UNIVERSITY of York

This is a repository copy of TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/id/eprint/187017/</u>

Version: Accepted Version

Article:

Wang, Yan, Su, Chen, Yu, Yingjun et al. (9 more authors) (2022) TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. The Plant Cell. 2907–2924. ISSN 1532-298X

https://doi.org/10.1093/plcell/koac138

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

RESEARCH ARTICLE

TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling

Yan Wang^{1,2,#}, Chen Su^{1,2,#}, Yingjun Yu^{1,2,#}, Yuqing He^{1,2}, Hua Wei^{1,2}, Na Li^{1,2}, Hong Li³, Jie Duan³, Bin Li^{1,}, Jigang Li³, Seth J. Davis^{4,5}, and Lei Wang^{1,2,*}

¹Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 10093, People's Republic of China

²University of Chinese Academy of Sciences

³State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China

⁴University of York, Department of Biology, Heslington, York YO10 5DD, UK

⁵State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China

[#]These authors contributed equally to this study.

Short title: TIC negatively regulates phyA activity

One-sentence summary: TIME FOR COFFEE positively regulates far-red light inhibited hypocotyl growth in Arabidopsis by managing the accumulation of the dawn-phased photoreceptor phytochrome A.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Lei Wang (wanglei@ibcas.ac.cn).

ABSTRACT

To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in *Arabidopsis thaliana*. Null mutants of *TIC* displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased *PHYA* transcript levels in the *tic-2* and *tpl-1* mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, *phyA* was found to act downstream of *TIC* in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.

IN A NUTSHELL

Background: To enhance plant adaptability to natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. Intriguingly, the circadian clock also fine-tunes the abundance and activity of photoreceptors. The photoreceptor phyA accumulates during the night with a peak at dawn, followed by decreasing levels from dawn to dusk, suggesting that the circadian clock plays an indispensable role in regulating phyA accumulation. However, the underlying mechanism is unclear. TIME FOR COFFEE (TIC) was characterized as a clock regulator in *Arabidopsis thaliana* with a peak signaling function prior to dawn and was proposed to modulate light input to the clock at pre-dawn.

Question: We tried to fill in the gaps in our understanding of how the circadian clock exquisitely regulates photoreceptors. We tested whether the clock regulator TIC regulates phyA abundance and activity and unmasked the underlying mechanisms.

Findings: Arabidopsis *tic* mutants exhibit significantly reduced hypocotyl length in a range of continuous far-red fluences, suggesting they are hypersensitive to far-red light. *PHYA* and *FAR-RED-ELONGATED HYPOCOTYL1-LIKE/FAR-RED ELONGATED HYPOCOTYL1*,

the key components of the far-red signaling pathway, were upregulated in *tic* mutants at pre-dawn. TIC recruits the transcriptional co-repressor TOPLESS to bind to the *PHYA* promoter to inhibit its pre-dawn transcriptional expression. In addition, TIC physically interacts with phyA in the nucleus to promote its proteolysis following light irradiation. TIC also regulates phyA photobody formation in far-red light. Therefore, the clock component TIC functions as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms.

Next steps: TIC might function as an emerging cellular hub, integrating environmental information and regulating plant growth. However, the biological function of TIC is still

unclear, and the underlying mechanisms of how TIC coordinates with diverse proteins to regulate plant growth and development need to be further investigated.

1 INTRODUCTION

2	The circadian clock allows plants to adapt to dynamic changes in the external light
3	environment with a ~24 h rhythmic periodicity. This mechanism coordinates plant growth
4	and development within the intrinsic diel and seasonal rhythms in a robust oscillation pattern
5	(Nohales and Kay, 2016; Shalit-Kaneh et al., 2018; McClung, 2019). A complex interplay
6	between the circadian clock and phytochrome photoreceptors has been implicated in plants.
7	The circadian clock regulates the transcription, nuclear import and subsequent intranuclear
8	speckle formation of phytochromes (Toth et al., 2001; Kircher et al., 2002; Wenden et al.,
9	2011; Sanchez et al., 2020). Among the five phytochromes, phytochrome A (phyA) was
10	shown to accumulate during the night and reach its peak at dawn (Sharrock and Clack, 2002).
11	In turn, phyA mediates the perception of far-red (FR) light input to the circadian clock under
12	FR/dark cycles (Wenden et al., 2011). Consistently, Arabidopsis thaliana phyA mutants
13	display a lengthened circadian period under low-fluence red or blue light, while PHYA
14	overexpression shortens the circadian period in a light-dependent manner (Somers et al.,
15	1998; Kolmos et al., 2011). In addition to its role in regulating circadian-clock periodicity,
16	phyA also coordinates many other clock-driven aspects of plant growth and development,
17	including seed germination, hypocotyl growth during the shade avoidance response,
18	anthocyanin biosynthesis, and flowering time (Casal et al., 2014; Seaton et al., 2018; Yang et
19	al., 2018; Zhang et al., 2018a). Therefore, the close interplay between the clock and phyA

signaling is critical for plant response to rhythmic environmental light cues.

