of the utility function being monotonically increasing with
decreasing marginal returns of consumption. In other words, it assumes 𝜕𝑈

𝜕𝑥𝑘
> 0, where 𝑈 is the global utility. Failing to comply with

this assumption renders the likelihood function invalid, as second order derivatives on the Lagrangean would have to be checked to
make sure the critical point is not a minimum. Furthermore, it could lead to the existence of multiple local critical points, i.e. the
solution may not be unique, which is once again contrary to the assumptions made during the derivation of the likelihood function.
The marginal utility of the outside good is always positive in both models proposed in this paper. But the marginal utility with
respect to an inside good will only be positive when the inequality in Eq. (20) is fulfilled.

𝜓𝑘
𝑥𝑘
𝛾𝑘

+ 1
+ 𝑒−𝑥𝑘

∑

𝑙≠𝑘
𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 ) > 0 (20)

Additionally, the argument of the logarithm inside 𝑊𝑘 must be larger than zero, so as to avoid undefined operations. In the case of
20

the model with observed budget, this translate into the inequality in Eq. (21). And in the case of the model with implicit budget, it
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Fig. 3. Recovery of parameters for the model with implicit budget. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Constraints on proposed model parameters for extreme levels of consumption.
𝑥𝑘 𝑥𝑙∶𝛿𝑘𝑙>0 𝑥𝑙∶𝛿𝑘𝑙<0 Eq. (20) Eq. (21) Eq. (22)

0 0 0 𝜓𝑘 > 0 𝜓0

𝑥0
𝑝𝑘 > 0 𝜓0𝑝𝑘 > 0

0 0 ∞ 𝜓𝑘 > 𝛥−
𝜓0

𝑥0
𝑝𝑘 + 𝛥− > 0 𝜓0𝑝𝑘 + 𝛥− > 0

0 ∞ 0 𝜓𝑘 + 𝛥− > 0 𝜓0

𝑥0
𝑝𝑘 > 𝛥+ 𝜓0𝑝𝑘 > 𝛥+

0 ∞ ∞ 𝜓𝑘 + 𝛥+ > 𝛥−
𝜓0

𝑥0
𝑝𝑘 + 𝛥− > 𝛥+ 𝜓0𝑝𝑘 + 𝛥− > 𝛥+

∞ Any Any 0+ > 0 𝜓0

𝑥0
𝑝𝑘 > 0 𝜓0𝑝𝑘 > 0

Where: 𝛥− =
∑

𝑙∶𝛿𝑘𝑙<0
|

|

𝛿𝑘𝑙|| ; 𝛥+ =
∑

𝑙∶𝛿𝑘𝑙>0
𝛿𝑘𝑙

mplies Eq. (22) must be satisfied.
𝜓0
𝑥0
𝑝𝑘 − 𝑒−𝑥𝑘

∑

𝑙≠𝑘
𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 ) > 0 (21)

𝜓0𝑝𝑘 − 𝑒−𝑥𝑘
∑

𝑙≠𝑘
𝛿𝑘𝑙 (1 − 𝑒−𝑥𝑙 ) > 0 (22)

hese conditions are functions of 𝑥𝑘, making their fulfilment dependent on the particular dataset at hand. We would like to
nstead derive dataset-independent conditions. This is possible by noting that the impact of 𝑥𝑘 in both conditions is bounded by its
xponential transformation to the interval 0 ≤ 𝑒−𝑥𝑘 ≤ 1 (because 𝑥𝑘 ≥ 0). This allows us to derive more general conditions than
qs. (20)–(22) by analysing the extreme cases 𝑥𝑘 = 0 and 𝑥𝑘 = ∞, as the value of the conditions for all other 𝑥𝑘 values will fall
etween these. These extreme cases have the benefit of removing 𝑥𝑘 from the conditions. Table 2 summarises the results from this
nalysis.

All conditions in Table 2 with zero on the right hand side are always fulfilled because 𝜓𝑘, 𝛾𝑘, 𝑝𝑘, 𝛥− and 𝛥+ are all equal or
bigger than zero. Eq. (20) for 𝑥𝑘 = ∞ will also always be true as zero is approached from the right (i.e. from positive values).
Among the remaining conditions, 𝜓 > 𝛥− implies 𝜓 + 𝛥+ > 𝛥−, just as 𝜓0 𝑝 > 𝛥+ implies 𝜓0 𝑝 + 𝛥− > 𝛥+ and 𝜓 𝑝 > 𝛥+ implies
21

𝑘 𝑘 𝑥0 𝑘 𝑥0 𝑘 0 𝑘
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𝜓0𝑝𝑘 + 𝛥− > 𝛥+. Therefore, the sufficient conditions for the model with observed budget can be summarised as in Eq. (23)

− 𝜓𝑘 <
∑

𝑙∶ 𝛿𝑘𝑙<0
𝛿𝑘𝑙 <

∑

𝑙∶ 𝛿𝑘𝑙>0
𝛿𝑘𝑙 <

𝜓0
𝑥0
𝑝𝑘 ∀𝑘 (23)

And the sufficient conditions for the model with implicit budget are summarised in Eq. (24).

− 𝜓𝑘 <
∑

𝑙∶ 𝛿𝑘𝑙<0
𝛿𝑘𝑙 <

∑

𝑙∶ 𝛿𝑘𝑙>0
𝛿𝑘𝑙 < 𝜓0𝑝𝑘 ∀𝑘 (24)

Conditions in Eqs. (23) and (24) are based on extreme cases, so they represent sufficient but not necessary conditions for the validity
of the parameters. In other words, estimated parameters need only to comply with Eq. (20), and with Eq. (21) or (22), but satisfying
Eq. (23) or (24) guarantees that those conditions are met.

If individuals in the dataset behave rationally and in accordance with economic theory, then the estimated parameters should
naturally comply with Eq. (23) or (24). At the time of writing, we have not experienced any issues of running into inconsistent
parameters, nor have we had to impose parameter constraints during estimation to enforce compliance with these equations.

4.3. Suitability of a linear utility for the outside good

In the model with implicit budget, we propose a linear utility for the outside good as an approximation of the case where
expenditure on the inside goods (i.e. considered alternatives) is small compared to that on the outside (numeraire) good. In these
cases, we expect only very small changes to the marginal utility of the outside good due to changes in the consumption of the inside
goods. For example, consider consumption of the yoghurt product category. The expenditure on yoghurt will be small compared to
the total expenditure on food, and even smaller compared to the entire disposable income of the household. By using the model with
implicit budget, the modeller does not need to determine what the correct budget is, but only needs to know that total expenditure
in the category of interest is small compared to the budget, whatever that may be.

