

This is a repository copy of CD317-Positive Immune Stromal Cells in Human "Mesenchymal Stem Cell" Populations.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/187023/

Version: Accepted Version

Article:

Kay, Alasdair Gawain orcid.org/0000-0003-1953-331X, Fox, James Martin, Hewitson, James Philip orcid.org/0000-0002-3265-6763 et al. (7 more authors) (2022) CD317-Positive Immune Stromal Cells in Human "Mesenchymal Stem Cell" Populations. Frontiers in immunology. 903796. ISSN: 1664-3224

https://doi.org/10.3389/fimmu.2022.903796

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

CD317-Positive Immune Stromal Cells in Human "Mesenchymal Stem **Cell**" Populations

- *Alasdair G Kay¹, James M Fox¹, James Hewitson¹, Andrew Stone², Sophie Robertson¹, Sally 1
- James¹, Xiao-nong Wang³, Elizabeth Kapasa⁴, Xuebin Yang⁴ and *Paul G Genever¹ 2
- 3 ¹York Biomedical Research Institute and Department of Biology, University of York, York, YO10
- 4 5DD, UK.
- 5 ²Boston Children's Hospital / Harvard Medical School, Boston MA, USA
- 6 ³Translational and Clinical Research Institute, Newcastle University, Newcastle, NE2 4HH
- 7 ⁴Department of Oral Biology, School of Dentistry, University of Leeds, St James's University
- 8 Hospital, Leeds, LS9 7TF
- 9 10 * Correspondence:
- Paul Genever 11
- Email: Paul.Genever@york.ac.uk 12
- 13 Alasdair Kay
- Email: Alasdair.G.Kay@york.ac.uk 14
- Keywords: Mesenchymal stromal cells, MSC subtypes, heterogeneity, immunomodulation, 15
- 16 CD317, BST2, tetherin
- 17 1 **Abstract**
- Heterogeneity of bone marrow mesenchymal stromal cells (MSCs, frequently referred to as 18
- 19 "mesenchymal stem cells") clouds biological understanding and hampers their clinical development.
- 20 In MSC cultures most commonly used in research and therapy, we have identified an MSC subtype
- 21 characterised by CD317 expression (CD317^{pos} (29.77±3.00% of the total MSC population),
- comprising CD317^{dim} (28.10±4.60%) and CD317^{bright} (1.67±0.58%) MSCs) and a constitutive 22
- interferon signature linked to human disease. We demonstrate that CD317^{pos} MSCs induced 23
- 24 cutaneous tissue damage when applied a skin explant model of inflammation, whereas CD317^{neg}
- 25 MSCs had no effect. Only CD317^{neg} MSCs were able to suppress proliferative cycles of activated
- human T cells *in vitro*, whilst CD317^{pos} MSCs increased polarisation towards pro-inflammatory Th1 26
- 27 cells and CD317^{neg} cell lines did not. Using an *in vivo* peritonitis model, we found that CD317^{neg} and
- CD317^{pos} MSCs suppressed leukocyte recruitment but only CD317^{neg} MSCs suppressed macrophage 28
- 29 numbers. Using MSC-loaded scaffolds implanted subcutaneously in immunocompromised mice we
- were able to observe tissue generation and blood vessel formation with CD317^{neg} MSC lines, but not 30
- 31
- CD317^{pos} MSC lines. Our evidence is consistent with the identification of an immune stromal cell,
- 32 which is likely to contribute to specific physiological and pathological functions and influence
- 33 clinical outcome of therapeutic MSCs.

2 Introduction

- 37 Mesenchymal stromal cells (MSCs) exist in bone marrow at a frequency of approximately 0.001-
- 38 0.01%(1) and are typically self-renewing for 10-50 population doublings(2, 3). MSCs can
- 39 differentiate into skeletal lineages (osteogenic, adipogenic, chondrogenic) and regulate immune cell
- 40 function(4) predominantly through the release of cytokines and other immunosuppressive factors(5).
- 41 The International Society for Cell & Gene Therapy (ISCT) guidelines identifies MSCs as cells that
- 42 exhibit tri-lineage differentiation in vitro and plastic adherence, alongside an expression profile of
- 43 selected cell surface epitopes (e.g. typically presence of CD105, CD73 and CD90, and absence of
- 44 CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR)(6). There has been some
- progress in identifying in vivo markers of MSC populations in mouse and human systems, which
- include LEPR, nestin, CD271, CD146 and CD164(7), however, no single marker for MSCs exists in
- 47 general use. Cells labelled as "MSCs" are used internationally in clinical trials but are rarely
- characterised (using ISCT or any other criteria(8)) and delivery variable success(9). The majority of
- 49 trials assessing efficacy of MSCs currently aim to harness immunomodulatory properties (10), though
- widespread clinical translation is greatly hindered by insufficient data demonstrating strong and
- 51 consistent clinical effect, mechanisms of action and diverse application of selection criteria(11). In
- addition, MSCs from different origins have been applied in clinical trials with varied outcomes for
- disorders including osteoarthritis(12-15), osteoporotic fracture repair(16), rheumatoid arthritis(17-
- 54 19), type 1 diabetes mellitus(20), diabetic kidney disease(21), multiple sclerosis(22, 23), liver
- failure(24-26), amyotrophic lateral sclerosis(27-30) and COVID-19(31-33). Notably, although
- serious adverse events are extremely rare, mild, transient or acute adverse events occurring are often
- 57 related to acute inflammation(13-16, 19, 21, 25, 29, 30), fever (pyrexia)(17, 19, 22, 24, 26, 30, 34),
- infection(12, 16, 21, 23, 30), allergic reactions/hypersensitivity(13, 15, 16, 19) and haematoma(13),
- all of which are implicated in immune responses.
- 60 Studies examining heterogeneity in MSCs have identified multiple subpopulations of MSCs with
- varied potency for both differentiation and immunomodulation (35-40). Heterogeneous populations of
- MSC-like cells have been isolated from both adult and neonatal sources (e.g. bone marrow(41, 42),
- peripheral blood(43), adipose tissue(44, 45), synovial membrane and fluid(46, 47), dental pulp(48),
- endometrium(49), periodontal ligament(50), tendon(51), trabecular bone(52), umbilical cord(53, 54),
- umbilical cord blood(55, 56), placenta(57)). There are further indications that MSC-like cells may be
- present in most vascularised tissues in some form(58, 59). This widespread distribution of MSC-like
- present in most vascularised distinct in some form(36, 37). This widespread distribution of MSC-inco
- cells with varied differentiation capacities and fluctuations in the expression levels of characterising
- 68 surface markers has prompted increasing reports of unipotent tissue-specific MSCs, yet bone
- 69 marrow-derived MSCs are generally considered to be a population composed entirely of cells
- 70 possessing tripotent differentiation capacity(6). This raises the hypothesis that heterogeneous cell
- 71 populations may collectively characterise as MSCs using ISCT (and other) criteria but comprise
- subsets of cells specialised to perform different functions. The widespread reporting of
- 73 immunomodulatory capacities of MSCs and the impact of immune responses during tissue formation
- and comorbidity in degenerative disease highlights the likelihood of a nascent, endogenous
- 75 population of cells that operate primarily to convey or control immune function. This population has
- the potential to support tissue regeneration rather than contributing to it.
- We previously demonstrated the heterogeneity of human MSCs through the identification of multiple
- subpopulations using a clonal isolation and immortalisation strategy that enabled in-depth and
- 79 reproducible characterisation(60). These populations included an immune-primed MSC subtype
- 80 identifiable through positive expression of CD317 (bone marrow stromal antigen-2 (BST2) or
- 81 tetherin) and possessing enhanced immunomodulatory capacity. Here, we tested the hypothesis that

- 82 CD317 positive (CD317pos) stromal cells function primarily to direct the immune response and do
- 83 not contribute to tissue generation or repair in both physiological and pathological processes and
- 84 therefore represent an identifiable MSC subtype.

85 3 Materials and Methods

86 3.1 Cell culture

87 3.1.1 Immortalised MSC lines and primary bone marrow derived human MSCs

- MSC lines immortalised with human telomerase reverse transcriptase (hTERT) were maintained in
- 89 culture as previously described(60). Clonal hTERT-MSCs included the CD317^{pos} Y202 and Y102
- 90 lines, and the CD317^{neg} Y201 and Y101 lines. Low-passage (p1-p5) primary MSCs were isolated
- 91 from femoral heads, obtained with informed consent during routine hip replacement or as explant
- 92 cultures from human tibial plateaux after routine knee replacement(60). Primary MSCs were also
- established from bone marrow aspirates purchased from Lonza. Cells were cultured at 37°C in 5%
- 94 CO₂ humidified atmosphere incubaters using DMEM (Gibco) culture medium supplemented with
- 95 10% foetal bovine serum and 1% penicillin-streptomycin. Cells were routinely passaged at 80%
- confluence and re-seeded at approximately 3500 cells/cm². hTERT cell lines have a consistent
- 97 population doubling time of approximately 25 hours. Growth kinetics varied between primary
- 98 donors.

99 3.1.2 Isolation of primary T cells from tonsillectomy tissue

- 100 Primary donor T cells were retrieved from tonsillectomy donations according to ethical approval. For
- primary MSC co-cultures, cryopreserved CD4+ human cord blood T cells were purchased from Stem
- 102 Cell Technologies. T cells were isolated from mixed T and B cell cultures using nylon wool
- separation(61). T cells were seeded at a density of 1.0×10^6 cells/ml in an appropriately sized tissue
- 104 culture flask. MSC co-cultures with isolated T cells were set up within 24 hours or cells were
- 105 cryopreserved in 10% dimethylsulfoxide (DMSO) in RPMI1640 medium and re-established in
- culture a minimum of 24 hours prior to use.

107 3.2 Rohart test for independent confirmation of MSC status

- The Rohart MSC test was used as an independent measure for distinguishing MSCs from non-
- MSCs(62). The classifier has previously been validated against 1,291 samples from 65 studies
- derived on 15 different platforms, with >95% accuracy with 97.7% accuracy(62).

111 3.3 Flow cytometry

- MSCs were labelled using optimised concentrations of the required primary antibody or isotype
- 113 control (Table S1). After washing, cells were stained with a fluorescent secondary antibody (Table
- 114 S1), where conjugated primaries were not used. As appropriate, cells were washed as required prior
- to incubation with 1:1000 diluted sytox blue for 5 minutes. Analysis was conducted immediately
- 116 following staining.
- 117 Intracellular flow cytometry of MSC was performed on 4% paraformaldehyde (PFA) fixed cells in
- the presence of 0.1% saponin (Sigma). All flow cytometry was performed on a Beckman Coulter
- 119 CyAn ADP flow cytometer and analysed with Summit v4.3 software, or using a Cytoflex S or LX
- and analysed with FCS Express 7. Cell sorting was undertaken using a Beckman Coulter MoFlo
- 121 Astrios and analysed with summit v6.2 software or FCS Express 7. Sorted primary donor MSCs were

- separated based on CD317 expression with CD317^{neg} represent by lowest CD317 expression in 26.26
- $\pm 4.84\%$ of cells and CD317^{pos} representing the highest 2.20 $\pm 0.50\%$ CD317-expressing cells to
- ensure no overlap between subpopulations. Intermediate CD317^{dim} cells were not included in primary
- donor cell testing.