21	Unlike the four other light-stable phytochromes in Arabidopsis, phyA is light-labile
22	(Shanklin et al., 1987) and was termed a type I phytochrome (Abe et al., 1985). With this
23	unique feature, phyA protein is detected in an oscillating fashion under diurnal conditions
24	(Sharrock and Clack, 2002). Under photoperiodic conditions, phyA protein has delayed
25	accumulation during the night and reaches peak levels just before dawn. In the early morning,
26	light facilitates the conformation change of phyA from its red-absorbing form (Pr) to its
27	far-red absorbing form (Pfr), which activates a large set of morning-expressed genes (Seaton
28	et al., 2018). Intriguingly, the protein stability of phyA is greatly reduced in its Pfr form
29	(Shanklin et al., 1987; Fankhauser, 2001). The E3-ligase CONSTITUTIVE
30	PHOTOMORPHOGENIC 1 (COP1) contributes to the ubiquitination of both the Pr and Pfr
31	forms of phyA in the presence of sugar (Seo et al., 2004; Debrieux et al., 2013). Less is
32	known about the mechanisms of Pfr-specific turnover of phyA.
33	The oscillating pattern of phyA over the course of a day is collectively determined by its
34	transcriptional and post-translational regulatory mechanisms (Sharrock and Clack, 2002;
35	Seaton et al., 2018). Therefore, the phyA receptor largely functions as a dawn and
36	photoperiod sensor, with a peak of accumulation early in the morning (Seaton et al., 2018).
37	At the transcriptional level, PHYA is regulated by PHYTOCHROME INTERACTING
38	FACTOR 4 (PIF4) and PIF5 to achieve its transcription peak late at night (Toth et al., 2001;
39	Sharrock and Clack, 2002; Seaton et al., 2018), which is consistent with subsequent phyA
40	protein accumulation just before dawn under diurnal conditions (Seaton et al., 2018).
41	Interestingly, under 12 h light/12 h dark (LD) conditions, the nuclear import and subsequent

42	accumulation of phyA protein in photobodies dramatically increase just 10 minutes before
43	dawn (Hall et al., 2003; Sanchez et al., 2020). Both phyA transcript and protein abundance
44	are inhibited from dawn to dusk (Sharrock and Clack, 2002; Casal et al., 2014; Seaton et al.,
45	2018), indicating an indispensable role of the circadian clock in repressing phyA
46	accumulation. However, the underlying mechanism of the circadian-controlled phyA profile
47	remains largely unclear.
48	TIME FOR COFFEE (TIC) was initially characterized as a clock regulator with a peak
49	signaling function prior to dawn (Hall et al., 2003). TIC was also shown to participate in
50	many biological processes, such as the maintenance of metabolic homeostasis and the
51	control of root meristem size and jasmonic acid signaling (Shin et al., 2012; Hong et al.,
52	2014; Shin et al., 2017; Sanchez-Villarreal et al., 2018). The biological function of TIC
53	protein has remained elusive, as it has neither known homologs outside plants nor any of the
54	conserved domains that suggest enzymatic activity for its function (Ding et al., 2007).
55	Although TIC was proposed to regulate light input to the circadian clock prior to dawn, the
56	roles of TIC in light signaling and any underlying mechanism remain elusive.
57	Here we report a role for TIC in light signaling by acting as a major negative regulator
58	of phyA abundance at dawn. We show that TIC interacts with TOPLESS (TPL), a
59	transcriptional co-repressor, which correlates with the inhibition of <i>PHYA</i> expression at dawn.
60	Moreover, TIC physically interacts with phyA in the nucleus to promote its proteolysis after
61	light reception. Finally, TIC regulates photobody formation by phyA in far-red light.
62	Together, our findings reveal that the clock regulator TIC is a major negative regulator of the
63	photoreceptor phyA that functions by integrating transcriptional and post-translational

64 mechanisms.

65 **RESULTS**

66 TIC is a negative regulator of light-inhibited hypocotyl growth

67 TIC was previously identified as a clock regulator that gates light input during the entrainment of the circadian clock (Hall et al., 2003). How TIC participates in light signaling 68 has remained elusive. We therefore systematically investigated the light responsiveness of 69 the Arabidopsis tic-2 mutant, a null allele generated via a T-DNA insertion (Ding et al., 70 71 2007). The hypocotyl length of *tic-2* was only approximately half that of wild-type plants when grown in a range of continuous far-red (FRc) fluences (Figure 1, A and B), suggesting 72 that *tic-2* is hypersensitive to FRc. Moreover, compared to wild type, *tic-2* seedlings 73 74 displayed fewer but more pronounced shorter hypocotyls when grown under a range of continuous red light (Rc) or continuous blue light (Bc) conditions (Figure 1, C-F). Finally, 75 tic-2 seedlings displayed modestly shorter hypocotyls when grown under short day (SD) 76 77 conditions (Supplemental Figure S1, A and B), but their hypocotyls were comparable to the wild type in continuous darkness (Supplemental Figure S1, C and D). These observations 78 indicate that TIC is a critical regulator of light signaling during hypocotyl growth. 79 To further confirm the role of *TIC* in light signaling, we conducted genome editing to 80 target the first exon of TIC using a previously described CRISPR/Cas9 approach (Ma et al., 81 2015) to generate a null mutation for further phenotypic characterization. We selected a 82 homozygous mutant from T3 progeny. Sanger sequencing confirmed that the genome-edited 83 tic mutant contained a 1 bp deletion in the first exon (Supplemental Figure S2, A), which 84