If our interpretation is correct, then the forecast of the model with implicit budget should approach that of the model with
observed budget when the expenditure on the outside good is large compared to that on the inside goods. We tested this assumption
through simulation. We first created 30 different datasets of 500 observations each, assuming a data generation process with
observed budget, i.e. using the model presented in Section 2. Besides having an outside good, each dataset had four inside goods
that were always available. The base utility of the outside good was set to zero, while the base utility of the inside goods was
composed of a single constant, each drawn from 𝑈 (−2, 0), i.e. a uniform distribution between −2 and 0. Satiation parameters 𝛾𝑘
were drawn from 𝑈 (0.5, 1.5), 𝛿𝑘𝑙 were drawn from a 𝑈 (−0.01, 0.01), while price 𝑝𝑘 followed a 𝑈 (0.1, 1), and the budget was set to
10 for every observation. We measured the fit of each model on each dataset using the Root Mean Squared Error (RMSE) of the
forecast aggregate demand in the whole sample. Results are exhibited in Fig. 4.

As Fig. 4 shows, the fit of the model with implicit budget approaches that of the model with observed budget as the expenditure on
the outside good increases. This indicates that the model with implicit budget is an appropriate approximation when the expenditure
on the outside good is large relative to the expenditure on inside goods.

5. Comparison with other MDC formulations

The MDC models presented in this paper are not the first to include complementarity, substitution or an implicit budget in the
literature. In this section, we discuss other MDC models with these properties, and compare them to the models proposed in this
paper. We begin with a very brief review of models without complementarity or substitution (other than income effects), which
form the basis for more flexible models.

5.1. No complementarity or substitution, and an observed budget

One of the most popular models in this category is the MDCEV model by Bhat (2008). It is derived from the same consumer
optimisation problem proposed in Eq. (1), but using a different functional form for the utility components. While there are
several possible formulations, the most common one is the alpha-gamma formulation, due to it allowing for an efficient forecasting
algorithm (Pinjari and Bhat, 2011). In this case, the utility takes the form described in Eq. (25), where 𝛼 can either tend towards
zero during the estimation process, or the modeller can fix it a priori.

𝑢0 = 1
𝛼
𝜓0

((

𝑥0 + 1
)𝛼 − 1

)

←←←←←←←←←←←←←←←←←←→
𝛼→0

𝜓0 log
(

𝑥0 + 1
)

𝑢𝑘 =
𝛾𝑘
𝛼
𝜓0

((

𝑥0
𝛾𝑘

+ 1
)𝛼

− 1
)

←←←←←←←←←←←←←←←←←←→
𝛼→0

𝛾𝑘𝜓𝑘 log
(

𝑥𝑘
𝛾𝑘

+ 1
)

𝑢𝑘𝑙 = 0 ←←←←←←←←←←←←←←←←←←→
𝛼→0

0

(25)

Parameter interpretation in the MDCEV model is essentially the same as in the models described in this paper, except for two
ifferences. First, the outside good’s marginal utility contains no covariates, but only a stochastic error term, i.e. 𝜓0 = 𝑒𝜀0 . Second, 𝛼
easures satiation across the whole choice set in MDCEV, and not the influence of covariates in the outside good’s marginal utility
22

s in the models proposed in this paper. And while it is possible to introduce explanatory variables into the base utility of the outside
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Fig. 4. Compared fit of models with observed and implicit budget, on data generated assuming a generation process with observed budget.

good in MDCEV models (either directly, or by including them with the same coefficient in all inside goods’ base utility), it is not
commonly done in practice.

By setting 𝑢𝑘𝑙 = 0, the MDCEV model does not allow for pure complementarity or substitution effects, though product substitution
can still take place due to income effects. Also, the form of 𝑢0 requires the value of 𝑥0, and therefore the budget, to be observed.

Kim et al. (2002) use a similar utility function to the MDCEV model, but assume that the random disturbances follow a multivari-
ate normal distribution. While more flexible, this distribution makes the model much more computationally demanding. Von Haefen
and Phaneuf (2005) also present a similar model to MDCEV, but without an error term in the marginal utility of the outside good.
Other models in this category include Habib and Miller (2008, 2009), who present models similar to that by Von Haefen and Phaneuf
(2005).

5.2. Introducing complementarity and substitution through new functional forms

Vásquez Lavín and Hanemann (2008) propose a model formulation allowing for complementarity and substitution using a non-
additively separable utility function and an observed budget. This formulation was later refined by Bhat et al. (2015), who called it
the NASUF model. Beginning from the consumer optimisation problem set in Eq. (1), the utility components are defined as described
in Eq. (26).

𝑢0 = 𝜓0 log
(

𝑥0 + 𝛾0
)

(26)

𝑢𝑘 = 𝜓𝑘𝛾𝑘 log
(

𝑥𝑘
𝛾𝑘

+ 1
)

𝑢𝑘𝑙 = 𝜃𝑘,𝑙

(

𝛾𝑘 log
(

𝑥𝑘
𝛾𝑘

+ 1
))(

𝛾𝑙 log
(

𝑥𝑙
𝛾𝑙

+ 1
))

The definition of 𝑢𝑘𝑙 makes the NASUF utility function non-additive, effectively introducing complementarity and substitution
ffects. A positive value of 𝜃𝑘𝑙 is indicative of complementarity, while a negative one represents substitution, and 𝜃𝑘𝑙 = 0 implies no
23

complementarity or substitution. Yet, this formulation has three main drawbacks.
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The first drawback is that the utility function is valid only for some values of 𝜃𝑘𝑙. Just as in the case of the models proposed
n this paper, and as discussed in Section 4.2, the derivation of the likelihood function assumes 𝜕𝑈

𝜕𝑥𝑘
> 0. For this to be true, the

inequality in Eq. (27) must be satisfied.

𝜕𝑈
𝜕𝑥𝑘

= 𝜓𝑘 +
∑

𝑙≠𝑘
𝜃𝑘𝑙𝛾𝑙 log

(

𝑥𝑘
𝛾𝑘

+ 1
)

> 0 ∀𝑘, 𝑙 (27)

While it is possible to bound the value of parameters during estimation, the problem with the condition in Eq. (27) is that it
epends on the value of 𝑥𝑘. As the logarithm is not a bounded function, whether or not this condition is satisfied will depend on
he level of consumption 𝑥 of each individual, making it impossible to assess the correctness of a model without associating it to
particular dataset. This hinders model transferability from one dataset to another, and jeopardises forecasting, as only scenarios

hat fulfil the condition above should be permissible forecasts.
If all individuals in the dataset behave in accordance with economic theory, then the parameters should automatically fulfil

q. (27). Yet, this does not prevent the estimation algorithm from trying parameter values violating Eq. (27) during the parameter
alue search. Furthermore, calculating the likelihood of the model requires calculating the logarithm of the expression in Eq. (27),
eading to an error if the expression is less or equal than zero.