136

3.4 Processing of mouse femurs

- Femurs were dissected from C57BL/6J female mice at ages 8-12 weeks immediately after sacrificing.
- All work was carried out under ethical approval from the University of York Department of Biology
- 129 Ethics Committee and Animal Welfare Ethical Review Body. Muscle tissue was removed and femurs
- were fixed in 4% PFA for 24 hours at 4°C, followed by washing with PBS. Bones were then
- decalcified using 10% EDTA in PBS at pH 7.5 for 24 hours at 4°C. After decalcification, femurs
- were cryoprotected by submerging in 30% sucrose in PBS for 24 hours at 4°C. Bones were embedded
- in Optimal Cutting Temperature compound and sectioned using an OTF5000 cryostat (Bright
- 134 Instruments Ltd.). Sections were collected on SuperFrost plus microscope slides (Thermofisher) and
- 135 stored at -70°C.

3.5 Immunofluorescent staining of mouse bone tissues

- 137 Slides were allowed to reach room temperature. Sections were blocked for 45 minutes in 10% goat
- serum (Sigma) + 0.1% Tween-20 in PBS (10% donkey serum (Sigma) + 0.1% Tween-20 in PBS
- where goat primary antibody was used). Primary antibodies (LEPR, CD31, CD317) were diluted in
- 140 1% IgG-free Bovine Serum Albumin (Sigma) + 0.05% Tween-20 (Sigma) in PBS and sections
- incubated in the dark at 4°C overnight in a humidified chamber. All secondary antibodies were added
- at 1:300 dilution in PBS for 1 hour at room temperature in the dark then stained for 10 minutes with
- 143 0.2 μg/ml 4′,6-diamidino-2-phenylindole (DAPI) in PBS. Dried slides were mounted with Prolong
- Gold antifade mounting medium (Invitrogen) and #1.5 thickness glass coverslip (Scientific
- Laboratory Supplies). Slides were left to cure at room temperature in the dark for 24 hours prior to
- image capture using LSM880 or LSM780 (Zeiss) confocal microscopes with excitation wavelengths
- of 405 nm, 488 nm, 561 nm and 633 nm.

148 **3.6** Proteomic analysis of MSC plasma membranes

- 149 Plasma membranes were isolated from the hTERT immortalised clonal lines following the protocol
- of Holley *et al*(63) before mass spectrometry and comparative proteomic analyses were performed by
- the Proteomics laboratory within the University of York Bioscience Technology Facility using LC-
- MS/MS(64) and Scaffold 4 proteome software for initial analysis using 3% false discovery rate.
- 153 Further in-depth examination of protein expression was conducted using the Knime analytics
- platform and ProteoWizard MSOpen technology(65).

155 3.7 Transwell cell migration assays

- 156 Migration assays were performed in transwell polycarbonate membrane cell culture inserts with a
- 157 5μm pore (Corning, Sigma-Aldrich) using 1.25x10⁵ hTERT and primary MSCs, and monocyte-like
- 158 THP-1 and T cell-like HUT-78 (ECACC 88041901) cells in 6 well plates with 1.5 ml of serum-free
- DMEM. After 24 hours, 600 µl of supernatant or DMEM was added in duplicate to the wells of the
- transwell plates. Polycarbonate filters were carefully placed above supernatant and 2.5×10^5 of the
- appropriate cells in 100 µl serum-free RPMI-1640 were applied to the top of the filter and incubated
- for 5 hours before removing transwells. Migrated cells were assessed by flow cytometry. The
- percentage cells undergoing migration towards stimuli was calculated. For CCR2 testing, 500 nM

164 CCR2 inhibitor was used (Teijin compound 1) in supernatant. Inhibition of migration was calculated as a percentage of cell total.

3.8 Examination of Gene Ontology (GO) terms in disease states for comparison with hTERT MSC lines

- A bioinformatics comparison of the hTERT MSC lines gene expression data with publicly available
- transcriptomic data from a range of autoimmune and related disorders was undertaken to identify
- disease states that correlated with upregulated GO terms associated with the CD317^{pos} Y102 and
- 171 Y202 clonal MSC lines(60). Cross-platform validation was performed using Python and GeneSpring
- software was used to analyse outcomes. Datasets that were analysed on Affymetrix microarray
- platforms were normalized to 75th percentile. For data analysed on Agilent microarray platforms,
- 174 Robust Multichip Algorithm normalization was used which included background correction,
- normalization and calculation of expression values. The differing normalization methods were due to
- 176 GeneSpring default settings, but both methods reduce the level of environmental factors affecting the
- 177 results. In all datasets baseline transformation was to the median of all samples, for each probe the
- 178 median of the log summarized values from all the samples was calculated and subtracted from each
- of the samples. Differentially expressed genes were identified as greater than 2-fold upregulation in
- disease state compared to healthy controls, and GeneSpring was used to identify significance
- 181 (p<0.05) in GO term occurrence. The 10 most upregulated GO terms were identified and
- comparisons made between autoimmune disease states and hTERT immortalised MSC lines.

183 **3.9 Quantitative polymerase chain reaction (qPCR)**

- 184 RNA was isolated from cells using TRIzol for cell lysis and Machery-Nagel RNA Nucleospin II kit
- for RNA isolation, with RNA converted to cDNA for gene expression analyses using Superscript IV
- reverse transcriptase enzymes (Invitrogen). Specific primers for gene expression analyses were
- designed and optimised (Table S2). Gene expression analyses were performed as previously
- described(60). Gene expression of eight IFN-γ regulated genes, namely Ly6E, HERC5, IFI44L,
- 189 ISG15, Mx1, Mx2, EPST11 and RSAD2 were amplified in qPCR and fold changes were calculated
- relative to the expression of the housekeeping gene RPS27a and relative to the Y201 cell line or
- 191 CD317^{neg} cells. The $\Delta\Delta$ CT fold changes were log2-transformed and averaged to calculate IFN- γ
- scores, as previously described (66, 67).

198

193 3.10 Enzyme-linked immunosorbent assays

- To detect secreted proteins, supernatants from 100,000 cells incubated in 2.5 ml of serum free
- DMEM for 24 hours was analysed for secreted proteins by enzyme-linked immunosorbent assays
- 196 (ELISA) using ELISA kits for CXCL10, CXCL11 (BioLegend); CCL2 (eBioscience); and SAA4
- 197 (Stratech) following manufacturers instructions.

3.11 PCR molecular diagnostics for infectious disease

- Samples of hTERT lines Y201 and Y202 were tested externally and independently (Charles River)
- 200 for viral contaminants using the Human Comprehensive cell line examination and report (CLEAR)
- 201 Panel to detect RNA transcripts for 26 viral components, including virions commonly linked with
- autoimmune disorders (HIV, hepatitis, herpes simplex and herpesvirus, Epstein-Barr virus, BK virus,
- 203 human T-Lymphotropic virus, Lymphocytic choriomeningitis virus and Cytomegalovirus)(68, 69). A
- low copy exogenous nucleic acid was added to sample lysis prior to nucleic acid isolation to serve as
- both a control to monitor for nucleic acid recovery and PCR inhibition. An RNA NRC was used to

- 206 monitor reverse transcription for RNA virus assays. Nucleic acid recovery and PCR inhibition was
- 207 monitored by a PCR assay specific for the NRC template.

208 3.12 T cell activation assay

209 3.12.1 MSC immunomodulation for deactivation and suppression of T cell proliferation

- 210 Co-culture of primary human tonsil T cells with hTERT MSC lines was used to assess the potential
- immunomodulatory impact of CD317^{neg} (Y101, Y201) and CD317^{pos} (Y102, Y202) cell lines on T
- 212 cell proliferation and T helper differentiation. Continual proliferative capacity was used as a measure
- of T cell deactivation. hTERT MSC lines or CD317-sorted primary MSCs were seeded at a ratio of
- 214 1:10 with T cells with 1.0x10⁴ MSCs seeded into a 96-well U bottomed plate and cultured for 24
- 215 hours at 37°C, 5% CO₂. Primary human MSC were sorted for CD317 expression and co-cultured
- with commercially sourced cryopreserved CD4+ human cord blood T cells (Stem Cell
- 217 Technologies).

231

244

- For assessment of proliferation, T cells were stained for 15 minutes at 37°C using 1 uM VPD450
- Violet proliferation dye (eBioscience, Inc.). Unstained cells were used as a control. T cells were
- activated using anti-CD3ɛ/CD28 Dynabeads (Thermo Fisher) at a bead-to-cell ratio of 1:1 then
- seeded onto the MSC at a density of 1.0x10⁵/well (ratio 10:1) in 200 μl RPMI-1640 with 10% FBS,
- 222 0.05 μg/mL IL-2 (Peprotech, Inc) or seeded alone (no MSCs) as a control. Plates were cultured for 5
- 223 days at 37°C. T cell proliferation was assessed following removal of Dynabeads with the DynaMag-2
- as per manufacturer's recommendations. Plates were cultured for 5 days at 37°C. T cell proliferation
- 225 was assessed with flow cytometry, with reduction in signal intensity visualised for repeated
- proliferation peaks. Proliferation was assessed through VPD450 dilution (diminished staining
- intensity) described through a proliferative index (PI) calculated from the fluorescence intensity at
- each cell division as described previously(70). Proliferative cycles undertaken were calculated on
- 229 50% fluorescence intensity reduction peaks, measuring from fluorescence intensity of the first
- 230 division and the final division detected.

3.12.2 MSC immunomodulation to direct effector T cell polarisation

- For assessment of T helper differentiation, T cells were activated and cultured with hTERT MSC
- 233 monolayers, as described above. The following reagents and antibodies for reactivation, transport
- inhibition and staining were sourced from eBioscience. Following 5 days of culture, T cells were re-
- stimulated using a combination of phorbol 12-myristate 13-acetate (PMA) (50 ng/ml) (Sigma
- 236 Aldrich) and Ionomycin (1 µg/ml) (Invitrogen) and intracellular cytokines retained using transport
- 237 inhibitor cocktail with 10 µg/ml brefeldin A and 2 µM Monensin (Invitrogen). Cells were cultured for
- 4 hours at 37°C then stained for surface marker CD4. Intracellular staining for helper T cells was
- undertaken for anti-human IFN-γ (Th1), IL-4 (Th2) or IL17a (Th17) or CD4 and CD25 then
- fixation/permeabilisation and staining for nuclear protein FOXP3 for regulatory T cells. All cells
- were measured using the CyAn ADP or Cytoflex LX flow cytometer and analysed with FCS Express
- 7. Comparisons were drawn for percentage of T helper differentiation within the CD4+ cell
- 243 population and signal intensity (Median) for each antibody tested.