85	resulted in frame shift and introduction of a premature stop codon encoding only the first 46
86	amino acids. This new allele (hereafter named <i>tic-3</i>) displayed the serrated leaves and late
87	flowering under long-day conditions observed in <i>tic-2</i> (Supplemental Figure S2B). As
88	expected, <i>tic-3</i> also displayed a short circadian period (Supplemental Figure S2, C-F),
89	similar to tic-2. We separately tested the light responsiveness of this mutant to FRc, Rc, and
90	Bc. tic-3 displayed dramatically increased sensitivity to FR but modestly elevated sensitivity
91	to Rc and Bc (Supplemental Figure S3), as observed in <i>tic-2</i> (Figure 1). Moreover, when
92	grown under SD conditions, tic-3 also displayed a short hypocotyl phenotype, but not in
93	continuous darkness (Supplemental Figure S4). Overall, tic-3 displayed similar phenotypes
94	to <i>tic-2</i> in the regulation of light responsiveness, flowering time, and circadian period,
95	suggesting that <i>tic-2</i> and <i>tic-3</i> are indistinguishable null alleles that can be used
96	interchangeably.
97	To test the genetic complementation of the <i>tic-2</i> mutant, we generated a construct
98	harboring GFP fused to the TIC open reading frame driven by its native promoter (-2,691 bp
99	upstream of the start codon) (TICpro:GFP-TIC) and transformed into tic-2 for genetic
100	complementation analysis. As expected, TICpro:GFP-TIC largely rescued the defective
101	response of <i>tic-2</i> mutant to light, especially to FRc (Supplemental Figure S5), indicating that
102	the GFP-TIC lines could be used for further analysis.
103	
	TIC regulates a subset of genes in an opposite matter to phyA at pre-dawn
104	TIC regulates a subset of genes in an opposite matter to phyA at pre-dawn To further investigate the temporal-specific effects of <i>TIC</i> , we conducted
104	TIC regulates a subset of genes in an opposite matter to phyA at pre-dawn To further investigate the temporal-specific effects of <i>TIC</i> , we conducted
104 105	TIC regulates a subset of genes in an opposite matter to phyA at pre-dawn To further investigate the temporal-specific effects of <i>TIC</i> , we conducted RNA-sequencing with tissues harvested at pre-dawn (10 minutes before the lights were
104 105 106	TIC regulates a subset of genes in an opposite matter to phyA at pre-dawn To further investigate the temporal-specific effects of <i>TIC</i> , we conducted RNA-sequencing with tissues harvested at pre-dawn (10 minutes before the lights were turned on) and post-dusk (10 minutes after the lights were turned off) (Supplemental Figure

107	S6, A). We collected ten-day-old <i>tic-2</i> and wild type (Col-0) seedlings grown under LD
108	conditions at pre-dawn and post-dusk, respectively. After strictly screening with a cut-off at
109	fold change > 2, we identified 785 and 567 upregulated differentially expressed genes
110	(DEGs) at ZT0 and ZT12, respectively, and 520 and 237 downregulated DEGs, respectively
111	(Figure 2, A and B and Supplemental Data Set S1). The repeatability among the biological
112	replicates was confirmed by the high value Pearson correlation coefficient (> 0.98, within
113	biological repeats, Supplemental Figure S6, B). In addition, heat-map visualization of these
114	DEGs revealed that the scaled expression of the DEGs was highly reproducible among the
115	three biological repeats (Supplemental Figure S6, C and D).
116	Gene ontology (GO) analysis of the genes with increased expression in tic-2
117	demonstrated that the terms circadian rhythm, response to light stimulus, and response to red
118	or far red light were highly enriched both pre-dawn and post-dusk (Supplemental Figure S7,
119	A and B). Consistent with the notion that TIC functions as a clock regulator, interaction
120	network analysis with the STRING database revealed that clock-related genes formed a
121	major cluster, including the day-time clock genes PSEUDO-RESPONSE REGULATOR7
122	(PRR7), PRR9, and LATE ELONGATED HYPOCOTYL (LHY), within the 402 overlapping
123	DEGs between pre-dawn and post-dusk (Supplemental Figure S8). By contrast, GO analysis
124	of downregulated DEGs failed to identify the circadian rhythm cluster at either time point,
125	supporting the notion that TIC functions as a clock regulator, likely by mediating
126	transcriptional repression. Terms related to light signaling were also enriched in the
127	downregulated DEGs pre-dawn, but not post-dusk (Supplemental Figure S7, C and D),
128	indicating that TIC has a profound effect on regulating light signaling, predominantly during

129 pre-dawn.

130	Given that phyA is the only far-red light photoreceptor identified in Arabidopsis and
131	that it also functions in red light- and blue light-mediated hypocotyl growth, we reasoned
132	that TIC may be involved in regulating phyA-mediated light signaling. Hence, we compared
133	our RNA-Seq data with previously identified direct targets of phyA (Chen et al., 2014). Over
134	26% (44/169) of phyA-repressed genes were markedly upregulated in <i>tic-2</i> at pre-dawn,
135	including PHYTOCHROME RAPIDLY REGULATED1 (PAR1), FAR-RED-ELONGATED
136	HYPOCOTYL 1-LIKE (FHL), and FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) (Figure
137	2, C and D), and 14% (38/265) of phyA-activated genes were downregulated in <i>tic-2</i> at
138	pre-dawn (Figure 2, C). By contrast, only 4% (7/169) of phyA-repressed genes and less than
139	2% (5/265) of phyA-activated genes overlapped with the DEGs identified in <i>tic-2</i> post-dusk
140	(Supplemental Figure S9), suggesting that TIC regulates a subset of genes in an opposite
141	manner to phyA, predominantly at pre-dawn. This was further substantiated by time course
142	qRT-PCR (Figure 2, E-G and Supplemental Figure S10). Consistently, FHL, PAR1, and PIL1
143	also displayed a similar time-course expression pattern in <i>tic-3</i> (Supplemental Figure S11).
144	Together, we conclude that a subset of genes, including those encoding FR signaling
145	components, are regulated in an opposite manner by TIC and phyA in a time-of-day specific
146	manner, mainly at dawn.