The second issue with the solution proposed by Bhat et al. (2015) is that the stochasticity is introduced midway through the
erivation of the model in the Karush–Kuhn–Tucker conditions, and not in the initial formulation of the model. While this is merely
formal issue, it does imply that the origin of the randomness is not clear, and it is not possible to easily associate it with unobserved
ariables or measurement errors, as would be the case in more traditional econometric models.

The third issue is that 𝛾 parameters have a role both in satiation and in the interaction term (i.e. complementarity and
ubstitution) of the utility, making their interpretation difficult.

Pellegrini et al. (2019) refine the model proposed in Bhat et al. (2015) by proposing a different interaction term in the utility
unction. While this new formulation leads to an improved fit and provides a clear interpretation of 𝛾 parameters, it retains at least
he first issue associated to the formulation of Bhat et al. (2015). Pellegrini et al. (2021a) further expand the NASUF model by
llowing for two budget constraints in an application where both time and monetary constraints are considered jointly.

A similar formulation was proposed by Lee and Allenby (2009), but using a quadratic function to incorporate satiation, comple-
entarity, and substitution. This model only considers inside goods, defining the global utility as 𝑈 =

∑

𝑘 𝜓𝑘𝑥𝑘−
1
2
∑

𝑘
∑

𝑙 𝜃𝑘𝑙𝜓𝑘𝑥𝑘𝜓𝑙𝑥𝑙
(we assume only one product per category to simplify the analysis). Note that 𝜃𝑘𝑘 is not restricted to zero in this case, as is in the
models proposed in this paper. The validity of the formulation rests on the condition 𝜕𝑈

𝜕𝑥𝑘
=
(

1 −
∑

𝑙 𝜃𝑘𝑙𝜓𝑘𝑥𝑘
)

𝜓𝑘 > 0, which depends
on the value of 𝑥𝑘, leading to the same issue already discussed in the context of the NASUF model.

Finally, Lee et al. (2010) propose a model allowing for asymmetric complementarity and substitution among categories of
product. However, the formulation of the model does not satisfy the principle of weak complementarity (Maler, 1974), i.e. that
an individual’s utility is not influenced by the attributes of non-consumed goods or, in other words, that goods provide utility only
through their use. This is a reasonable assumption in cases where non-use values are believed to be absent or small (see von Haefen
(2004) for a more detailed discussion).

5.3. Introducing complementarity and substitution through the indirect utility function

While in this paper we derived MDC models from the direct utility function of consumers, it is also possible to make assumptions
on the indirect utility instead, and then calculate the optimal consumption using Roy’s identity, as described in section 3.1
of Chintagunta and Nair (2011).

Song and Chintagunta (2007) propose an MDC model following the indirect utility approach, considering not only a set of
alternatives, but grouping them into categories, and assuming that at most one alternative inside each category is consumed.
Furthermore, this model imposes a symmetry constraint on its complementarity and substitution parameters, as described in Eq. (28).

𝑀
∑

𝑙=0
𝜃𝑘𝑙 = 0 ∀𝑘 (28)

where 𝜃𝑘𝑙 represents the complementarity and substitution parameters (originally called 𝛽 in Song and Chintagunta (2007)). Eq. (28)
forces that, for each product, the amount of complementarity and substitution with other products needs to add up to zero. But
there are no theoretical reasons for this to necessarily be the case in any given application. This requirement prevents, for example,
for a product to only have complementarity with one other product, while not having substitution with any other product.

Mehta and Ma (2012) propose a model with a similar formulation to that of Song and Chintagunta (2007), but without the
symmetry constraint. However, it requires the matrix of complementarity and substitution parameters (whose elements are 𝜃𝑘𝑙) to be
positive semi-definitive. Additionally, the likelihood function does not have a closed functional form, requiring multiple-dimension
24

integration; and the number of parameters increases geometrically with the number of alternatives.
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5.4. Introducing complementarity and substitution through correlation in utility functions

An alternative way to introduce complementarity and substitution into an MDC model is by introducing correlation across the
tility of alternatives. This can be done in two ways: (i) by directly correlating the random error term 𝜀 in the utility function

of each alternative across multiple alternatives, or (ii) by adding new random error terms common to the utility of multiple
alternatives. Pinjari and Bhat (2010) use the first approach, using extreme value distributions to nest alternatives together into
mutually exclusive subsets, allowing for perfect substitutes but not for complementarity. This approach was generalised by Pinjari
(2011), by allowing for overlapping non-exclusive nests, but still limiting its applicability to complementarity. Bhat et al. (2013)
makes 𝜀 follow a multivariate normal distribution across alternatives, allowing for flexible correlation patterns. Calastri et al. (2020a)
follows the second approach, by using random intercepts and coefficients (𝛽 in our notation) correlated across alternatives.

As Pellegrini et al. (2021a) discuss, the main limitation of introducing complementarity and substitution through correlation in
he utility functions of different alternatives is that of confounding effects. Indeed, using this approach it is impossible to discriminate
etween correlation due to common heterogeneity in preferences, from correlation due to complementarity and substitution. For
xample, two utilities could be positively correlated due to them sharing unobserved attributes, but not because the alternatives are
omplementary.

.5. Two stage approaches to unobserved budgets

The necessity to observe the budget can lead to two separate issues. The first one is during estimation, in the case when the
udget is not observed. This forces the modeller to assume some value for the budget before even estimating and MDC model. A
ommon solution to this problem in past work has been to use the total expenditure as the budget. This is a strong assumption, as it
mplies that the total expenditure will not change as a function of prices or other attributes of the products. For example, it implies
hat consumers will spend the same amount regardless of the level of discount offered.

The second problem due to the necessity of an observe budget in MDC models manifests during forecasting. Forecasting for any
uture scenario requires exogenously defining a budget. Any errors in the forecasting of the budget will cascade down to the MDC
odel, as shown in Section 6.2.

In the literature, these problems have been addressed mostly through two-stage procedures, where in the first stage, a model
s used to estimate (and predict) the budget, and in the second stage, a traditional MDC model with observed budget is used to
llocate the budget to the different alternatives.

Pinjari et al. (2016) proposes a two-stage approach. In the first stage, they use either a stochastic frontier or a log-linear regression
o estimate the expected budget, and in the second stage they use the expected budget in an MDCEV model. They compare the
erformance of both approaches against arbitrarily determined budgets. When using the stochastic frontier method, they assume
he budget to be an unobservable characteristic of decision makers, defined as the maximum amount they are willing to spend.
his implies that the expected budget under this approach tends to be bigger than the total expenditure. The log-linear regression,
n the other hand, attempts to predict total expenditure, so it leads to expected budgets that are of the same magnitude as the
otal expenditure. While both approaches offer similar performance, and both outperform the arbitrarily determined budget, the
tochastic frontier approach leads to bigger expected budgets, therefore allowing for more variability in the forecast, as the total
xpenditure has room to grow if the attributes of the alternatives improve. This approach is also used by Pellegrini et al. (2021b).