3.13 In vitro human skin explant model to assess cutaneous tissue damage

- 245 The human skin explant assay is an *in vitro* model previously used for evaluation of tissue damage
- induced by T cell or pro-inflammatory cytokine mediated immmunopathological responses (71, 72).
- We used this assay to investigate the *in situ* activities of CD317^{neg} Y201 and CD317^{pos} Y202 MSCs.
- 248 Skin samples were obtained with informed consent and approval of the local research ethics

- committee (REC14/NE/1136, NRES Committee North East, IRAS project ID 129780). Following 48
- 250 hours stimulation with IFN-γ or TNF-α (both at 5 ng/ml), Y201 and Y202 MSCs were harvested,
- washed and plated at a density of 1×10^5 cells/well in a 96 well round-bottomed plate. The cells were
- incubated for 3-4 hours to allow for adherence to the plastic. Two punch skin biopsies at 4 mm
- 253 diameter taken from healthy volunteers were dissected into 10-12 sections of equal size. Each section
- was co-cultured with stimulated or unstimulated Y201 or Y202 in duplicate in a 200 μl total volume
- of DMEM supplemented with 20% heat–inactivated pooled human AB serum at 37°C and 5% CO₂.
- 256 Skin sections cultured in the culture medium containing 200 ng/ml IFN-γ or culture media alone were
- used as positive and background controls respectively. After 3-day culture, the skin sections were
- 258 fixed in 10% formalin, then paraffin embedded and sectioned at 5 μm onto microscopic slides. The
- skin sections were stained with haematoxylin and eosin (H&E) following routine protocols. The
- severity of histopathological tissue damage was evaluated by two independent evaluators according
- 261 to the Lerner scoring criteria (73) as follows: grade 0, normal skin; grade I, mild vacuolization of
- 262 epidermal basal cells; grade II, diffuse vacuolization of basal cells with scattered dyskeratotic bodies;
- grade III, subepidermal cleft formation; grade IV, complete epidermal separation(73). Grade II or
- above were considered positive while Grade I changes considered as background, which is observed
- in skin sections cultured in medium alone.

3.14 In vivo assessment of immunomodulatory capacity of hTERT MSC lines in a murine peritonitis model

- 268 To determine the immunomodulatory properties of hTERT MSC lines, an in vivo zymosan-induced
- peritonitis model was used in C57BL/6J mice aged 8-10 weeks as described previously(74, 75).
- 270 These experiments were carried out in accordance with the Animals and Scientific Procedures Act
- 271 1986, under UK Home Office Licence (project licence number PPL PFB579996 approved by the
- 272 University of York Animal Welfare and Ethics Review Board). At day 0, mice were administered
- with an intraperitoneal infusion of 1 mg of zymosan A (Merck) in 100 µl of PBS. Immediately
- 274 following the administration of zymosan, test condition mice were administered an intraperitoneal
- infusion of 2.0x10⁶ cells of either Y201 (CD317^{neg}) or Y202 (CD317^{pos}) in 100 μl of PBS; negative
- 276 control mice were given PBS vehicle only.
- 277 After 24 hours, mice were euthanised using CO₂ overdose and cervical dislocation. Intraperitoneal
- 278 injection of 4 ml of ice cold RPMI-1640 was administered as peritoneal lavage. The process was
- 279 repeated with a second 4 ml RPMI-1640 wash and wash solutions pooled to form the peritoneal
- 280 exudate cells (PEC).

266267

- For each animal tested, red blood cells were lysed using Red Cell Lysis buffer (Merck) and a cell
- count performed. Spleens were retrieved from the mice and cell counts were recorded and a measure
- of spleen cellularity calculated. PEC samples were initially stained for Ly6C (APC), Ly6G (FITC),
- 284 F4/80 (PE-Cy7) CD45 (PerCP-Cy5.5) (BioLegend) and Ly6G (FITC), CD11b (BUV395) and
- SiglecF (BV421) (BD). Both PEC and spleen samples were then stained for TCRb (AF488), CD3
- 286 (APC-Cy7), CD4 (PerCP-Cy5.5), CD62L (APC) and CD44 (PE) (BioLegend). Although at an early
- 287 timepoint, spleen samples were additionally examined for T cell polarisation looking at T effector
- 288 cells CD8 (PerCP-Cy5.5), CD4 (APC), IL4 (AF488), IFN-γ (PE) and IL17a (BV421) (BioLegend)
- and T reg cells using CD8 (PerCP-Cy5.5), CD4 (APC), CD25 (PE) and FOXP3 (AF488)
- 290 (BioLegend). For all tests, Zombie Aqua (BioLegend) was used to exclude dead cells (Table S1).

291 3.15 In vivo assay to assess tissue forming capacity of hTERT MSC lines

- All procedures used were approved by the University of Leeds Ethics Committee and under the UK
- 293 Home Office Project License (PPL:70/8549). The tissue-forming capacity of CD317^{neg} and CD317^{pos}
- 294 hTERT cell lines CD317^{neg} Y201 and CD317^{pos} Y202 was assessed in CD1 nude mice (Charles
- River) aged 8-10 weeks in an *in vivo* transplantation assay(76). 2.0 x 10⁶ MSC cell suspension in 1
- 296 ml medium was added to 40 mg hydroxyapatite (HA) synthetic bone particles (Zimmer Biomet) of
- 297 250-1000 μm size and rotated at approximately 25 rpm at 37°C for 100 minutes to allow cells to
- attach. HA particles were bound using fibrin glue comprising 30 µl thrombin (400 I.U./ml in DMEM
- 299 medium) mixed 1:1 with fibrinogen (115 mg/ml in 0.85% saline solution). Implants were delivered
- 300 subcutaneously into immunocompromised nude mice with two constructs placed into each mouse.
- 301 Transplants were harvested at 3 and 8 weeks, fixed in 4% PFA, decalcified for 7 days in 10% EDTA
- then stored overnight in 70% ethanol prior to paraffin embedding, sectioning and staining with H&E,
- 303 Alcian Blue and Syrius Red (Thermo Fisher).

3.16 Statistical analysis

- Data were tested for equal variance and normality using D'Agostino & Pearson omnibus normality
- 306 test. Differences between groups were compared using two-tailed 1-way ANOVA for parametric data
- or Kruskall-Wallis for non-parametric testing. For two factor analysis, data was analysed with a two-
- tailed 2-way ANOVA. Bonferroni post-hoc testing was conducted to compare between groups. All
- 309 statistical analysis was carried out using IBM SPSS Statistics 24.0, or GraphPad Prism version 5.0-
- 9.0 with P<0.05 deemed statistically significant. Results are annotated as *p<0.05, **p<0.01,
- ***p<0.001 and all averaged values are expressed as mean \pm standard error of the mean (SEM).

312 4 Results

304

313

4.1 MSC identity of CD317-expressing stromal cells

- In our previous work we isolated nullipotent, CD317^{pos} MSC lines (Y102 and Y202) alongside
- differentiation-competent, CD317^{neg} MSC lines (Y101 and Y201) from the same heterogeneous
- donor source suggesting that a subpopulation of stromal cells exists in typical MSC preparations but
- may not contribute to 'classic' MSC functions. Here, we examined the stromal phenotype the
- 318 CD317^{pos} and CD317^{neg} MSC lines. An *in silico* assessment using the Rohart Test(62) was applied to
- accurately discriminate MSCs from fibroblasts, other adult stem/progenitor cell types and
- differentiated stromal cells. This test uses 16 key MSC marker genes as a proven panel of identifiers
- that has independently confirmed MSC status with 97.85% accuracy in 635 cell samples(62). All of
- the immortalised CD317^{neg} and CD317^{pos} stromal cell lines maintained gene expression patterns that
- independently confirmed their MSC status (Figure S1A and Table S3).
- Next, we used mass spectrometry to determine cell surface protein expression profiles across the
- different cell lines. We identified a high number of commonly expressed proteins alongside cell line-
- specific variations. Using a false detection rate of 3%, we found 2338 proteins expressed across all
- MSC lines, with 584 (65.2%) of these commonly expressed (Figure S1B), which may reveal a
- 328 common stromal surfaceome signature (Table S4). Percentage similarity at the surfaceomic level
- ranged from 76.0% to 83.5% (Figure S1C). Unique proteins were identified in Y101 (20 proteins,
- 330 2.2%); Y102 (30 proteins, 3.3%); Y201 (36 proteins, 4.0%); and Y202 (21 proteins, 2.3%). These
- analyses also confirmed that CD317 (BST2) was only identified on Y102 and Y202 MSC lines
- 332 (Table S4). Principle component analysis (PCA) was used to aid interpretation of mass spectrometry
- data through dimensionality reduction. Analysis highlighted that MSC lines clustered distinctly
- within the whole population but were on a similar spectrum of observation, with Y102 and Y202

- lines lying further from the mean of the whole population (Figure S1D). Together, these data
- demonstrate that the CD317^{neg} Y101 and Y201 cell lines, and the CD317^{pos} Y102 and Y202 cell lines
- have broadly similar protein expression profiles in common with other MSC preparations and may be
- used as models for different MSC subtypes.

4.2 Identification of CD317^{dim} and CD317^{bright} populations in primary MSCs

- We previously reported a CD317^{pos} MSC subset with average frequency of 1-3% in low passage
- primary MSCs(60). Here, using flow cytometry analysis with Y201 and Y202 populations gating for
- primary cells as either CD317^{neg} or CD317^{pos}, we were able to demonstrate that CD317 positivity can
- be subdivided into CD317^{dim} and CD317^{bright} populations in primary MSC cultures (Figure 1A, S1E).
- Further examination of n=24 primary MSC populations (passages 1-4) recorded proportions at
- $CD317^{\text{neg}}$ (70.57±5.09%) and $CD317^{\text{pos}}$ (29.77±3.00%), comprising $CD317^{\text{dim}}$ (28.10±4.60%) and
- 346 CD317^{bright} (1.67±0.58%) (Figure 1B). We observed a decrease in CD317 expression in these cells
- over time in culture (passages 1-4), however this trend did not reach statistical significance due to the
- variability of initial proportions of CD317^{pos} cells when CD317^{dim} was included as a CD317 positive
- result (means passage $1 = 50.66\pm27.63\%$, passage $2 = 30.35\pm6.03\%$, passage $3 = 26.07\pm11.78\%$,
- passage $4 = 22.18\pm12.26\%$; n=2,12,7,3) (Figure S1F). We made a similar observation when
- examining subsets of CD317^{dim} and CD317^{bright} cells, with CD317^{bright} cells almost absent by passage
- 4 (Figure 1C). CD317 expression in isolated primary MSCs from passage 3 to 4 reduced by $49.01 \pm$
- 353 11.84% (n=5); with a freeze/thaw cycle at passage 3, this reduction was recorded at $63.94 \pm 3.64\%$ in
- 354 the same cells (n=5) (Figure S1G). Therefore, human primary MSC isolates express CD317 on a
- 355 spectrum that varies from cell to cell and from individual to individual; the overall proportion of
- 356 CD317^{pos} MSCs, as a composite of CD317^{dim} and CD317^{bright}, is 28-29% in heterogeneous MSC
- cultures (combining all analyses of primary cell donors, percent CD317^{pos} MSCs is 28.44±3.82%
- 358 (mean \pm SEM), range of 0.01-93.03%; median=19.89%; n=52). Within CD317^{pos} cells, there was no
- difference in percentage CD317 expression based upon donor gender (mean expression female
- 360 40.02±5.27; male 24.77±6.51; Mann Whitney T-test p=0.051, n=52) or correlation between donor
- age and CD317 expression (mean age: 69.75±1.29 years; range 45-88; Pearson correlation p=0.141,
- n=52),) (Figure 1D, 1E). There was, however, a significant negative correlation between CD317
- expression and BMI (mean 28.06±0.78; range 17-44; Spearman correlation p<0.05, n=52) (Figure
- 364 1F). Y201 cells represent CD317^{bright} subpopulations, so for all subsequent tests using primary donor
- cells, CD317^{pos} represents only CD317^{bright} cells and CD317^{dim} cells were excluded from testing.
- We previously demonstrated that the hTERT immortalised MSC lines display typical (ISCT) surface
- marker profiles(60). Here, we also examined surface markers commonly associated with human
- stromal progenitor cells or subsets, including CD146, CD271 and CD164, within CD317^{neg} and
- 369 CD317^{pos} primary MSC populations. Isolated MSCs from human primary donors showed CD317^{pos}
- 370 (CD317^{dim} and CD317^{bright} populations combined) with mean % expression values of CD317^{pos}
- 371 $(52.90\pm5.89\%)$, CD146^{pos} $(19.46\pm3.07\%)$, CD271^{pos} $(4.025\pm0.71\%)$ and CD164^{pos} $(95.03\pm2.11\%)$
- 372 (n=27) (Figure 1G). Examination of the CD317^{pos} population only showed similar proportions of
- each marker to those seen in the whole population: CD146^{pos} (24.21±3.23%), CD271^{pos}
- $(7.78\pm1.35\%)$ and CD164^{pos} $(97.18\pm0.66\%)$ (n=27) (Figure 1H). These findings demonstrate that
- expression of these markers is independent of CD317 positivity and that CD164 identifies virtually
- all CD317^{neg} and CD317^{pos} MSCs.
- 377 Comparative gene expression analysis has previously demonstrated a correlation between murine
- peri-sinusoidal stromal cells and CD317^{pos} MSCs(77). LEPR has been shown to mark peri-sinusoidal
- stromal cells in mouse tissue(78). Here we investigated CD317^{pos}/LEPR^{pos} stromal cells in mouse