147 TIC likely represses *PHYA* transcription by associating with its promoter

Our RNA-seq data also showed that *PHYA* was significantly upregulated in *tic-2* at pre-dawn, which is consistent with previous microarray data (Sanchez-Villarreal et al., 2013) (Supplemental Data Set S1). This was further verified by time course qRT-PCR, in which

151	PHYA transcript levels increased in the <i>tic-2</i> and <i>tic-3</i> mutants at dawn (Figure 3, A,
152	Supplemental Figure S11A). We also examined the transcript level of PHYA in tic-2 under
153	constant light conditions and found that it was higher at subjective dawn but not at subjective
154	night (Supplemental Figure S12). Since our RNA-seq analysis suggested that TIC plays a
155	pervasive role in transcriptional repression, together with the higher transcript levels of
156	PHYA and other FR signaling components (such as FHY1 and FHL) in tic-2, we investigated
157	whether TIC could repress their transcription in planta using a transient expression assay in
158	Nicotiana benthamiana leaves. The expression of GFP-TIC dramatically repressed the
159	promoter activity of <i>PHYA</i> relative to the <i>GFP</i> controls (Figure 3, B-D). These results
160	suggest that TIC transcriptionally represses PHYA expression.
161	We next examined if TIC could directly associate with PHYA promoter by performing
162	a chromatin immunoprecipitation (ChIP) assay with the TICpro:GFP-TIC tic-2 line
163	(Supplemental Figure S5). The plants were grown under LD photocycles, and samples were
164	harvested at ZT0 (zeitgeber time 0) when the PHYA transcript level was highest in tic-2
165	(Figure 3, A), and at ZT12 when the PHYA transcript was as low as the control. Our
166	ChIP-qPCR assay demonstrated that among the nine tested amplicons (Figure 3, E, upper
167	panel), amplicon S5 was modestly but significantly enriched with GFP-TIC relative to GFP
168	alone at ZT0, but not at ZT12 (Figure 3, E, lower panel, Supplemental Figure S13). However,
169	no significant enrichment of the amplicon corresponding to the housekeeping gene APX3, a
170	negative control, was detected. In addition, another core clock component, GFP-TOC1,
171	failed to effectively bind to the PHYA promoter (Supplemental Figure S14), further
172	indicating that the binding of GFP-TIC to the PHYA promoter was not due to its GFP tag.

Together, these data suggest that TIC associates with the *PHYA* promoter in a region close tothe transcription start site (TSS).

175	Consistent with the notion that TIC protein associates with the PHYA promoter to
176	repress its transcription, PHYA transcript levels were higher in tic-2 vs. Col-0 in constant
177	darkness and decreased after transfer to red light (R) for 60 min (Figure 3, F, Supplemental
178	Figure S15). Consistently, phyA protein levels were also higher in <i>tic-2</i> either in constant
179	darkness (DD) or after transfer to R, which can facilitate its protein degradation (Figure 3,
180	G). In addition, we generated separate truncated versions of PHYA promoters with deletion
181	of region S4, S5, or S6 to drive the luciferase gene. TIC still successfully inhibited their
182	expression (Supplemental Figure S16), suggesting that TIC inhibits PHYA promoter activity
183	via an alternate mechanism. Taken together, our data suggest that TIC is involved in
184	repressing PHYA transcription, possibly via direct or indirect mechanisms.
185	TIC interacts with TPL in the nucleus
185 186	TIC interacts with TPL in the nucleus To gain further insight into the role of TIC in transcriptional regulation and
185 186 187	TIC interacts with TPL in the nucleus To gain further insight into the role of TIC in transcriptional regulation and phyA-mediated FR signaling, we searched for its nuclear interactome by performing
185 186 187 188	TIC interacts with TPL in the nucleus To gain further insight into the role of TIC in transcriptional regulation and phyA-mediated FR signaling, we searched for its nuclear interactome by performing affinity purification-mass spectrometry (AP-MS) (Wang et al., 2020). Entrained
185 186 187 188 189	TIC interacts with TPL in the nucleus To gain further insight into the role of TIC in transcriptional regulation and phyA-mediated FR signaling, we searched for its nuclear interactome by performing affinity purification-mass spectrometry (AP-MS) (Wang et al., 2020). Entrained <i>TICpro:GFP-TIC tic-2</i> transgenic seedlings under LD conditions were collected at pre-dawn,
185 186 187 188 189 190	TIC interacts with TPL in the nucleus To gain further insight into the role of TIC in transcriptional regulation and phyA-mediated FR signaling, we searched for its nuclear interactome by performing affinity purification-mass spectrometry (AP-MS) (Wang et al., 2020). Entrained <i>TICpro:GFP-TIC tic-2</i> transgenic seedlings under LD conditions were collected at pre-dawn, when TIC regulates light input to the circadian clock and <i>PHYA</i> transcript level (Hall et al.,
185 186 187 188 189 190 191	TIC interacts with TPL in the nucleusTo gain further insight into the role of TIC in transcriptional regulation andphyA-mediated FR signaling, we searched for its nuclear interactome by performingaffinity purification-mass spectrometry (AP-MS) (Wang et al., 2020). Entrained <i>TICpro:GFP-TIC tic-2</i> transgenic seedlings under LD conditions were collected at pre-dawn,when TIC regulates light input to the circadian clock and <i>PHYA</i> transcript level (Hall et al.,2003). In total, we identified 43 nuclear proteins immunoprecipitated by GFP-TIC among
185 186 187 188 189 190 191 192	TIC interacts with TPL in the nucleusTo gain further insight into the role of TIC in transcriptional regulation andphyA-mediated FR signaling, we searched for its nuclear interactome by performingaffinity purification-mass spectrometry (AP-MS) (Wang et al., 2020). Entrained <i>TICpro:GFP-TIC tic-2</i> transgenic seedlings under LD conditions were collected at pre-dawn,when TIC regulates light input to the circadian clock and <i>PHYA</i> transcript level (Hall et al.,2003). In total, we identified 43 nuclear proteins immunoprecipitated by GFP-TIC amongthree biological replicates. These included phyA, TOPLESS (TPL), CHROMATIN
185 186 187 188 189 190 191 192 193	TIC interacts with TPL in the nucleusTo gain further insight into the role of TIC in transcriptional regulation andphyA-mediated FR signaling, we searched for its nuclear interactome by performingaffinity purification-mass spectrometry (AP-MS) (Wang et al., 2020). Entrained <i>TICpro:GFP-TIC tic-2</i> transgenic seedlings under LD conditions were collected at pre-dawn,when TIC regulates light input to the circadian clock and <i>PHYA</i> transcript level (Hall et al.,2003). In total, we identified 43 nuclear proteins immunoprecipitated by GFP-TIC amongthree biological replicates. These included phyA, TOPLESS (TPL), CHROMATINREMODELING 4/19 (CHR4/19), and SSRP1 (SSRP1), a submit of the FACT (facilitates