Dumont et al. (2013) propose a different two-step approach to estimate the budget. In the first step, they estimate a Structural
quation Model (SEM) where the budget is a latent variable, whose structural equation has socio-demographics as explanatory
ariables. The budget can have several indicators, such as average expenditure in the category during the last three months, expected
xpenditure in the future, and ownership of goods from the same category. Income is also considered a latent variable, with at least
tated income as indicator. More formally, the latent budget 𝐵𝑛 and latent income 𝐼𝑛 relate as follows:

𝐵𝑛 = 𝑍𝑛𝜁𝑧 + 𝜁𝐼𝐼𝑛 + 𝜂𝑛 (29)
𝐼𝑛 = 𝜉𝑛 (30)
𝑦𝑛𝑗 = 𝜆𝑗𝐵𝑛 + 𝜎𝑗𝜀𝑛𝑗 (31)

𝑆𝑛 = 𝜆𝑠𝐼𝑛 + 𝜎𝑠𝜀𝑛𝑠 (32)

where 𝑍𝑛 are socio-demographics of individual 𝑛, 𝑦𝑛𝑗 is indicator 𝑗 of the budget, 𝑆𝑛 is the stated income, 𝜂𝑛, 𝜉𝑛, 𝜀𝑛𝑗 and 𝜀𝑛𝑠 are
tandard normal error terms, and 𝜁𝑧, 𝜁𝐼 , 𝜆𝑗 , 𝜎𝑗 , 𝜆𝑠 and 𝜎𝑠 are parameters to be estimated. As expected, authors report lower log-
ikelihoods when using the SEM approximation to the budget than when using maximum expenditure, but they also do note an
mprovement in the MDC parameters significance levels. They do not report changes in forecast performance, making it difficult to
valuate the performance of the proposed approach.

.6. Other MDC models with implicit budget

Other models in the literature have also used linear utility functions for the outside good, in the same way that in the models
roposed in this paper. This functional form leads to a likelihood function that does not depend on the budget, effectively allowing
or unobserved budgets.
25
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Table 3
Main descriptive statistics of the time use database.

Consumption (H) Correlation

Engagement Total Averageb Work School Shopping Private B.

Homea 100.00% 51 467 18.21
Work 40.30% 8170 7.17 1.00
School 3.01% 299 3.52 −0.06 1.00
Shopping 27.71% 1408 1.80 −0.08 −0.03 1.00
Private B. 18.93% 1253 2.34 −0.09 0.00 −0.01 1.00
Leisure 41.54% 5227 4.45 −0.17 −0.01 −0.01 −0.04

aOutside good.
bWhen engaged.

In the context of the MDCEV model and its derivations, Bhat (2018) was the first one to propose using a linear utility function
or the outside good. This functional form, however, was not motivated by the need to drop the budget from the model formulation,
ut it was used to allow for more separability between the parameters that determine the discrete choice (i.e. what to choose), from

those that determine the continuous choice (i.e. how much to choose). Therefore, this property of the model is hardly explored in
that paper.

More recently, Saxena et al. (2022) discussed the consequences of using a linear utility for the outside good in models with
additively separable utility functions. Such a configuration leads to models that do not consider complementarity, substitution, nor
income effects, therefore making demand from one product independent from another, unlike the model proposed in this paper
(though it does allow for parameterising 𝜓0). Similarly to our own advice, they recommend using a linear utility function for the
outside good only when the total expenditure in the inside goods is no more than 35% of the budget (or more strictly, less than
5%). If the expenditure in inside goods is higher than those values, they find bias in the model estimates and poor forecasting
performance. While we did not find evidence of biased parameters in the proposed model (see Fig. 3), we did find evidence of poor
forecast performance (see Fig. 4). The absence of parameter bias in the proposed model could be due to it including complementarity
and substitution effects, and the fact that the error term follows a Normal distribution instead of a Gumbel distribution.

6. Model application and comparison

In this section we apply the proposed models to four different datasets. The first dataset records time use, where all participants
face the same budget (24 h a day), and all alternatives (in this case, activities) have the same price (one unit of time). This dataset
allows us to measure how much fit is lost when using the model with implicit budget when the budget is known, as well as
compare the proposed models against a model without complementarity nor substitution. The second dataset deals with household
expenditure, where budgets vary between different households, but consumption is aggregated to categories, so prices are still
unitary (one unit of money). This dataset helps us illustrate how the fit of the model with observed budget degrades when the
budget is misspecified, a case particularly relevant in forecasting. The third dataset contains scanner data from a supermarket,
where both budgets and prices vary from one observation to the next. This dataset allows us to compare the sensitivity to price
of the models with observed and implicit budget. The last dataset reports the number of trips performed by travellers for different
purposes. This dataset is a case where the very definition of a budget is problematic, as there is no evident limit on the number of
trips during a day.

6.1. Fixed budget and fixed prices: time use dataset

The first dataset records time use of 447 individuals across 2826 days in total. Details about the data collection can be found
in Calastri et al. (2020b), and an application to time use analysis using this data can be found in Calastri et al. (2019) and Palma
et al. (2021). Only out-of-home activities are registered in the dataset, which we aggregate to six plus the outside good, as described
in Table 3.

We estimated three different models using the Time Use data. First we estimated a traditional MDCEV model (Bhat, 2008),
which has an observed budget and no complementarity. We also estimated the first model proposed in this paper (eMDC1), with an
observed budget, complementarity and substitution. Finally, we estimate the second model proposed in this paper (eMDC2), with
an implicit budget, complementarity and substitution.

In the case of time use, the budget is observed (24 h a day for everyone), and remains unchanged in forecasting scenarios, giving
a clear advantage to the MDCEV and eMDC1 models. Nevertheless, we are interested in exploring the consistency of results across
he models with observed budget, as well as the loss of fit in the eMDC2 model (which uses an implicit budget) with respect to
he others. We estimated the models using 70% of the sample, and forecast for the remaining 30%. Table 4 presents the estimated
arameters, likelihood and root mean squared error (RMSE) of the forecast consumption at the aggregate sample level for each
odel.

The parameter estimates point towards consistent effects across models. And while parameters across models change in
26
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Table 4
Comparison of the proposed extended MDC and a traditional MDCEV models on a time use dataset.