- bone marrow to identify the *in vivo* location of this subpopulation. CD317 expression was detected
- throughout the bone marrow with low frequency colocalisation of CD317 with LEPR restricted to
- peri-sinusoidal regions adjacent to CD31-positive endothelial cells (Figure 11).

383 4.3 Immune profile of CD317^{pos} MSCs

- Our previous transcriptomic data indicated that CD317^{pos} Y102 and Y202 MSC lines display a
- constitutive immunostimulatory expression profile(60), which we sought to define here using the
- MSC lines and primary cells sorted based on CD317 expression. We confirmed by qPCR that
- 387 ICAM1 (CD54) mRNA levels were significantly elevated in CD317^{pos} Y102/Y202 compared to
- 388 CD317^{neg} Y101 (Figure 2A). Although ICAM1 mRNA expression levels appeared similar in primary
- 389 MSCs sorted for CD317 positivity (Figure 2A), flow cytometric analysis demonstrated that cell
- 390 surface ICAM1 expression, as shown by mean fluorescence intensity (MFI), was significantly
- increased on CD317^{pos} primary MSCs versus CD317^{neg} MSCs and CD317^{pos} Y102/Y202 versus
- 392 CD317^{neg} Y101/Y201 (Figure 2B). Comparative analysis of CXCL10 and CXCL11 mRNA levels in
- immortalised MSC lines and primary MSCs sorted for CD317 demonstrated significantly increased
- expression in all CD317-positive MSCs compared to CD317-negative counterparts (n=7;
- 395 experiments performed in triplicate) (Figure 2C, 2D).
- 396 CD317, ICAM-1 and CXCL10 are regulated by interferon-gamma (IFN-γ). We analysed expression
- 397 levels of the IFN-γ receptor by flow cytometry and demonstrated that it was expressed at similar
- levels in all four MSC lines, independent of CD317 expression (MFI, Y101=9.11, Y201=8.41,
- 399 Y102=9.60, Y202=9.84; p>0.05) (Figure S2A). This finding suggested that all MSC lines were
- 400 capable of responding to IFN-γ stimulation in a similar manner, but CD317-positive MSCs may be
- 401 primed to transduce IFN-γ stimulation more effectively. Secretion of CXCL10 was measured in
- 402 immortalised MSC lines with (Figure 2E) and without (Figure 2F) IFN-γ exposure. Under basal,
- 403 unstimulated conditions, CD317^{pos} Y102/Y202 MSCs secrete larger amounts of CXCL10 compared
- 404 to CD317^{neg} Y101/Y201. Following IFN-γ priming, CD317^{pos} MSC lines demonstrate a significantly
- increased ability to secrete additional amounts of CXCL10 compared to CD317^{neg} MSC lines.
- 406 However, IFN-γ has a proportionally much larger stimulatory effect on CXCL10 secretion by
- 407 CD317^{neg} Y101/Y201 cells, suggesting that constitutive interferon signalling is a feature of CD317^{pos}
- 408 MSC lines (Figure 2F).
- 409 Examination of a further panel of eight IFN-γ related genes showed remarkably different expression
- between CD317^{pos} and CD317^{neg} MSCs (Figure 2G, 2H). Using a method described by Raterman *et*
- 411 al(67), we generated an IFN- γ signature score for CD317^{pos} and CD317^{neg} MSCs using the average of
- the log base-2 normalised relative fold changes of the eight IFN-y related genes. We demonstrated
- 413 that CD317^{pos} MSC lines and primary MSCs had a significantly increased IFN-γ signature score
- 414 compared to CD317^{neg} MSCs (Figure 2I & 2J).
- We have previously provided a detailed analysis of trancriptomic data from Y101, Y201, Y102 and
- 416 Y202 MSC lines (60). Here, we examined combined CD317^{neg} and CD317^{pos} datasets and any
- 417 association with human disease conditions. Bioinformatics analysis of differentially expressed genes
- 418 (DEGs) using combined transcriptomic data(60) from CD317^{neg} (Y101 & Y201) and CD317^{pos}
- 419 (Y102 & Y202) MSC lines identified 2340 significantly upregulated genes in CD317^{pos} MSC
- samples (FC>2, p<0.05) with clear clustering of the Y01 group (Y101, Y201) and the Y02 group
- 421 (Y102, Y202) (Figure S2B). The 10 most significantly upregulated genes in the CD317^{pos} group were
- immune-related and/or interferon-regulated, including OAS1, OASL, RSAD2 and CD317 (BST2)
- 423 (Figure S2C). IFN signalling and elevated IFN-signatures are associated with different human

- disease states (79). When comparing the upregulated Y102/Y202 gene sets with six publicly available
- 425 transcriptomic databases for autoimmune and related disorders (Table S5, Table S6), we identified a
- significant association between DEGs and GO terms that were enriched in Y102/Y202 MSC lines
- and psoriasis, eczema and, to a lesser extent, rheumatoid arthritis and osteoporosis (Table S7).
- 428 Similar observations were made when comparing enriched signalling pathways across Y102/Y202
- and disease datasets (Table S8).
- Therefore, a resident MSC subtype can be identified as CD317^{pos}ICAM-1^{hi}CXCL10^{hi} with apparent
- 431 constitutive interferon signalling, which is likely to contribute to specific physiological and
- pathological immune functions.

4.4 Roles of CD317^{pos} and CD317^{neg} MSCs in monocyte and T cell function

- Immunomodulation may be affected through paracrine signalling altering cell recruitment and
- retention in response to signalling molecule expression. The CCL2 receptor, CCR2, is a monocyte
- chemoattractant receptor protein involved in macrophage activation in cells expressing high levels of
- 437 CCL2. Significantly higher CCL2 mRNA expression and protein secretion was detected in CD317
- 438 expressing MSCs versus CD317-negatives (Figure 3A & B).
- In the presence of an antagonist for CCR2, migration of monocytic cells (THP-1) towards
- supernatant from CD317-expressing MSC lines was selectively inhibited compared to CD317-
- 441 negative MSC lines (Y101, Y201 vs Y102, Y202; 19.37±9.57, 19.61±8.89 vs 39.01±6.57,
- 442 41.02±4.79) (Figure S3A). We tested whether the supernatant of CD317^{pos} and CD317^{neg} MSCs
- could induce the migration of both monocytic (THP-1) and T cell (HUT-78) lines in transwell assays.
- We demonstrated that both THP-1 and HUT-78 cells migrated towards MSC supernatants suggesting
- that MSCs secrete both monocyte and T cell chemoattractants (Figure S3B).
- 446 MSCs have previously been shown to suppress activated T cell proliferation whilst maintaining
- inactivated T cell viability in co-culture(80). Several mechanisms are proposed that provide evidence
- 448 for IFN-γ mediated immunosuppression(81), potentially achieving MSC deactivation of T cells
- 449 through IFN-γ receptor targeting or IFN-γ-mediated induction of indoleamine 2,3-dioxygenase (IDO)
- 450 from MSCs, whereby tryptophan is catabolised leading to suppression of T cell proliferation and
- subsequent apoptosis of activated T cells, leaving inactivated T cells in a viable state(82, 83). In this
- work, T cell proliferation was assessed for peaks of gradual division (proliferative index)(70) and
- proliferative cycles (population doublings)(84) over 5 days of co-culture with or without CD317^{pos}
- and CD317^{neg} MSC cell lines (Figure S3C). T cells do not proliferate in culture, unless activated with
- anti-CD3/CD28, and undergo cell death in absence of IL-2, which is produced in vivo by activated T
- 456 cells(85). Compared to T cells alone, all MSC lines and CD317^{neg} primary MSCs significantly
- reduced proliferative index scores, whereas CD317^{pos} primary MSCs had no significant effect on T
- 458 cell proliferative index (Figure 3C, 3D). Assessment of T cell proliferative cycles showed significant
- reductions when cultured with CD317^{neg} Y101/Y201 and CD317^{neg} primary MSCs (Figure 3C, 3E)
- compared to T cells alone. However, CD317^{pos} Y102/Y202 MSCs and CD317^{pos} primary MSCs did
- not significantly reduce the number of proliferative cycles, although a decline was observed (Figure
- 462 3C, 3E). These results demonstrate that CD317^{pos} MSCs are capable of inactivating a proportion of
- proliferating T cells, although this effect is not sufficient to reduce the number of proliferative cycles
- 464 that the residual activated cells achieve, pointing to a diminished immunosuppressive function for
- 465 CD317^{pos} MSCs.
- Next, we determined the effect of CD317^{neg} and CD317^{pos} MSCs on the polarisation of naïve T cells
- into effector lineages with immunosuppressive/anti-inflammatory function. CD317^{pos} MSC lines

- induced a significant increase in the development of pro-inflammatory Th1 cells. Both Y102 (20.32 ±
- 469 0.92%, p<0.001) and Y202 (15.11 \pm 1.46%, p<0.05) increased Th1 polarisation, as indicated by IFN-
- 470 γ expression, in comparison to T cells alone (8.79±2.30%), CD317^{neg} Y101 (9.25±0.42%, p < 0.001
- 471 (Y102)) and Y201 (7.31 \pm 0.60%, p <0.001 (Y102), p <0.01 (Y202)) (One way ANOVA with
- Bonferroni post hoc test). An increase was also observed in Th2 cells for all MSC lines (p>0.05,
- n.s.). Both Th17 and Treg cells, as indicated by IL17a and CD25/FOXP3 expression respectively,
- increased slightly with CD317^{pos} MSC lines, but not statistically significantly. By examining total
- 47.4 Increased slightly with CD31.7 Wise lines, but not statistically significantly. By examining total
- proportions of differentiating cells, it was notable that a large proportion of CD4+ T cells cultured
- alone did not commit to any lineage when compared to co-culture with MSC lines. When proportions
- are summated, only 48.49% of T cells cultured alone differentiated into the 4 lineages examined,
- 478 whilst approximately 75% (Y101), 90% (Y201) and 100% (Y102, Y202) differentiation into these
- lineages was observed when T cells were co-cultured with MSC lines (Figure 3F).