195	TPL was previously characterized as a transcriptional co-repressor that interacts with
196	EAR (ethylene-responsive element binding factor-associated amphiphilic repression) motif
197	(LxLxL)-containing proteins (Pauwels et al., 2010; Wang et al., 2013; Ito et al., 2016;
198	Martin-Arevalillo et al., 2017). Visual inspection of the amino acid sequence of TIC led us to
199	detect a motif resembling an EAR motif from its 566 th to 571 st amino acid residues
200	(LKLDLD). As our RNA-seq data suggested that TIC likely functions in repressing
201	transcription, and because the co-repressor TPL is a potential interacting protein of TIC
202	(Figure 4, B), we substantiated the physical interaction between TPL and TIC proteins.
203	Using transient coexpression of TPL-FLAG and GFP-TIC in N. benthamiana leaves, we
204	detected the coimmunoprecipitation of TPL-FLAG with GFP-TIC, but not with the GFP
205	control (Figure 4, C). Moreover, the interaction between TIC and TPL was drastically
206	weakened by the point mutation of the proposed EAR domain of TIC (Supplemental Figure
207	S17).
208	As nuclear presence is a prerequisite for TPL acting as a transcriptional co-repressor of
209	TIC, we performed a biofluorescence complementation (BiFC) assay in N. benthamiana
210	leaves to examine the subcellular localization and the in planta interactions between TIC and
211	TPL. As expected, we found a strong nuclear YFP (yellow fluorescence protein) signal when
212	TPL-nYFP was coexpressed with TIC-cYFP (Figure 4, D). In addition, the transcript level of
213	PHYA in tpl-1, a dominant negative mutant of TPL (Long et al., 2006), was significantly
214	higher at ZT0 but not at ZT12, which is consistent with the notion that TPL acts as a
215	co-repressor of TIC to repress PHYA transcription at dawn (Figure 4, E). Consistently, TPL
216	also bound to the S5 region of the PHYA promoter in the presence of TIC (Supplemental

Figure S18). Neither TIC with the EAR point mutation nor co-expression with TPL

significantly affected the repressive effect of TIC on *PHYA* promoter activity (Supplemental
Figure S19), further indicating that TIC employs an alternative mechanism to repress *PHYA*expression.

The *tpl-1* mutant displayed modestly shorter hypocotyl than Col-0 grown under FRc, 221 222 similar to *tic* mutants (Figure 4, F and G). The less pronounced hypocotyl phenotype of *tpl-1* in FRc may be due to the interaction of TPL with other transcriptional regulators that have 223 224 antagonistic interactions with TIC to regulate hypocotyl growth or perhaps to the functional 225 redundancy of its family members. Indeed, TPL is a co-repressor of IAA repressor proteins 226 and the clock components PRRs (Long et al., 2006; Wang et al., 2013), and the compromised 227 repressor activity of IAA and PRR in tpl-1 diminishes their inhibition of PIF4/5 and auxin 228 signaling to promote hypocotyl growth (Long et al., 2006; Wang et al., 2013; Zhu et al., 229 2016; Li et al., 2020). These findings support the notion that TIC acts as a transcription regulator by interacting with TPL to repress downstream genes such as *PHYA*, thereby 230 regulating hypocotyl growth in FRc. 231

232 TIC physically interacts with phyA

To verify our AP-MS data showing the TIC-phyA interaction *in vivo* (Figure 5, A), we co-expressed *GFP-TIC* and *PHYA-HA* in *N. benthamiana* leaves and measured binding via a co-immunoprecipitation assay. Consistent with our AP-MS result, we observed a positive interaction of GFP-TIC with PHYA-HA (Figure 5, B, upper panel), but not with PHYB-HA (Figure 5, B, lower panel). Since phyA protein can localize to both the cytosol and the