MDCEV eMDC1 eMDC2

Estimate t-ratioa Estimate t-ratioa Estimate t-ratioa

𝛼 Constant 0.036 20.77
𝛼 Female −0.102 −1.44 −0.044 −1.83
𝛽 Work −3.351 −34.15 −3.789 −22.35 −0.237 −3.36
x Full time 0.880 7.66 1.257 7.23 0.494 6.36
x weekend −1.830 −9.77 −2.883 −11.22 −1.115 −8.60
𝛽 School −5.672 −18.52 −7.298 −21.31 −1.578 −8.85
x 30 or younger 1.440 5.01 1.741 5.01 0.634 4.60
𝛽 Shopping −3.363 −60.27 −4.175 −39.19 −0.496 −11.19
𝛽 Private −3.643 −47.91 −4.762 −38.19 −0.716 −10.05
𝛽 Leisure −3.106 −63.07 −3.661 −36.72 −0.282 −7.13
x weekend 0.115 1.89 0.283 2.64 0.183 4.49
𝛾 Work 9.186 8.43 3.323 9.64 7.426 8.38
𝛾 School 5.414 4.56 3.380 4.57 8.003 5.25
𝛾 Shopping 0.804 8.05 0.443 7.80 2.452 4.32
𝛾 Private 1.081 5.68 0.751 4.99 4.012 4.74
𝛾 Leisure 3.811 8.16 1.713 8.63 5.619 6.29
𝛿 Work-School −0.021 −2.52 −0.208 −4.30
𝛿 Shopping-Private business 0.011 2.69 0.107 3.65
𝛿 Shopping-Leisure 0.017 4.97 0.108 4.42
𝛿 Private business-Leisure 0.023 7.24 0.172 6.60
𝜎 0.661 13.758 1.932 17.19 0.709 9.79

Parameters 16 20 20
Loglikelihood −10 446.59 −10 577.74 −10 706.19
RMSE 115 48 96

aRobust t-ratio.

𝛼 measures satiation across all alternatives. Instead, in the proposed eMDC models 𝛼 represents the impact of the associated
explanatory variable (𝑧0) on the marginal utility of the outside good (𝜓0). In the proposed models, 𝛼 > 0 (𝛼 < 0) implies a positive
negative) effect of 𝑧0 on 𝜓0, therefore an increased (decreased) consumption of the outside good, and a decreased (increased)
onsumption of the inside goods when 𝑧0 grows. In this particular application, the negative sign of 𝛼𝚏𝚎𝚖𝚊𝚕𝚎 indicates that, after
ontrolling for other variables, women on average perform more out-of-home activities than men.

Concerning the 𝛽 parameters, all of them are negative because all ‘‘inside’’ activities are less common than the ‘‘outside’’ activity
staying at home, see Table 3). These parameters become more negative as the engagement with their corresponding activity
ecreases, except for leisure and work in eMDC1, probably due to the effect of interactions. As expected, working full time increases
he chance to engage in work activities, while the weekend decreases it but increases the chance of engaging in leisure activities;

and being 30 years old or younger increases the probability of engaging in school activities. 𝛾 parameters follow a similar trend,
ith higher values associated with activities performed for longer periods of time. The only exception is school, which has a large
parameters despite being consumed for shorter periods than leisure, probably to compensate for its small 𝜓𝚜𝚌𝚑𝚘𝚘𝚕.

Only the eMDC models provide information on complementarity and substitution through their 𝛿 parameters, which are fairly
onsistent across eMDC1 and eMDC2. As expected, there is substitution between work and school, because few people work and
tudy concurrently. On the other hand, we observe complementarity between shopping, private business and leisure, probably because
ll of these activities are often performed at the city centre, and therefore easier to chain into a single trip. As Table 3 shows,
orrelations between time consumption are negative for all pairs of activities, because of the fixed budget and competing nature of
he activities. Yet we do observe that correlations with a magnitude smaller than 0.05 tend to be associated with complementarity
ffects. In Section 6.3, we again compare correlations and complementarity/substitution parameters, but in a dataset where the
udget constraint is less strenuous, finding a much stronger connection between them.

Concerning fit, the eMDC1 model achieves the lowest RMSE of the three models, followed by eMDC2 and MDCEV. We expected
he eMDC1 achieving the best fit, as it uses all the available information, including the total consumption or budget, and it includes
omplementarity and substitution effects. On the other hand, it was hard to predict which of the other two models would achieve
he second best fit, as the MDCEV model omits complementarity and substitution, while the eMDC2 model does not use information
bout the budget. In this particular case, the eMDC2 model fit better than MDCEV, but this is probably a dataset-dependent result,
nd may change in other study scenarios. The loglikelihood is not comparable across models, as they have different formulations,
aking the RMSE a better indicator of fit. In summary, when the budget is known, and will be known in future scenarios when

orecasting is relevant, then we recommend using the eMDC model with observed budget.

.2. Variable budget and fixed prices: expenditure dataset

The second dataset records expenditure during a fortnight for 10,460 Chilean households, aggregated to a dozen categories: food,
alcoholic beverages, clothing, bills (rent and utilities), homeware, health, transport, communications (IT), leisure, education, restaurants, and
27
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Table 5
Main descriptive statistics of the expenditure data.

Fraction of Total con- Average con- Average consump-
the sample sumption sumption when tion when bought
who bought (kCLP) bought (kCLP) (fraction of budget)

Food 99.6% 1 532 154 147.04 19.8%
Alcohol 53.8% 132 523 23.55 2.8%
Clothing 53.5% 378 139 67.57 5.8%
Bills 100.0% 2 703 618 258.47 32.7%
Homeware 88.1% 585 591 63.55 5.3%
Health 72.7% 543 183 71.39 5.9%
Transport 92.2% 1 421 741 147.50 11.7%
Communications 80.8% 418 142 49.51 5.3%
Leisure 84.0% 580 010 65.99 5.7%
Education 56.9% 641 883 107.95 8.7%
Restaurants 69.8% 364 162 49.91 4.2%
Others 93.9% 742 852 75.62 6.7%

other. This data comes from the 7th Chilean Expenditure Survey (Bilbao, 2013). We use the expenditure in bills as the outside good,
ecause all households in the sample pay rent or utilities and as this is –on average– the biggest expenditure of most households.
able 5 presents a summary of the data in thousands of Chilean pesos (kCLP, around 1.1 EUR).

We estimated four different models with the available data. eMDC1-100 is an eMDC model with observed budget equal to each
ousehold total expenditure, i.e. using the true (correct) budget. We estimated two additional eMDC models with observed budget:
ne assuming only 80% and another 120% of the true budget, which we call eMDC1-80 and eMDC1-120, respectively. We also
stimated one eMDC model with implicit budget, which we called eMDC2. All models use the same formulation, including both
ntercepts and explanatory variables in both the base utilities and satiation parameters (i.e. 𝜓𝑘 = 𝑒𝛽𝑘+𝛽𝑘,𝑧𝑧+𝜀𝑘 and 𝛾 ′𝑘 = 𝛾𝑘+𝛾𝑘,𝑧𝑧). The
ase utility of the outside good does not include an intercept to avoid identification issues, as discussed in Section 4.1. Only the most
elevant complementarity/substitution parameters (𝛿𝑘𝑙) identified through a Principal Component Analysis of the consumption data
ere included in the model. Non significant parameters were removed from the final formulation. The expenditure was expressed
s hundreds of thousands of CLP. Parameter estimates and maximum log-likelihood values for eMDC1-100 and eMDC2 are presented
n Table 6. Parameter estimates of eMDC1-80 and eMDC1-120 followed similar trends, and are available from the authors.
𝛼, 𝛽 and 𝛾 parameters follow a similar trend in models eMDC1-100 and eMDC2. Results indicate that having a female or older