480 **4.5** Pro-inflammatory and Immuno-regulatory potential of CD317^{neg} and CD317^{pos} MSCs in vitro and in vivo

- 482 Considering the stark differences in immune profiles of CD317^{neg} and CD317^{pos} MSCs, we tested
- 483 their effects in different inflammatory models. Prior to in vitro and in vivo testing, we confirmed the
- 484 representative CD317^{neg} and CD317^{pos} MSCs (Y201, Y202) were not affected by viral contamination
- as a potential origin or contributor to constitutive IFN-γ expression. All cell samples were tested in
- 486 triplicate and returned negative results for molecular diagnostics of infectious diseases (Human
- 487 Comprehensive CLEAR Panel, Charles River) using PCR for RNA representing a panel of 26
- 488 virions.
- Initially, we investigated the potential pro-inflammatory property of CD317^{neg} Y201 and CD317^{pos}
- 490 Y202 MSCs in a skin explant model, which is an *in vitro* tool to detect the presence of cutaneous
- 491 tissue damage following a pro-inflammatory insult(86, 87). CD317^{neg} Y201 and CD317^{pos} Y202
- 492 MSCs were primed with IFN- γ or TNF- α and co-cultured *in vitro* with skin explants.
- In this assessment, no tissue damage was observed after skin co-incubation with CD317^{neg} Y201 cells
- in all conditions tested (Figure 4A top panel and Figure 4B left panel). In contrast, cutaneous tissue
- 495 damage was detected when skin was co-cultured with unstimulated or TNF-α stimulated CD317^{pos}
- 496 Y202 cells showing clear cleft formation in the basal layer between the dermis and epidermis (Figure
- 497 4A bottom panel and Figure 4B right panel). When comparing the ability to cause tissue damage,
- 498 Y202 cells caused significantly increased damage compared to Y201 cells in unstimulated and TNF-
- 499 α stimulated conditions (p<0.05) whilst no cutaneous tissue damage was observed when skin was co-
- 500 cultured with IFN-γ stimulated Y202 cells.
- Interferon signalling genes are regulated by interferon in host-pathogen interactions. It is
- 502 hypothesised that constitutive interferon signalling occurs to provide a rapid response to pathogen
- infections through pre-established interferon signature (79), such as that observed here in CD317^{pos}
- MSCs. To investigate the potential for constitutive IFN-γ related signalling on innate immune
- responses *in vivo*, we evaluated immune regulation by CD317^{neg} and CD317^{pos} MSCs in a zymosan-
- induced peritonitis model of acute inflammation that promotes the recruitment of monocytes and
- neutrophils to the peritoneal cavity. Following zymosan treatment, peritoneal exudate cells (PEC)
- were collected by lavage and analysis performed on the cell content. A gating strategy was devised
- for flow cytometric analysis of multiple PEC cell types focusing on haematopoietic, myeloid and
- 510 lymphoid cells including monocytes, macrophages and T cells (Figure S4A & S4B). Treatment with
- either Y201 or Y202 MSC lines suppressed the recruitment of inflammation-related cells to the area.

- There was a significant reduction in total cells recruited in both Y201 (3.552±1.543 x 10⁶) and Y202
- 513 (2.076±0.421 x 10⁶) treated conditions compared to zymosan-induced peritonitis without treatment
- 514 (9.686±1.894 x 10⁶) (p<0.05), with no significant difference between MSC-treated animal PEC
- numbers and PBS controls $(4.420\pm1.790 \times 10^5)$ (Figure 4C).
- 516 Examination of the composition of PEC showed that zymosan-induced peritonitis prompted a
- significant increase in haematopoietic cells (p<0.05). No difference in recruitment of eosinophils or
- 518 neutrophils was observed in MSC-treated mice when compared to zymosan alone or PBS controls
- 519 (Figure S4C & S4D). Examination of the production of monocytes and macrophages in PEC samples
- showed no differences in monocyte recruitment, however both zymosan alone and zymosan plus
- Y202 showed significant increases in macrophage proportions compared to PBS controls (p<0.001,
- 522 p<0.05 respectively) whilst Y201 treatment suppressed macrophage numbers (p<0.05) (Figure 4D).
- Within these monocyte and macrophage populations, the proportions of Ly6C positive and negative
- 524 cells matched the proportions seen in zymosan treatment only animals (Figure S4F & S4G). Ly6C
- 525 positive monocytes and macrophages are linked with pro-inflammatory responses by CCR2/CCL2
- mediated homing to sites of tissue injury, whilst Ly6C low or negative monocytes and macrophages
- are reparative, guided by VCAM-1 and other adhesion proteins(88, 89).
- 528 Spleens retrieved from MSC-treated and control mice were homogenised and analysed for naïve and
- 529 polarised T cells, and memory T cells. No differences were found in the mass or cellularity of spleens
- between controls and MSC-treated animals (data not shown). When tested, a significant increase was
- found in activated CD4+ central memory T cells (TcM) in CD317^{neg} Y201 cell treated conditions
- 532 (14.23±0.06%) in comparison to PBS controls (4.53±0.18%) or Y202 treated animals (5.89±4.30)
- 533 (Figure 4E). CD4+ effector T cell polarisation was not altered by introduction of zymosan or MSC
- treatments within the 24 hour time period measured. However, treatment with either CD317^{neg} Y201
- 535 (1.51 \pm 0.57%) or CD317^{pos} Y202 (0.84 \pm 0.25%) MSCs suppressed CD8a/b+ expression
- representative of cytotoxic T cell production in mice in comparison to CD8a/b+ expression in
- untreated animals $(5.42 \pm 1.10\%)$ (Figure 4F).

538 **4.6** In vivo tissue formation is enhanced in CD317^{neg} MSC lines when compared to CD317^{pos} subpopulations

- We hypothesised that the immunomodulatory enhancements observed in CD317-positive MSCs
- would impact on their tissue-forming capacity. To test this hypothesis, CD317^{neg} (Y201) and
- 542 CD317^{pos} (Y202) MSC lines were loaded onto hydroxyapatite (HA) scaffolds and implanted
- subcutaneously in nude mice. Scaffolds were retrieved at 3 and 8 weeks post-implantation and
- examined using histological analysis for *de novo* tissue formation by deposition of extracellular
- matrix (ECM), collagen and neoangiogenesis.
- 546 CD317^{neg} Y201 MSCs showed clearly advanced ECM and collagen deposition in histological stains
- using Sirius Red for collagen formation and Alcian Blue for proteoglycan synthesis (Figure 5A, 5B
- 548 & 5C), suggestive of a more stable capacity for tissue formation. Haematoxylin and eosin staining
- showed evidence of tissue formation from 3 weeks post implantation in CD317^{neg} MSCs alongside
- evidence at 8 week timepoints of capillary tube structures containing blood cells indicative of
- neoangiogenesis (Figure 5D). Although there was some evidence of tissue formation in CD317^{pos}
- Y202-loaded scaffolds, the tissue formed appeared less continuous or cohesive compared to
- 553 CD317^{neg} Y201 samples and by 8 weeks post-implantation there was clear evidence of
- disaggregation and cleft formation at the surface of HA particle clusters following histological

- 555 staining for ECM formation (Alcian Blue and Sirius Red) with no detectable vessel formation (Figure
- 556 5A, 5B, 5C & 5D).

Discussion 4.7

- 558 This study investigated the characteristics and properties of a CD317^{pos} subpopulation within
- 559 heterogeneous MSCs and their ability to contribute to immune responses and tissue repair. We used
- 560 immortalised MSC model lines and primary MSCs isolates to elucidate the biology and potential
- impact on the therapeutic application of these cells. Here, we confirm CD317^{pos} MSCs represent a 561
- 562 subpopulation of cells commonly found in human MSCs preparations with an equal distribution in a
- 563 range of demographic groups and health conditions. We found that rare CD317-expressing cells
- 564 colocalised with LEPR-positivity adjacent to endothelial cells at marrow sinusoids, and in vivo
- 565 location consistent with other bone marrow stromal cell preparations (78, 90). CD317pos MSCs may
- therefore interact with and be regulated by endothelial cells in a perivascular niche, similar to those 566
- 567 described for other stem and progenitor cell types (91, 92), but further investigation is required. Using
- in vitro and in vivo functional assays, we demonstrate that CD317^{pos} MSCs have reduced 568
- 569 immunomodulatory and tissue-forming capacity compared to CD317^{neg} MSCs, suggesting that
- 570 CD317^{pos} cells will not contribute to tissue repair or *de novo* tissue formation. Any contribution of
- 571 CD317^{pos} cells in therapy, when delivered within an undefined heterogeneous MSC culture, is
- 572 therefore likely to be through immunomodulatory influence, and the contribution to the regenerative
- 573 process is dependent upon the therapeutic target and the inflammatory environment present in the
- 574 recipient at the time of transplantation. Given the potential for CD317^{pos} MSCs to respond to the
- inflammatory environment in vivo, these cells may serve a positive function in assisting the repair of 575
- damaged tissues by CD317^{neg} MSCs when transplanted as part of a heterogeneous population.
- 576
- 577 However, our in vivo results demonstrate that CD317^{neg} cells are capable of inducing both anti-
- inflammatory immunomodulation and tissue regeneration in the absence of CD317^{pos} counterparts, 578
- 579 suggesting the support function is not vital to successful repair of damaged tissue by CD317^{neg} MSCs
- 580 alone. Of note, when supplied in sufficient numbers CD317^{pos} MSCs are capable of causing tissue
- 581 damage, as observed in our skin explant model, which may be linked to their distinctive immune
- profile and functional differences to CD317^{neg} MSCs. Qualitative histological analysis of tissue 582
- 583 generation was not subjected to quantification. Further work should be done to fully evaluate the
- extent and quality of tissue repair formed using both CD317^{pos} and CD317^{neg} MSC lines and primary 584
- donor cells to enable more firm conclusions to be drawn. 585
- 586 Inflammation serves a dual role in tissue repair. Cells in the immune response, such as neutrophils,
- 587 function to initiate the repair process. Neutrophils cause tissue breakdown during inflammation but in
- 588 the absence of neutrophils, macrophages rapidly recruited to the site of injury will display reduced
- 589 rate of tissue regeneration owing to the presence of cell debris normally phagocytosed by
- 590 neutrophils(93). Our results from MSC treatment of zymosan-induced peritonitis in mice showed a
- 591 neutrophil population present in PEC suspensions from PBS injected mice, and significantly
- 592 increased neutrophils present in the PEC of both zymosan-only and MSC-treated mice. However,
- 593 examination of subsequent macrophage populations showed that whilst no macrophages were
- detected in the PBS control mice, both zymosan-only and CD317^{pos} MSC plus zymosan conditions 594
- 595 displayed significant increases in macrophage numbers. Significantly fewer cells, including
- 596 macrophages, were recruited in the presence of CD317^{neg} MSCs compared to zymosan only
- 597 induction, therefore CD317^{pos} MSCs fail to inhibit macrophage recruitment.
- The influence of CD317^{pos} MSCs on T cells appears to be highly modulated in comparison to 598
- 599 CD317^{neg} MSCs. MSCs have been widely shown to deactivate T cells *in vitro* and suppress T cell