238	nucleus, to determine where the interaction between TIC and PHYA occurs, we performed a
239	BiFC assay by co-infiltrating TIC-nYFP and PHYA-cYFP into N. benthamiana leaf
240	epidermal cells. As shown in Figure 5 C, we observed a reconstituted YFP signal in the
241	nucleus in the presence of both TIC-nYFP and PHYA-cYFP, supporting the notion that TIC
242	and phyA interact in the nucleus.
243	We then used the LexA yeast two-hybrid system to determine the regions mediating the
244	TIC and PHYA interaction (Zhang et al., 2018a). The histidine kinase-related domain
245	(designated as C2) of phyA fused with the LexA DNA binding domain displayed a stronger
246	interaction with the C-terminus of TIC (755-1555 aa) than with its N-terminus (1-744 aa)
247	(Figure 5, D), indicating that phyA and TIC interacted in yeast cells. Finally, we conducted a
248	co-immunoprecipitation assay by co-expressing TIC-NT-GFP or TIC-CT-GFP with
249	PHYA-HA in N. benthamiana. Consistently, we observed a strong interaction between
250	TIC-CT-GFP and PHYA-HA, while there was a much weaker interaction between
251	TIC-NT-GFP and PHYA-HA, suggesting that TIC-CT functions directly in mediating its
252	interaction with phyA (Figure 5, E). Taken together, these results indicate that TIC interacts
253	with phyA in the nucleus.
254	TIC negatively regulates phyA protein abundance
255	As phyA and TIC proteins physically interact with each other, we tested if phyA is
256	regulated by TIC at a post-transcriptional level. First, we explored whether TIC is involved
257	in regulating phyA protein stability. To eliminate the effect of TIC on PHYA transcription,

- *PHYA-LUC* driven by the CaMV 35S constitutive promoter was co-infiltrated with *GFP-TIC*
- or *GFP* control into *N. benthamiana* leaves. The bioluminescence signal of PHYA-LUC

260	decreased by 60% in the presence of GFP-TIC relative to the GFP control (Figure 6, A).
261	Consistently, immunoblotting with anti-LUC antibody revealed a similar reduction in
262	PHYA-LUC protein abundance by GFP-TIC (Figure 6, B), suggesting that phyA protein
263	accumulation is diminished by the presence of GFP-TIC.
264	As TIC is also involved in repressing PHYA transcription, to further corroborate if the
265	turnover of phyA is facilitated by TIC and to eliminate the effect of transcriptional inhibition
266	of TIC on PHYA, we introgressed the previously generated 35S: PHYA-YFP (Yang et al.,
267	2018) into the <i>tic-2</i> mutant background by genetic crossing. As phyA was most abundant in
268	dark-grown seedlings but was rapidly depleted after light treatment (Sharrock and Clack,
269	2002), we first examined the degradation rate of phyA protein by separately transferring
270	etiolated 35S: PHYA-YFP and 35S: PHYA-YFP tic-2 seedlings to FR or R at specific times.
271	Consistent with the previous finding that phyA protein was rapidly degraded in R,
272	PHYA-YFP degraded much more rapidly under R compared to FR (Figure 6, C-F). The
273	rates of PHYA-YFP degradation under both R and FR were markedly reduced in <i>tic-2</i>
274	(Figure 6, C-F). We then assessed the turnover of PHYA-YFP in the presence of TIC under
275	diurnal conditions. PHYA-YFP protein abundance during the daytime was higher in <i>tic-2</i> vs.
276	Col-0 in both the presence (Figure 6, G and H) and absence of sucrose (Supplemental Figure
277	S20), further suggesting that TIC facilitates PHYA-YFP protein degradation in a
278	light-dependent manner that is not dependent on exogenous sucrose addition.
279	As phyA can aggregate into speckles in response to light exposure (Kircher et al., 1999;
280	Nagatani, 2004), we next tested if the formation of these phyA photobodies was altered in
281	the tic-2 mutant. To this end, we examined fluorescent PHYA-YFP signals in etiolated

seedlings after a range of light exposures. As expected, we detected increased PHYA-YFP
signals in the nucleus and increased photobody formation in response either FR or R. These
effects were markedly higher in *tic-2* than the wild type (Supplemental Figure S21). This
was not due to increased phyA accumulation, as both total and nuclear PHYA-YFP protein
levels were comparable between *tic-2* and Col-0 after a short light exposure (Supplemental
Figure S22). Hence, we conclude that not only the protein turnover of phyA, but also its
formation of photobodies, were affected by TIC.

289 phyA is epistatic to TIC in mediating FR-repressed hypocotyl elongation

Our findings demonstrate that TIC negatively regulates phyA abundance by both 290 291 repressing its transcription and facilitating its proteolysis. Therefore, we reasoned that the shorter hypocotyls of *tic-2* under FRc are predominantly caused by abnormally high levels of 292 phyA accumulation. To genetically test this hypothesis, we examined the hypocotyl growth 293 of tic-2, phyA-211, and tic-2 phyA-211 in response to FRc, Rc, and Bc. Consistent with a 294 295 previous report, *phyA-211* seedlings displayed longer hypocotyls when grown under a range of FRc fluences, while *tic-2* seedlings had shorter hypocotyls. *tic-2 phvA-211* displayed 296 markedly longer hypocotyls than Col-0 (Figure 7, A and B). In most cases, the hypocotyl 297 length of *tic-2 phyA-211* was comparable to that of the *phyA-211* single mutant under the 298 FRc fluences examined, supporting the notion that *phvA-211* is genetically epistatic to *tic-2* 299 300 in response to FR.