ousehold head both increase the marginal utility of the outside good (i.e. decrease expenditure in the inside goods), while a
ore educated household head has the opposite effect. These effects can be explained by the low female participation in the

abour market (Contreras and Plaza, 2010), higher levels of education among younger individuals (Economic Co-operation and
evelopment, 2009), and a strong correlation between level of education and income among the Chilean population (Bilbao, 2013).
mong 𝛽 parameters, we observe that a higher number of adults, children, elders, workers and students per household increase the
hance of spending money on alcohol, clothing, health, transport and education, all of which are reasonable effects. Furthermore,
he estimates of the 𝛾 parameters indicate that more populous households tend to spend more on food, transport, communications,
eisure, education and others, but not necessarily on alcohol, clothing, homeware, health, and restaurants, as these categories are
ore discretionary.

Complementarity and substitution parameters 𝛿 are particularly different between the model with observed and implicit budget
eMDC1-100 and eMDC2, respectively). While the model with observed budget captures substitution between multiple pairs of
ategories, the model without it is dominated by complementarity. This is because when the budget is not controlled for, all
ategories of consumption seem to increase or decrease in tandem, because a higher (lower) income implies a higher (lower)
xpenditure across all categories. In other words, the income effect is confounded with complementarity in the model with implicit
udget, as discussed in Section 4.1.

Our main objective with this dataset was to analyse how errors in the definition of the budget lead to different forecast errors
n models with observed budget. To do this, we first estimated the models using 70% of the full sample (training dataset), and then
orecast demand on the remaining 30% of observations (validation dataset) multiple times, assuming a different value of the budget
n each occasion. We repeated this for each of the eMDC1 models we estimated. Different budgets lead to different forecasts in the
MDC1 models, but not in eMDC2 model. Fig. 5 presents the results of this exercise. We used the root mean squared error (RMSE)
f the aggregate predictions in the validation sample as an indicator of error in the forecast.

As Fig. 5 shows, the forecast performance of the model with implicit budget (eMDC2) does not change as a function of the budget.
nstead, the eMDC1 models achieve a better forecast performance when the forecast budget is close to the estimation budget, but
heir error grows in a quadratic way with the budget misspecification. It does not seem to be very important how the estimation
udget is defined in eMDC1 models. For example, the estimation budget could be defined as the total income of the household or
ust the total expenditure on the inside goods plus one. However, once a budget has been used during estimation, it is very important
o accurately and consistently predict the budget for any forecasting scenario, otherwise the forecast error can increase rapidly.

These results reveal that in contexts where the forecasting of the budget implies even mild uncertainty, the proposed model with
mplicit budget can ensure a bounded level of error in the forecast.
28
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Table 6
Comparison of model with observed and implicit budget on expenditure dataset.

eMDC1-100 eMDC2

Estimate t-ratioa Estimate t-ratioa

𝛼 Household (hh) head is female 0.1029 7.21 0.1743 8.00
𝛼 hh head’s age (years)b 0.4229 43.06 0.3925 23.17
𝛼 hh head’s years of educationc −0.0902 −7.21 −0.4712 −18.99
𝛽 Food 4.2627 35.19 4.0531 26.43
𝛽 Alcohol 0.6105 14.70 −0.0700 −1.53
x number of adults 0.1579 13.00 0.2116 16.15
𝛽 Clothing 0.7081 23.69 0.4573 3.93
x number of children 0.1477 11.65 0.0912 6.31
𝛽 Homeware 2.1172 60.92 1.6430 16.66
𝛽 Health 1.4062 43.99 0.9394 12.18
x hh head over 60 years old 0.1655 9.49 0.2726 14.16
𝛽 Transport 2.0564 52.22 1.6049 39.11
x Number of workers in hh 0.2727 17.17 0.3156 3.79
𝛽 Communications 1.8652 56.51 1.4337 14.55
𝛽 Leisure 1.9036 58.63 1.4225 14.06
𝛽 Education 0.0000 (fixed) 0.0000 (fixed)
x Number of students 0.9261 47.22 0.7825 29.13
𝛽 Restaurants 1.3683 45.52 0.8445 9.14
𝛽 Others 2.5457 65.21 2.0959 31.47
𝛾 Food 0.0171 8.36 0.0147 3.95
x hh size 0.0172 8.37 0.0159 4.84
𝛾 Alcohol 0.1146 43.33 0.1204 19.82
𝛾 Clothing 0.2889 35.37 0.3001 33.10
𝛾 Homeware 0.0760 32.00 0.0942 20.42
𝛾 Health 0.1436 33.62 0.1743 20.74
𝛾 Transport 0.0946 16.77 0.1104 2.64
x hh size 0.0245 5.01 0.0215 0.50
𝛾 Communications 0.0855 28.53 0.1075 11.74
x hh size 0.0218 10.15 0.0248 2.15
𝛾 Leisure 0.0756 20.47 0.0885 5.59
x hh size 0.0267 9.27 0.0315 1.84
𝛾 Education 0.3491 24.98 0.3695 8.35
x hh size −0.1286 −24.91 −0.1360 −8.29
𝛾 Restaurants 0.1265 37.74 0.1504 23.76
𝛾 Others 0.0408 18.75 0.0483 17.30
x hh size 0.0224 12.61 0.0274 5.32
𝛿 Leisure – Restaurants 0.1096 5.54 0.9390 9.02
𝛿 Alcohol – Homeware −0.3583 −8.04 0.3679 3.08
𝛿 Alcohol – Health −0.4486 −7.35 0.1250 0.28
𝜎 1.0044 141.86 1.0295 88.12

Number of parameters 39 39
Loglikelihood −54929.18 −69141.89

aRobust t-ratio.
blog transform.

clog(1 + x) transform.

.3. Variable budget and variable prices: supermarket scanner dataset

The third application deals with scanner data from a chain of supermarkets (Venkatesan, 2014). After dropping all records
f transactions from households with missing socio-demographic characteristics, and limiting the analysis to only four product
ategories, the dataset contains 4002 purchase baskets from 656 households. All the considered product categories are fresh fruits:
ranges, peaches, pears, and pineapples. Each fruit can be purchased in packs of different weights, but to simplify the analysis, we
alculated the average price per kg of each product, and expressed the amount purchased in kg. Table 7 summarises consumption
n the dataset.

Our objective with this dataset was to compare the model with observed and implicit budget in terms of their sensitivity to
hanges in price. We estimated two models on the supermarket dataset: eMDC1 is the model with observed budget, which we

set to the observed consumption plus one; the second model (eMDC2) assumes an implicit budget. The parameter estimates and
og-likelihood at convergence of these models are shown in Table 8. Non significant parameters were not removed from the model
ormulation. To compare their sensitivity to price, we changed the price of oranges between 70% and 130% of their original price,
nd calculated both models’ aggregated forecast demand on the training dataset. Fig. 6 plots the demand forecast by each model,
or different prices.