600 proliferation whilst directing CD4+ effector T cells from Th1 to Th2 profile(80, 94-101). However, 601 in activated T cells in cell to cell contact with CD317^{pos} MSCs, we observed minimal deactivation of 602 T cells and continued T cell proliferation, in conjunction with an active increase in Th1 polarisation, 603 contrary to the widely accepted immunosuppressive properties of MSCs. IFN-y stimulation of MSCs 604 has been shown to induce activation through upregulation of HLA class II, pushing the MSC towards 605 antigen-presenting capability for immune regulation, promoting T cell interactions and potentially 606 influencing CD8+ T cell activation(102). This may go towards explaining the results we observe 607 when CD317^{pos} cells interact with T cells in vitro and T and B cells in vivo. CD317^{pos} MSCs show minimal interaction with T cells in vitro, yet function more effectively in a pro-inflammatory in vivo 608 609 environment. CD317 promotes an immune response through stimulating activation of NFκB(103) 610 which in turn contributes to B cell development (104). MSC immunomodulation is intrinsically tied to 611 interactions with dendritic cells (DCs), with MSCs inhibiting DC maturation, resulting in reduced 612 migration, cytokine secretion, antigen presentation to T helper cells and cross-presentation to 613 cytotoxic T cells(105) through interrupting entry into the cell cycle, inhibiting DC differentiation and 614 function (106). DCs also mediate the MSC immunosuppressive effect through the induction of 615 regulatory T cells(107, 108).

- Deeper analysis of the CD317^{pos} subset of MSCs identified a heightened interferon signature that was
- not related to IFN-γ receptor expression levels, suggestive of constitutive IFN signalling. Pre-
- established, low level constitutive IFN signalling contributes to rapid pathogen responses in the
- innate immune system and conveys a protective effect to de novo IFN exposure in these cells(109).
- 620 CD317^{pos} MSCs, if maintained at appropriate levels, may therefore contribute to enhanced innate
- immunomodulation. Of interest, CD317^{pos} MSCs may also serve as a useful tool in the investigation
- of host tropism in viral infection, a particularly prevalent issue with the advent of COVID-19.
- Indeed, the presence of BST2/CD317 on the cell surface has been shown to convey a protective
- effect by tethering coronavirus virions to the cell surface or intracellular membranes and decreasing
- budding of progeny virus(110). These cells may therefore provide an enhanced response to viral
- 626 infection that facilitates tissue regeneration as well as immunomodulation. However, whilst
- 627 constitutive IFN signalling may convey a protective effect to cells experiencing de novo IFN in the in
- 628 vivo environment, there also exists the potential for a link between unregulated constitutive IFN
- signalling and tissue damage in human disease conditions including autoimmunity. It is therefore
- highly significant that we show the baseline gene expression levels of CD317^{pos} MSCs aligns them
- with cells present in autoimmune and related conditions.
- In this report we characterise a subset of human MSCs that favour immunomodulatory interactions
- over tissue regeneration, yet identify as MSCs through both independent tests (e.g. Rohart) and ISCT
- 634 guidelines(111). These cells display a distinct immune profile and operate in contrast to the
- expectations of MSC's immunosuppressive function. Further *in vivo* investigation is necessary to
- elucidate the probability of pro-inflammatory outcomes when using CD317^{pos} MSCs as a therapeutic.
- We have demonstrated that the proportion of CD317^{pos} MSCs varies considerably between donor
- MSC preparations, which could reflect individual inflammatory state and/or infection history. We
- propose that the success of therapeutic applications for tissue regeneration may be associated with the
- numbers of CD317^{pos} MSCs present in the administered cell dose. There is also the possibility that
- 641 CD317^{pos} MSCs can bring therapeutic benefits in the inflamed environment. The expression of
- 642 CD317 on MSCs serves as a positive marker for cells that display all the characteristics of an
- immune stromal cell and targeted therapies should aim to harness the knowledge of this cell type as
- novel approaches to the treatment of degenerative, and inflammatory conditions.

5 Conflict of Interest

There are no conflicts of interest with respect to this work.

6 Author Contributions

- AGK designed, performed and analysed T cell experiments. AGK and JPH designed, performed and
- analysed peritonitis experiments. AS designed, performed and analysed MSC localisation
- experiments. JMF, SR and SJ designed, performed and analysed ELISA, Interferon signature, Rohart
- 651 testing, cell migration experiments and bioinformatics. XY and EK performed subcutaneous HA
- scaffold implantation in vivo whilst AGK performed the associated cell culture and analysis of
- explants. PG designed experiments and was responsible for conceptualisation, funding acquisition,
- supervision and writing (review and editing). XW designed, performed and analysed the *in vitro* skin
- explant model. AK, JMF and PG wrote the paper.

656 7 Funding

647

- This work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC)
- United Kingdom, Doctoral Training Partnership grant (BB/M011151/1) and the Tissue Engineering
- and Regenerative Therapies Centre Versus Arthritis (21156). LK and XY are partially funded by
- 660 funding by the 'EPSRC CDT in Tissue Engineering and Regenerative Medicine' at the University of
- Leeds (Grant number EP/L014823/1). The York Centre of Excellence in Mass Spectrometry was
- created thanks to a major capital investment through Science City York, supported by Yorkshire
- Forward with funds from the Northern Way Initiative, and subsequent support from EPSRC
- 664 (EP/K039660/1; EP/M028127/1).that aided the efforts of the authors.

665 8 Acknowledgments

- The authors thank the staff and patients of Clifton Park Hospital for samples. We are grateful to the
- University of York Technology Facility for support with flow cytometry, cell sorting, confocal
- microscopy bioinformatics and proteomic analysis. We also thank the York Centre of Excellence in
- Mass Spectrometry which was created thanks to a major capital investment through Science City
- York, supported by Yorkshire Forward with funds from the Northern Way Initiative, and subsequent
- support from EPSRC (EP/K039660/1; EP/M028127/1). We thank Emily Taylor for assistance in
- isolating primary T cells.

673 **9 Data Availability Statement**

- The raw data supporting the conclusions of this article will be made available by the authors, without
- undue reservation.

676

10 Contribution to the Field

- Mesenchymal stromal cells (MSCs) are the most widely studied cell type in clinical trials for
- musculoskeletal diseases, but outcomes at clinical trials are variable due to the heterogeneity in
- stromal cell populations. We have identified consistent subpopulations of MSCs occurring within
- 680 human bone marrow-derived MSCs with varied tissue regenerative and immunomodulatory
- properties. Here we define a new immune stromal cell with previously unidentified immune and non-
- regenerative characteristics based on in vitro and in vivo evidence. CD317-positive cells are present
- at variable levels in most MSC preparations currently used in research and therapy. The presence of
- 684 CD317-positive MSCs may impact upon outcomes of clinical trials and will influence interpretation

- of clinical and research data describing outcomes using heterogeneous cell populations. We believe
- these cells contribute to variability in trial outcomes and may therefore impede clinical translation of
- novel therapies in regenerative medicine.

689 11 References

- 691 1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage
- 692 potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-7.
- 693 2. Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in
- 694 cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A.
- 695 2000;97(7):3213-8.
- 696 3. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging
- of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7:14.
- 698 4. Wilson A, Hodgson-Garms M, Frith JE, Genever P. Multiplicity of Mesenchymal Stromal
- 699 Cells: Finding the Right Route to Therapy. Front Immunol. 2019;10:1112.
- Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. Mesenchymal
- stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy.
- 702 2016;18(2):160-71.
- 703 6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal
- 704 criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular
- 705 Therapy position statement. Cytotherapy. 2006;8(4):315-7.
- 706 7. Kuntin D, Genever P. Mesenchymal stem cells from biology to therapy. Emerg Top Life Sci.
- 707 2021.
- Wilson AJ, Rand E, Webster AJ, Genever PG. Characterisation of mesenchymal stromal cells
- in clinical trial reports: analysis of published descriptors. Stem Cell Research & Therapy. 2021;12(1).
- 710 9. Prockop DJ, Prockop SE, Bertoncello I. Are clinical trials with mesenchymal stem/progenitor
- 711 cells too far ahead of the science? Lessons from experimental hematology. Stem cells.
- 712 2014;32(12):3055-61.
- 713 10. Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: consequences for the use
- of mesenchymal stem cells in regenerative medicine. Regen Med. 2019;14:595-611.
- 715 11. Plant AL, Parker GC. Translating stem cell research from the bench to the clinic: a need for
- 716 better quality data. Stem Cells Dev. 2013;22(18):2457-8.
- 717 12. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of
- mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical
- 719 trial. Stem Cells. 2014;32(5):1254-66.
- 720 13. Migliorini F, Rath B, Colarossi G, Driessen A, Tingart M, Niewiera M, et al. Improved
- outcomes after mesenchymal stem cells injections for knee osteoarthritis: results at 12-months
- follow-up: a systematic review of the literature. Arch Orthop Trauma Surg. 2020;140(7):853-68.

- 723 14. Ma W, Liu C, Wang S, Xu H, Sun H, Fan X. Efficacy and safety of intra-articular injection of
- mesenchymal stem cells in the treatment of knee osteoarthritis: A systematic review and meta-
- 725 analysis. Medicine (Baltimore). 2020;99(49):e23343.
- 726 15. Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, et al. Efficacy and
- safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells
- 728 (Stempeucel(R)): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther.
- 729 2016;18(1):301.
- 730 16. Shim J, Kim KT, Kim KG, Choi UY, Kyung JW, Sohn S, et al. Safety and efficacy of
- Wharton's jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures:
- 732 A phase I/IIa study. Stem Cells Transl Med. 2021;10(4):554-67.
- 733 17. Wang L, Huang S, Li S, Li M, Shi J, Bai W, et al. Efficacy and Safety of Umbilical Cord
- Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study.
- 735 Drug Des Devel Ther. 2019;13:4331-40.
- 736 18. El-Jawhari JJ, El-Sherbiny Y, McGonagle D, Jones E. Multipotent Mesenchymal Stromal
- 737 Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in
- Pathogenesis to Potential Therapeutic Saviors? Front Immunol. 2021;12:643170.
- 739 19. Alvaro-Gracia JM, Jover JA, Garcia-Vicuna R, Carreno L, Alonso A, Marsal S, et al.
- 740 Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in
- refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-
- blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis. 2017;76(1):196-202.
- 743 20. Carlsson PO, Schwarcz E, Korsgren O, Le Blanc K. Preserved beta-cell function in type 1
- diabetes by mesenchymal stromal cells. Diabetes. 2015;64(2):587-92.
- Lin W, Li HY, Yang Q, Chen G, Lin S, Liao C, et al. Administration of mesenchymal stem
- cells in diabetic kidney disease: a systematic review and meta-analysis. Stem Cell Res Ther.
- 747 2021;12(1):43.
- 748 22. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis
- I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with
- multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187-94.
- 751 23. Petrou P, Kassis I, Levin N, Paul F, Backner Y, Benoliel T, et al. Beneficial effects of
- autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain.
- 753 2020;143(12):3574-88.
- Lin BL, Chen JF, Qiu WH, Wang KW, Xie DY, Chen XY, et al. Allogeneic bone marrow-
- derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A
- randomized controlled trial. Hepatology. 2017;66(1):209-19.
- 757 25. Casiraghi F, Perico N, Podesta MA, Todeschini M, Zambelli M, Colledan M, et al. Third-
- party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: A
- randomized controlled trial. Am J Transplant. 2020.
- 760 26. Suk KT, Yoon JH, Kim MY, Kim CW, Kim JK, Park H, et al. Transplantation with
- autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial.
- 762 Hepatology. 2016;64(6):2185-97.
- 763 27. Mazzini L, Mareschi K, Ferrero I, Miglioretti M, Stecco A, Servo S, et al. Mesenchymal
- stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy.
- 765 2012;14(1):56-60.