The shorter hypocotyls of *tic-2* grown under low-intensity Bc were largely rescued by the introgression of *phyA-211*, but not under the Rc fluence examined (Figure 7, C-F), further supporting the notion that phyA is genetically required for the effect of TIC on

304	hypocotyl growth under FRc and low Bc light conditions. Nonetheless, we noticed that the
305	hypocotyls of the tic-2 phyA-211 double mutant grown under Rc and high Bc light
306	conditions were still slightly shorter than those of <i>phyA-211</i> (Figure 7, C-F), suggesting that
307	other downstream targets of TIC might also mediate the inhibitory effect of TIC on
308	hypocotyl growth.
309	Finally, we examined the transcript levels of FR signaling components in via
310	time-course qRT-PCR. The transcript levels of the genes that were regulated in an opposite
311	manner by phyA and TIC, including FHY1, FHL, PAR1, PIL1, and HB2, were still much
312	higher in the <i>tic-2 phyA-211</i> double mutant than the wild type at dawn (Figure 8, A-E). These
313	results suggest that the effect of transcriptional inhibition of these genes by TIC is not fully
314	dependent on phyA protein levels, which may collectively contribute to enhanced FR
315	signaling in <i>tic</i> mutants. The short hypocotyls of <i>tic-2</i> grown under SD could not be rescued
316	by phyA-211 (Supplemental Figure S23), indicating that other downstream components of
317	TIC are involved in this process. Taken together, we conclude that <i>PHYA</i> is a major
318	downstream target of TIC that mediates its regulation of FR signaling, while other
319	downstream targets (including FR signaling and clock components) act in concert with phyA
320	to mediate the comprehensive effects of TIC on light responsiveness (Figure 9).
321	DISCUSSION
322	The abundance and activity of phyA are under tight circadian control, but the
323	underlying mechanisms are largely uncharacterized. Here we demonstrated that TIC, a clock
324	regulator lacking conserved domains with unclear biochemical functions, plays multiple

325 inhibitory roles in repressing phyA signaling at both the transcriptional and post-translational

levels. Our findings suggest that one biological role of TIC is to function as a member of the
transcriptional repressive complex by associating with the transcriptional co-repressor TPL
(Figure 9). Intriguingly, TIC also modulates protein stability via direct physical interactions
with its targets, such as MYC2 (Shin et al., 2012) and phyA (Figure 6). Our findings show
that TIC protein is a major negative regulator of phyA that regulates its transcription and
protein stability, perhaps representing an important molecular link of clock-profiled phyA
signaling.

Interestingly, the transcript levels of *FHY1* and *FHL*, encoding proteins required for 333 334 the transport of the Pfr form of phyA into the nucleus, were also significantly higher in tic-2 than the wild type, suggesting that TIC might repress phyA signaling at multiple entry points 335 (Figure 2, F and G) besides directly regulating phyA abundance. However, it seems that 336 phyA is not required for the inhibition of a subset of genes including *FHY1* and *FHL* by TIC, 337 as their transcript levels were much higher in the *tic-2 phvA-211* double mutant than the wild 338 type, especially at pre-dawn. Hence, it is conceivable that TIC simultaneously regulates a 339 few core components to attenuate phyA-mediated light signaling at the transcriptional level 340 in a time-of-day specific manner (Figure 9). 341

Under photoperiodic conditions, phyA protein accumulates during the night and is rapidly degraded during the day upon exposure to light (Sharrock and Clack, 2002). By contrast, the number of nuclear speckles containing phyA is higher in the daytime than at night (Kircher et al., 2002), indicating that the regulation of phyA abundance and localization are subject to circadian control. Here we showed that TIC strongly regulates

347 phyA abundance at pre-dawn but not at post-dusk (Figure 3). In addition, the intensity of

348	phyA photobody formation upon FR or R irradiation was significantly higher in the <i>tic-2</i>
349	mutant than Col-0, which is consistent with its elevated phyA signaling in connection to
350	hypocotyl growth (Figure 1).

351	COP1 was previously proposed to be a E3 ubiquitinase of phyA apoprotein that
352	facilitates its protein degradation via the 26S proteosome pathway (Seo et al., 2004).
353	However, as the <i>cop1-4</i> and <i>cop1-6</i> mutants only displayed modestly reduced rates of phyA
354	degradation, additional pathways are thought to be required for phyA degradation. In this
355	study, COP1 protein levels were even higher in <i>tic-2</i> seedlings than Col-0 when grown under
356	continuous R or FR light, which further suggests that the promotion of phyA protein
357	turnover by TIC is likely independent of COP1 (Supplemental Figure S24). Hence, the role
358	of TIC in regulating phyA might represent a link between circadian clock-regulated phyA
359	abundance and localization. Notably, under light irradiation conditions, COP1 gradually
360	relocates from the nucleus to the cytosol (von Arnim and Deng, 1994; von Arnim et al.,
361	1997). TIC is predominantly located to the nucleus and thus may act as a positive regulator
362	of phyA degradation in the nucleus, which may determine the light labile properties of phyA
363	apoprotein. It will be fascinating to clarify the biochemical function of TIC in destabilizing
364	its interacting targets.

Intriguingly, it was previously demonstrated that TIC interacts with MYC2 to affect its
protein abundance specifically at dusk (Shin et al., 2012). The difference in the timing of

- TIC-regulated phyA vs. MYC2 abundance could be due to differences in the availability of
- their respective E3 ubiquitin ligases, which should be fully addressed in the future.