As can be seen in Fig. 6, both models predict a similar demand for the product whose price changes (oranges), but offer different
redictions for the other products, whose prices remain constant. This is because of the income effect only being present in the
29
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Fig. 5. Comparison of forecast precision of model with implicit and observed budget, when the budget is wrongly specified in the latter.

Table 7
Main descriptive statistics of the supermarket scanner data.

Fraction of Consumption

sample who Total Avg. when bought Correlation

bought (%) (kg) (kg) (% budget) Oranges Peaches Pears

Oranges 24.0 758 0.79 51.1 1.00
Peaches 28.0 988 0.88 49.9 −0.04 1.00
Pears 20.7 645 0.78 44.5 −0.05 0.13 1.00
Pineapples 43.4 1406 0.81 51.1 −0.08 −0.16 −0.09

model with observed budget, pushing for a much more dramatic reassignment of consumption when price changes. On the other
hand, the model with implicit budget assumes a large unobserved budget, inducing smaller reassignment effects caused only by the
𝛿 parameters. Assuming a larger budget in eMDC1 would decrease the sensitivity of the forecast demand among the products whose
price does not change, making it more similar to the forecast of the eMDC2 model (not reported). Based on the available data we
cannot determine which of the two predictions is more accurate, as we are forecasting for unobserved prices.

The complementarity and substitution (𝛿𝑘𝑙) parameters are significantly different across models. While eMDC1 captures only
complementarity, eMDC2 captures both complementarity and substitution. This is because the 𝛿 parameters in eMDC2 are not only
capturing the complementarity and substitution effects, but are also confounded with the income effect. This is apparent as the
sign of 𝛿 parameters in eMDC2 mirror those of the correlation of demand in the dataset (see Table 7). This also explains why the 𝛿
parameters in eMDC2 have higher t-ratios, as they are used to capture any interaction between the demand of different products, be
t due to complementarity, substitution, or income effects. Larger budgets (as compared to expenditure in inside goods) will reduce
he size of income effects, making the model with implicit budget more suitable for such scenarios.

.4. Unknown budget: Number of trips by purpose dataset

The last application deals with number of trips generated by a household, split across different purposes: work, study, personal
30

business, leisure and return home. Data comes from the 2012 Origin–Destination survey of Santiago, Chile (Observatorio Social, 2014).
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Table 8
Parameters estimates of model with observed and implicit budget on the supermarket scanner dataset.

eMDC1 eMDC2
(observed budget) (implicit budget)

Estimate t-ratioa Estimate t-ratioa

𝛼 Household (hh) size 0.004 0.33 −0.010 −0.75
𝛼 Age of hh head 0.028 1.47 0.015 0.90
𝛽 Oranges 0.934 12.41 0.922 12.40
𝛽 Peaches 0.841 11.22 0.873 12.96
𝛽 Pears 0.789 10.45 0.751 10.21
𝛽 Pineapples 0.824 11.06 0.922 14.24
𝛽 Discount 0.061 4.64 0.321 15.35
𝛾 Oranges 8.874 4.04 1.329 14.86
𝛾 Peaches 12.461 5.35 1.654 14.86
𝛾 Pears 10.610 3.76 1.679 15.93
𝛾 Pineapples 5.454 12.56 1.199 17.63
𝛿 Oranges – Peaches 0.382 5.06 −0.538 −2.47
𝛿 Oranges – Pears 0.295 2.66 −0.266 −1.96
𝛿 Oranges – Pineapples 0.188 2.74 −0.892 −4.02
𝛿 Peaches – Pears 0.798 7.86 0.300 2.24
𝛿 Peaches – Pineapples 0.014 0.26 −1.037 −7.73
𝛿 Pears – Pineapples 0.011 0.14 −0.614 −8.86
𝜎 0.254 35.19 0.367 21.01

Number of parameters 18 18
Log-likelihood −714.6124 −9214.29
RMSE 41.62 64.76

aRobust t-ratio.

Table 9
Main descriptive statistics of the number of trips database.

Number of trips Homes

Work Study Per. B. Shopping Leisure Ret. home All

Number 0 1.16 0.78 0.82 0.54 0.12 3.05 6.46 6475
of 1 1.46 0.91 1.17 0.52 0.17 3.5 7.73 3508
vehicles ≥2 2.11 1.08 1.81 0.67 0.41 4.35 10.44 944

House- Low 0.61 0.74 0.97 0.6 0.12 2.7 5.75 3691
hold Mid 1.34 0.92 0.93 0.51 0.12 3.34 7.16 3605
income High 2.04 0.89 1.16 0.52 0.23 3.86 8.7 3631

Total 1.34 0.85 1.02 0.54 0.16 3.3 7.21 10 927

The database contains observations for a single day from 10,927 households. Table 9 summarises the average number of trips per
purpose by households’ number of vehicles and income.

Our objective with this dataset is to compare out-of-sample forecast performance between the proposed models with explicit
nd implicit budget (eMDC1 and eMDC2, respectively) when the definition of the budget is arbitrary. In theory, the budget in our
ataset should be the maximum amount of trips a household could generate during a day, but this value is very difficult to determine.
efining the budget as any lower (but more reasonable) value would be an arbitrary decision. A common approach in situations
ithout an evident budget is to use the observed total consumption as the budget (Bhat and Sen, 2006). We follow this approach
hen estimating eMDC1, assuming the budget to be equal to the observed total number of trips plus one, so that the ‘‘outside good’’

s always consumed. However, this strategy poses a problem when predicting out of sample, as the budget needs to be predicted
sing an auxiliary model. To reproduce this situation, we estimate our models using only 70% of the whole sample, and predict for
he remaining 30%. In the case of eMDC1 we predict the budget using a linear regression on the training data. In the case of eMDC2
e have no need to make assumptions on the budget nor using an auxiliary model for out-of-sample prediction, as the budget is
ot needed during estimation nor forecasting.

In both eMDC1 and eMDC2 we use a linear function with the same socio-demographics to explain the base utility of the outside
ood (𝜓0). The base utility of the inside good and their satiation is described by a single constant each. The linear regression
sed to predict the budget has the same socio-demographics as explanatory variables than the discrete-continuous models. Table 10
resents the coefficients of each model estimated with the training dataset (70% of the whole sample), and their forecast performance
hen predicting on the validation dataset (remaining 30% of the sample). Table 11 presents the complementarity/substitution (𝛿)
arameters of both eMDC1 and eMDC2.