- 766 28. Berry JD, Cudkowicz ME, Windebank AJ, Staff NP, Owegi M, Nicholson K, et al. NurOwn,
- phase 2, randomized, clinical trial in patients with ALS: Safety, clinical, and biomarker results.
- 768 Neurology. 2019;93(24):e2294-e305.
- 769 29. Staff NP, Madigan NN, Morris J, Jentoft M, Sorenson EJ, Butler G, et al. Safety of intrathecal
- autologous adipose-derived mesenchymal stromal cells in patients with ALS. Neurology.
- 771 2016;87(21):2230-4.
- 772 30. Oh KW, Noh MY, Kwon MS, Kim HY, Oh SI, Park J, et al. Repeated Intrathecal
- 773 Mesenchymal Stem Cells for Amyotrophic Lateral Sclerosis. Ann Neurol. 2018;84(3):361-73.
- 31. Shi L, Huang H, Lu X, Yan X, Jiang X, Xu R, et al. Effect of human umbilical cord-derived
- mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind,
- placebo-controlled phase 2 trial. Signal Transduct Target Ther. 2021;6(1):58.
- 777 32. Chouw A, Milanda T, Sartika CR, Kirana MN, Halim D, Faried A. Potency of Mesenchymal
- Stem Cell and Its Secretome in Treating COVID-19. Regen Eng Transl Med. 2021:1-12.
- 779 33. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2(-)
- 780 Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis.
- 781 2020;11(2):216-28.
- 782 34. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of
- 783 cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of
- 784 clinical trials. PLoS One. 2012;7(10):e47559.
- 785 35. Majore I, Moretti P, Hass R, Kasper C. Identification of subpopulations in mesenchymal stem
- 786 cell-like cultures from human umbilical cord. Cell Commun Signal. 2009;7:6.
- 787 36. Gullo F, De Bari C. Prospective purification of a subpopulation of human synovial
- mesenchymal stem cells with enhanced chondro-osteogenic potency. Rheumatology (Oxford).
- 789 2013;52(10):1758-68.
- 790 37. Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, et al. CD106 identifies a
- subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One.
- 792 2013;8(3):e59354.
- 793 38. Blazquez-Martinez A, Chiesa M, Arnalich F, Fernandez-Delgado J, Nistal M, De Miguel MP.
- 794 c-Kit identifies a subpopulation of mesenchymal stem cells in adipose tissue with higher telomerase
- expression and differentiation potential. Differentiation. 2014;87(3-4):147-60.
- 796 39. Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype,
- property and therapeutic potential. Cell Mol Life Sci. 2016;73(17):3311-21.
- 798 40. Li N, Yin D, Zhang H-J, Xu J, Wen F, Liu Z, et al. The Sca1+ mesenchymal stromal
- subpopulation promotes dendritic cell commitment in the niche. Turkish Journal of Biology.
- 800 2017;41:58-65.
- 801 41. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, et al.
- Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro
- 803 colony assay method. Exp Hematol. 1974;2(2):83-92.
- 804 42. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated
- mouse hematopoietic organs. Exp Hematol. 1976;4(5):267-74.

- Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal
- stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood:
- proliferation, Oct4 expression, and plasticity. Stem Cells. 2005;23(8):1105-12.
- 809 44. Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, et al. Adipose tissue-derived
- 810 mesenchymal stem cells improve revascularization outcomes to restore renal function in swine
- atherosclerotic renal artery stenosis. Stem Cells. 2012;30(5):1030-41.
- 812 45. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue
- is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-95.
- 814 46. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells
- from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928-42.
- 816 47. Hermida-Gomez T, Fuentes-Boquete I, Gimeno-Longas MJ, Muinos-Lopez E, Diaz-Prado S,
- de Toro FJ, et al. Quantification of cells expressing mesenchymal stem cell markers in healthy and
- osteoarthritic synovial membranes. J Rheumatol. 2011;38(2):339-49.
- 819 48. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells
- 820 (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625-30.
- 821 49. Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective
- isolation of human endometrial stromal colony-forming cells. Hum Reprod. 2008;23(4):934-43.
- 823 50. Park JC, Kim JM, Jung IH, Kim JC, Choi SH, Cho KS, et al. Isolation and characterization of
- human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and
- in vivo evaluations. J Clin Periodontol. 2011;38(8):721-31.
- 826 51. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of
- tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med.
- 828 2007;13(10):1219-27.
- 829 52. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage
- mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res.
- 831 2002;20(5):1060-9.
- 832 53. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal
- human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells.
- 834 2003;21(1):105-10.
- 835 54. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation
- potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem
- 837 Cells. 2007;25(6):1384-92.
- 838 55. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord
- perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23(2):220-9.
- 840 56. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-
- treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone
- marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95(2):137-48.
- Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-
- derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22(5):649-58.
- 845 58. Meirelles LDS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all
- post-natal organs and tissues. Journal of Cell Science. 2006;119(11):2204-13.

- S47 59. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for
- mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301-13.
- 849 60. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of
- 850 Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-
- Competent Subtypes. Stem Cell Reports. 2015;4(6):1004-15.
- 852 61. Trizio D, Cudkowicz G. Separation of T and B Lymphocytes by Nylon Wool Columns:
- 853 Evaluation of Efficacy by Functional Assays in Vivo. The Journal of Immunology.
- 854 1974;113(4):1093-7.
- 855 62. Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, et al. A molecular
- classification of human mesenchymal stromal cells. PeerJ. 2016;4:e1845.
- 857 63. Holley RJ, Tai G, Williamson AJ, Taylor S, Cain SA, Richardson SM, et al. Comparative
- quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem cell
- 859 reports. 2015;4(3):473-88.
- 860 64. Dowle AA, Wilson J, Thomas JR. Comparing the Diagnostic Classification Accuracy of
- iTRAQ, Peak-Area, Spectral-Counting, and emPAI Methods for Relative Quantification in
- 862 Expression Proteomics. J Proteome Res. 2016;15(10):3550-62.
- 863 65. Berthold MR, Cebron N, Dill F, Fatta GD, Gabriel TR, Georg F, et al. Knime: The Konstanz
- 864 Information Miner: Springer; 2007. 4 p.
- de Jong TD, Vosslamber S, Blits M, Wolbink G, Nurmohamed MT, van der Laken CJ, et al.
- 866 Effect of prednisone on type I interferon signature in rheumatoid arthritis: consequences for response
- prediction to rituximab. Arthritis research & therapy. 2015;17:78.
- Raterman HG, Vosslamber S, de Ridder S, Nurmohamed MT, Lems WF, Boers M, et al. The
- interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis
- patients. Arthritis research & therapy. 2012;14(2):R95.
- 871 68. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses
- and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses.
- 873 2019;11(8).
- 874 69. Sundsfjord A, Osei A, Rosenqvist H, Van Ghelue M, Silsand Y, Haga HJ, et al. BK and JC
- viruses in patients with systemic lupus erythematosus: prevalent and persistent BK viruria, sequence
- stability of the viral regulatory regions, and nondetectable viremia. J Infect Dis. 1999;180(1):1-9.
- 877 70. Angulo R, Fulcher DA. Measurement of Candida-specific blastogenesis: comparison of
- 878 carboxyfluorescein succinimidyl ester labelling of T cells, thymidine incorporation, and CD69
- 879 expression. Cytometry. 1998;34(3):143-51.
- Dickinson AM, Sviland L, Dunn J, Carey P, Proctor SJ. Demonstration of direct involvement
- of cytokines in graft-versus-host reactions using an in vitro human skin explant model. Bone Marrow
- 882 Transplant. 1991;7(3):209-16.
- Dickinson AM, Wang XN, Sviland L, Vyth-Dreese FA, Jackson GH, Schumacher TN, et al.
- 884 In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor
- histocompatibility antigens. Nat Med. 2002;8(4):410-4.
- Lerner KG, Kao GF, Storb R, Buckner CD, Clift RA, Thomas ED. Histopathology of graft-
- vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors.
- 888 Transplant Proc. 1974;6(4):367-71.

- 889 74. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6
- secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-
- kappaB signaling in resident macrophages. Blood. 2011;118(2):330-8.
- 892 75. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P. Postnatal Skeletal Stem Cells.
- Adult Stem Cells. Methods in Enzymology2006. p. 117-48.
- 894 76. Kuznetsov SA, Riminucci M, Ziran N, Tsutsui TW, Corsi A, Calvi L, et al. The interplay of
- osteogenesis and hematopoiesis: expression of a constitutively active PTH/PTHrP receptor in
- osteogenic cells perturbs the establishment of hematopoiesis in bone and of skeletal stem cells in the
- 897 bone marrow. J Cell Biol. 2004;167(6):1113-22.
- 898 77. Balzano M, De Grandis M, Vu Manh TP, Chasson L, Bardin F, Farina A, et al. Nidogen-1
- 899 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the Peri-sinusoidal
- 900 Hematopoietic Stem Cell Niche. Cell Rep. 2019;26(12):3257-71 e8.
- 78. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing
- mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell
- 903 Stem Cell. 2014;15(2):154-68.
- 904 79. Mostafavi S, Yoshida H, Moodley D, LeBoite H, Rothamel K, Raj T, et al. Parsing the
- 905 Interferon Transcriptional Network and Its Disease Associations. Cell. 2016;164(3):564-78.
- 80. Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, et al. Mesenchymal Stem
- 907 Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory
- 908 Arthritis. Sci Rep. 2017;7(1):18019.
- 81. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-
- 910 mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem
- 911 Cell. 2008;2(2):141-50.
- 912 82. Keating A. Mesenchymal stromal cells. Current Opinion in Hematology. 2006;13(6):419-25.
- 913 83. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood.
- 914 2007;110(10):3499-506.
- 915 84. Que J, Lian Q, El Oakley RM, Lim B, Lim SK. PI3 K/Akt/mTOR-mediated translational
- ontrol regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines. J Mol
- 917 Signal. 2007;2:9.
- 918 85. Sivanathan KN, Rojas-Canales DM, Hope CM, Krishnan R, Carroll RP, Gronthos S, et al.
- 919 Interleukin-17A-Induced Human Mesenchymal Stem Cells Are Superior Modulators of
- 920 Immunological Function. Stem Cells. 2015;33(9):2850-63.
- 921 86. Bibby L, Ribeiro A, Ahmad SF, Dickinson AM. A novel in-vitro human skin explant test to
- 922 predict adverse immune reactions to biologics and aggregated monoclonal antibodies. Toxicology
- 923 Letters. 2018;295:S66-S7.
- 924 87. Dickinson A, Wang XN, Ahmed S. An In Vitro Human Skin Test for Assessing Adverse
- 925 Immune Reactions and Sensitization Potential. In: Eskes C, van Vliet E, Maibach HI, editors.
- 926 Alternatives for Dermal Toxicity Testing. Cham: Springer International Publishing; 2017. p. 437-48.
- 927 88. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis.
- 928 Immunity. 2016;44(3):450-62.

- 929 89. Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, et al. Recruitment of
- beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus.
- 931 Immunity. 2013;38(3):555-69.
- 932 90. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells
- maintain haematopoietic stem cells. Nature. 2012;481(7382):457-62.
- 934 91. Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of
- 935 Mesenchymal Origin. Front Cell Dev Biol. 2020;8:592.
- 936 92. Asada N, Takeishi S, Frenette PS. Complexity of bone marrow hematopoietic stem cell niche.
- 937 Int J Hematol. 2017;106(1):45-54.
- 938 93. Butterfield TA, Best TM, Merrick MA. The Dual Roles of Neutrophils and Macrophages in
- 939 Inflammation: A Critical Balance Between Tissue Damage and Repair. Journal of Athletic Training.
- 940 2006;41:457-65.
- 941 94. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al. Bone marrow
- mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed
- 943 death 1 pathway. Eur J Immunol. 2005;35(5):1482-90.
- 944 95. Bloom DD, Centanni JM, Bhatia N, Emler CA, Drier D, Leverson GE, et al. A reproducible
- immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression.
- 946 Cytotherapy. 2015;17(2):140-51.
- 947 96. Chinnadurai R, Copland IB, Patel SR, Galipeau J. IDO-independent suppression of T cell
- 948 effector function by IFN-gamma-licensed human mesenchymal stromal cells. J Immunol.
- 949 2014;192(4):1491-501.
- 950 97. Cuerquis J, Romieu-Mourez R, Francois M, Routy JP, Young YK, Zhao J, et al. Human
- mesenchymal stromal cells transiently increase cytokine production by activated T cells before
- 952 suppressing T-cell proliferation: effect of interferon-gamma and tumor necrosis factor-alpha
- 953 stimulation. Cytotherapy. 2014;16(2):191-202.
- 954 98. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human
- bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific
- 956 mitogenic stimuli. Blood. 2002;99(10):3838-43.
- 957 99. Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT, et al.
- Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress
- activated T-lymphocytes. Stem Cell Res. 2011;7(1):66-74.
- 960 100. Sattler C, Steinsdoerfer M, Offers M, Fischer E, Schierl R, Heseler K, et al. Inhibition of T-
- cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression
- and adenosine generation. Cell Transplant. 2011;20(8):1221-30.
- 101. Tobin LM, Healy ME, English K, Mahon BP. Human mesenchymal stem cells suppress
- donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-
- 965 versus-host disease. Clin Exp Immunol. 2013;172(2):333-48.
- 966 102. van Megen KM, van 't Wout ET, Lages Motta J, Dekker B, Nikolic T, Roep BO. Activated
- 967 Mesenchymal Stromal Cells Process and Present Antigens Regulating Adaptive Immunity. Front
- 968 Immunol. 2019;10:694.
- 969 103. Hotter D, Sauter D, Kirchhoff F. Emerging role of the host restriction factor tetherin in viral
- 970 immune sensing. J Mol Biol. 2013;425(24):4956-64.

- 971 104. ISHIKAWA J, KAISHO T, TOMIZAWA H, LEE BO, KOBUNE Y, INAZAWA J, et al.
- 972 Molecular Cloning and Chromosomal Mapping of a Bone Marrow Stromal Cell Surface Gene,
- 973 BSTZ, That May Be Involved in Pre-B-Cell Growth. Genomics. 1995;26:527-34.
- 974 105. Chiesa S, Morbelli S, Morando S, Massollo M, Marini C, Bertoni A, et al. Mesenchymal stem
- 975 cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A.
- 976 2011;108(42):17384-9.
- 977 106. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem
- cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle.
- 979 Transplantation. 2007;83(1):71-6.
- 980 107. Choi YS, Jeong JA, Lim DS. Mesenchymal stem cell-mediated immature dendritic cells
- induce regulatory T cell-based immunosuppressive effect. Immunol Invest. 2012;41(2):214-29.
- 982 108. Zhao ZG, Xu W, Sun L, You Y, Li F, Li QB, et al. Immunomodulatory function of regulatory
- dendritic cells induced by mesenchymal stem cells. Immunol Invest. 2012;41(2):183-98.
- 984 109. Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, et al. Constitutive
- 985 interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell
- 986 Death Differ. 2019;26(2):332-47.
- 987 110. Wang SM, Huang KJ, Wang CT. BST2/CD317 counteracts human coronavirus 229E
- productive infection by tethering virions at the cell surface. Virology. 2014;449:287-96.
- 989 111. Friedenstein AJ, Piatetzky-Shapiro I, Petrakova KV. Osteogenesis in transplants of bone
- 990 marrow. Journal of Embryology and Experimental Morphology. 1966;16:581-390.

992 Figure Legends

- 993 **Figure 1** Analysis of CD317-expressing MSC populations within primary cell isolates. **(A)** The
- CD317 expressing populations can be divided into CD317^{bright} and CD317^{dim} with CD317^{bright} MSCs.
- 995 **(B)** Average proportions of CD317^{neg} and CD317^{pos}, comprising CD317^{dim} and CD317^{bright}, in
- primary MSCs lines. (C) Expression of CD317 over early passages 1 to 4 in Primary MSCs with
- 997 CD317^{neg} increasing, CD317^{dim} and CD317^{bright} decreasing during in vitro culture (n=2-12). Variation
- of CD317 expression with gender (**D**), age (**E**) and BMI (**F**) in primary donors (n=52). (**G**) Isolated
- MSCs from human primary donors showed CD317^{pos} (CD317^{dim} and CD317^{bright} combined) with
- mean values of CD317^{pos}, CD146^{pos}, CD271^{pos} and CD164^{pos} (n=27). (H) Examination of the
- 1001 CD317^{pos} population only, showed similar proportions of each marker to those seen in the whole
- population only, showed similar proportions of each market to those seen in the whole
- population (n=27). (I) CD317 expression was detected throughout the bone marrow of mice with low
- frequency colocalization of CD317 and LEPR+ in peri-sinusoidal regions (arrows).
- Figure 2 Examination of the immune profile of CD317pos MSCs. (A) Comparative mRNA
- expression of ICAM-1 in MSC lines and primary cells sorted by CD317 expression (RNA was
- extracted from 3 different donors or 5 cell line passages; qPCR performed in triplicate, mean shown
- ± SEM). (B) Mean fluorescence intensity of ICAM-1 expression on the cell surface of MSC lines and
- primary MSCs differentially gated by CD317 staining (MSCs from 5 different donors or 4 different
- passages of MSC lines were stained for flow cytometry, mean shown \pm SEM). (C)/(D) Comparative
- 1010 (mean ± SEM) mRNA expression of CXCL10 (red) and CXCL11 (blue) in MSC lines/ primary
- MSCs sorted for CD317 expression (RNA was extracted from 7 different donors/7 different cell
- passages; experiments were performed in triplicate). (E/F) CXCL10 secretion by MSC lines prior to

- 1013 IFN- γ priming and after priming with baseline (unprimed) secretion subtracted (mean \pm SEM, n=2).
- 1014 (**G/H**) Comparative mRNA expression of 8 IFN-γ signature genes in MSC lines/primary MSCs
- sorted by CD317 expression (RNA was extracted from 5 different donors/5 different cell passages;
- experiments were performed in triplicate, mean shown \pm SEM). (I)/(J) IFN- γ score for MSC
- lines/primary MSCs sorted by CD317 expression (n=5)*/** = significance at P<0.05/0.01 using an
- appropriate statistical test.
- 1019
- Figure 3 Influence of CD317^{neg} MSCs and of CD317^{pos} MSCs on immune cell function (A)
- 1021 Comparative mRNA expression of CCL2 in primary MSCs sorted by CD317 expression (RNA was
- extracted from 7 different donors; experiments performed in triplicate, mean shown \pm SEM). (B)
- 1023 CCL2 secretion in primary MSCs sorted by CD317 expression and MSC lines (from 4 different
- donors/4 different cell line passages; experiments performed in triplicate, mean shown \pm SEM). (C)
- In vitro co-culture of hTERT immortalised lines Y201 and Y202 and primary CD317^{neg} and
- 1026 CD317^{pos} cells with activated T cells. CD317^{neg} cells reduce proportion of proliferating T cells and
- number of cell cycles achieved (**D**) hTERT cell lines significantly reduce proportion of proliferating
- 1028 cells as demonstrated through proliferative index (E) CD317^{neg} cell lines reduce proliferative cycles
- achieved by activated T cells in comparison to CD317^{pos} or T cell alone controls. (**F**) assessment of
- the influence of MSC on T cell polarisation in co-culture demonstrates CD317^{pos} cells influence
- activated T cells to preferentially polarise towards IFN-γ expressing (Th1) subset with indications of
- increased IL17a+ and CD25+FOXP3+ expressing cells.
- Figure 4 In vitro and in vivo immunomodulation by CD317^{neg} Y201 or CD317^{pos} Y202 MSCs. (A)
- Representative images of skin explants independently assessed for damage to tissues, examining
- keratinocytes, basal cells, keratotic bodies, the appearance of sub-epidermal clefts at the junction
- with the dermis and in highly damaged tissue the appearance of complete epidermal separation
- following treatment with MSCs primed with IFN- γ or TNF- α and co-cultured in vitro. (B) Y201 co-
- culture did not prompt damage to the tissue in any conditions whilst Y202 cell line demonstrated
- marked tissue damage in untreated cells and TNF-α treated cell lines. Both Y201 and Y202 cell lines
- retained the ability to inhibit tissue damage when primed with IFN-γ. (C) MSCs subsequently
- applied to an *in vivo* peritonitis model of inflammation showed immunomodulation through reduced
- immune cell recruitment, (**D**) reduced macrophage development following Y201 treatment, (**E**)
- increased central memory T cell development following Y201 treatment and (F) reduced CD8+
- 1044 cytotoxic T cell development following Y202 treatment. n=3, *p<0.05, **p<0.01, ***p<0.001
- Figure 5 In vivo tissue generation in HA scaffolds loaded with CD317^{neg} Y201 or CD317^{pos} Y202
- 1046 MSCs. (A, B) Histological staining of recovered implants using Sirius Red for collagen formation
- and (C) Alcian Blue for proteoglycan synthesis at 3 and 8 weeks post-implantation in HA scaffolds
- loaded with either CD317^{neg} Y201 MSCs and CD317^{pos} Y202 MSCs. (**D**) Haematoxylin and eosin
- staining comparting tissue and blood vessel formation at 3 and 8 weeks post-implantation in HA
- scaffolds loaded with CD317^{neg} Y201 MSCs and CD317^{pos} Y202 MSCs. Scale bars = 250µm (Part A
- Scale bars = 500µm). Asterisks = HA particles, arrows = blood vessels.