Establishing parallels between the parameters of both models is difficult. In the model with observed budget (eMDC1) the
ffect of socio-demographics has two components: their effect on the budget prediction, and their effect on the multiple discrete
31

ontinuous model itself. On the other hand, the model with implicit budget (eMDC2) does not have this complexity. The sign of the
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Fig. 6. Relative aggregated sample demand forecasted by the traditional and extended MDCEV models for variations in the price of oranges. The black line
indicates unity (i.e. original demand). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

complementarity/substitution parameters (𝛿) are consistent across models, with the exception of the Personal business - Return home
pair.

In term of forecast performance at the aggregate level, the model with implicit budget (eMDC2) is more precise than the one with
observed budget (eMDC1), as reflected in the last line of Table 10. This is probably due to the prediction of the budget not being
precise enough (see Fig. 5). At the individual level, both models perform similarly, though these kinds of models are rarely used to
forecast at the individual level. This shows once again that the model with implicit budget is preferable when there is significant
uncertainty in the prediction of the budget.

7. Conclusions

Many decisions can be represented by interrelated discrete and continuous choices, i.e. choosing what (incidence) and how much
quantity) to choose from a set of finite alternatives. A few examples include purchase decisions at a retail store (what to buy
nd how much of it), time use (what activities to perform and for how long), investment decisions (what instruments to buy or
rojects to execute and how much to invest in each), energy matrix choice (what energy sources to use and how much of each),
tc. Among other approaches, this kind of decisions have been modelled using Karush–Kuhn–Tucker demand systems, which derive
conometric models directly from the consumer utility maximising problem. This provides a strong grounding in economic theory,
ut also implies the necessity to define a budget, and imposes limitations on the definition of the utility function, leading to the
mission of relevant effects, notably complementarity and substitution, in most implementations.

In this paper, we proposed two extensions to the Multiple Discrete Continuous framework: a Karush–Kuhn–Tucker demand
odel that incorporates complementarity and substitution effects, and another that –additionally to these effects– does not require

he analyst to define a budget. The inclusion of explicit complementarity and substitution effects enriches the interpretability and
ealism of the model (Manchanda et al., 1999), while its functional form avoids issues present in previous formulations proposed
n the literature (see Section 1). The second model, with its implicit budget, is particularly useful when forecasting as it avoids
ascading errors due to inaccurate budget predictions (see Section 6.2).
32
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Table 10
Parameter estimates and forecast performance for models on number of trips dataset.

Number of trips eMDC1 eMDC2
(linear regression) (observed budget) (implicit budget)

Estimate t-ratioa Estimate t-ratioa Estimate t-ratioa

𝛼 Intercept 1.7474 20.02
𝛼 Household size 1.6564 61.11 −0.00104 −22.85 −0.0275 −8.65
𝛼 Number of vehicles 1.0022 17.83 −0.00063 −9.79 −0.0152 −6.82
𝛼 Bicycle availability 0.2168 2.96 −0.00023 −1.98 −0.0063 −2.60
𝛼 Household income 0.1879 3.41 −0.00011 −5.15 −0.0025 −2.06
𝛼 Number of workers 0.1035 2.24 −0.00024 −7.01 −0.0068 −3.53
𝛽 Work −0.00077 −1.86 −0.0149 −1.95
𝛽 Study −0.00081 −3.58 −0.0347 −6.23
𝛽 Personal business 0.00008 0.88 −0.0535 −10.58
𝛽 Shopping 0.00269 10.81 −0.0227 −1.49
𝛽 Leisure −0.00467 −15.85 −0.0706 −5.75
𝛽 Return home 0.00136 8.75 0.0786 4.32
𝛾 Work 336.12 10.89 11.3760 5.39
𝛾 Study 296.23 22.62 10.7013 7.11
𝛾 Personal business 325.12 27.45 15.5757 5.83
𝛾 Shopping 184.46 36.04 9.2767 4.48
𝛾 Leisure 355.13 16.87 9.4037 7.37
𝛾 Return home 569.84 22.17 14.6113 5.47
𝜎 0.0035 25.82 0.0863 7.80

Number of parameters 33 33
𝑅2/Loglikelihood 0.469 −2250.37 −56276.52
RMSEb indiv. level 3.11 1.07 1.08
RMSEb sample level 14.12 433.72 248.42

aRobust t-ratio.
bCalculated based on out-of-sample prediction.

Table 11
Complementarity/substitution (𝛿𝑘𝑙) parameters in trips dataset.

Work Study Personal B. Shopping Leisure Return H.

Work −0.0401 −0.1069 −0.1070 −0.0266 0.0948
Study −0.0013 −0.0333 −0.0532 −0.0333 −0.0198
Personal B. −0.0049 −0.0013 −0.0394 −0.0017a 0.0393
Shopping −0.0050 −0.0023 −0.0020 0.0062 −0.0180a

Leisure −0.0016 −0.0018 −0.0001a 0.0000 −0.1411
Return H. 0.0045 −0.0021 −0.0006 −0.0045 −0.0031

Lower (upper) triangular matrix exhibits 𝛿𝑘𝑙 from eMDC1 (eMDC2).
aNot significant at 95% confidence.

The model with implicit budget is based on the hypothesis that total expenditure on the alternatives under consideration is small
ompared to the overall budget. This hypothesis allows us to approximate the utility of the numeraire good by a linear function,
ence removing the necessity to define a budget. This approximation comes at the cost of reduced fit, as compared to the model
ith observed budget. However, simulations show that the fit of both models converges when the hypothesis above is fulfilled (see
ection 4.3). Such an assumption is realistic in most daily consumption decisions, but should always be justified when using the
odel. In general, if the budget can be determined with a great degree of confidence in forecasting scenarios, then we recommend
sing the model with observed budget. But if there is significant uncertainty in the budget prediction, the model with implicit budget
an be a useful alternative, as it makes the prediction error independent from the budget estimation.

Computational implementations of the proposed models are available for R in the Apollo package (Hess and Palma, 2019). For
help and examples visit ApolloChoiceModelling.com.

The models proposed in this paper contribute to the literature on Karush–Kuhn–Tucker system demand models to study
multiple-discrete choices. There are still several avenues for improvement and further investigation. New functional forms for the
complementarity and substitution term in the direct utility function could be explored, with special emphasis on those leading to a
compact form of the Jacobian in the likelihood function. More generally, including a random component in the marginal utility of
the outside good would be a useful development, especially if it leads to a closed-form likelihood function. Alternative formulations
based on indirect utility functions could be less restrictive, as they avoid assumptions on the shape of decision makers’ direct utility
functions. The model formulation could also be modified to incorporate multiple constraints, for example a monetary and a time
budget, or a storage capacity. Of particular interest would be an approach that mixes constraints with an explicit and implicit budget.
Finally, an empirical comparison of alternative formulations for the complementarity and substitution component of the utility, as
well as the utility of the outside good, is of much interest specially given recent developments in Bhat (2018) and Pellegrini et al.
(2021a).
33
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