369 When grown under SD conditions, the hypocotyl length of the *tic-2 phyA-211* double

370	mutant was equivalent to that of the <i>tic-2</i> single mutant, indicating that phyA itself is not						
371	sufficient to mediate TIC-regulated hypocotyl growth under photoperiodic conditions.						
372	Consistently, the hypocotyl length of SD-grown phyA-211 was not significantly different						
373	from the wild type. Given that TIC also functions as a clock regulator, and clock genes						
374	including TOC1 and ELF3 displayed the altered expression patterns in the tic mutant						
375	(Supplemental Figure S7) (Ding et al., 2007), it is conceivable that multiple clock						
376	components mediate the regulation of hypocotyl growth by TIC, either directly or indirectly.						
377	Together, we propose that TIC regulates multiple genes at the transcriptional level, in concert						
378	with its role in regulating phyA protein stability, which together coordinate hypocotyl growth						
379	in response to light signals.						
380	Approximately one-fifth of all transcription factor genes identified to date display						
381	differential expression patterns in <i>tic-2</i> (Shin et al., 2012). Here we found that TIC associated						
382	with the PHYA promoter to regulate its transcription (Figure 3), suggesting that TIC may						
383	function as a general transcriptional regulator that modulates the abundance of numerous						
384	transcription factors (either directly or indirectly) to form a complex transcriptional cascade						
385	network that modulates multiple physiological processes. As the expression of TIC itself						
386	does not oscillate robustly, its dawn-phased transcriptional activity is likely determined by an						
387	uncharacterized transcription factor whose levels peak at dawn. Intriguingly, phyA directly						
388	targets numerous promoters to directly mediate multiple biological processes (Chen et al.,						
389	2014). Here we showed that TIC inhibits the accumulation of phyA at both the						
390	transcriptional and post-translational levels. Perhaps their physical interaction affects the						
391	function of TIC, and vice versa, on target gene transcription.						

392	phyA is thought to regulate gene expression via an escort model in which it controls
393	the availability of transcription factors, or via a proxy model in which it regulates gene
394	expression by physically associating with transcription factors (Chen et al., 2014). A similar
395	situation was observed for the blue-light photoreceptor CRY2, which interacts with a few
396	transcriptional regulators to repress their activities (Liu et al., 2008). It will be of great
397	interest to decipher the role of phyA in regulating TIC activity, especially whether the
398	regulatory roles of phyA on TIC represents a light input pathway to the clock.
399	Given that TIC has been shown to regulate the circadian clock, modulate metabolic
400	homeostasis, affect phytohormone biosynthesis, and function in the signaling pathways of
401	phytohormones including auxin, jasmonate, and abscisic acid, it will be fascinating to further
402	investigate the balance or tradeoff of these downstream events mediated by TIC. One
403	possible way is through interacting with distinct proteins that are crucial components of the
404	respective pathways. Our finding that TIC participates in phyA- and core clock
405	component-mediated hypocotyl growth further reinforces the notion that TIC functions as an
406	emerging cellular hub that integrates environmental information to regulate plant growth to
407	achieve better plant fitness in an ever-changing environment, likely (in part) through phyA
408	signaling. This, in turn, could have wide-ranging roles in multiple growth-control processes,
409	such as brassinosteroid, auxin, abscisic acid, and various stress signaling pathways. Future
410	efforts to decipher the networks and understand the tradeoffs among different downstream
411	events may provide a basis for molecular design breeding of crops.

412 MATERIAL AND METHODS

413 Plant Materials and Growth Conditions

414	The Columbia (Col-0) ecotype of Arabidopsis thaliana was used in this study. The
415	tic-2, phyA-211, and tpl-1 mutants and the 35S:PHYA-YFP transgenic line in the Col-0
416	background were described previously (Ding et al., 2007; Yang et al., 2018; Zhang et al.,
417	2018a). The <i>tic-2 phyA-211</i> double mutant was generated by crossing <i>tic-2</i> to <i>phyA-211</i> and
418	confirmed genotypically. All primers used for mutant genotyping are listed in Supplemental
419	Table S1. To generate the <i>tic-3</i> mutant, the CRISPR/Cas9-mediated genome-editing system
420	was used in Col-0 background (see below for vector construction).
421	The growth conditions were 12-h light/12-h dark, white light (200 μ mol m ⁻² s ⁻¹), 22 °C
422	(LD); constant darkness, 22 °C (DD); or constant white light (Light Emitting Diode, 200
423	$\mu mol~m^{\text{-2}}$ s^-1), 22 °C (LL), as noted. For hypocotyl length assays, seeds were surface
424	sterilized and grown on half strength of Murashige and Skoog (MS) medium containing 1%
425	sucrose, stratified for 3 days, and exposed to white light (200 mmol m ⁻² s ⁻¹) for 7-9 h to
426	induce germination before being transferred to a light chamber under $\sim 0.1, 0.3, 0.5$, and 1
427	μ mol m ⁻² s ⁻¹ far red light (FR), ~5, 10, 20, and 40 μ mol m ⁻² s ⁻¹ red light (R), or 1, 5, 10, and
428	20 μ mol m ⁻² s ⁻¹ blue light (B). Hypocotyl length was calculated for 5-day-old seedlings that
429	were photographed (Canon) and measured using NIH ImageJ software
430	(http://rsbweb.nih.gov/ij/). To examine circadian phenotypes, surface sterilized seeds were
431	grown under LD conditions on MS containing 3% sucrose for 8 days and transferred to
432	constant red or blue light (40 μ mol m ⁻² s ⁻¹), as indicated. For the affinity purification assay
433	followed by mass spectrometry, two-week-old seedlings grown under LD conditions were
434	harvested at pre-dawn (10 min before lights on).

435 Vector Construction and Plant Transformation

436	To produce TICpro:GFP-TIC tic-2 transgenic plants, the fragment of TIC promoter						
437	(-2691 to -1 bp, upstream of the start codon) was amplified and inserted into Pst I and Kpn I						
438	sites of the <i>p1300</i> promoter-less vector (Wang et al., 2013), followed by subcloning						
439	GFP-TIC through the Kpn I and Nco I sites, and transformed into Agrobacterium by the						
440	floral dip method (Clough and Bent, 1998). To generate 35S: GFP-TIC-NT and						
441	35S:GFP-TIC-CT, the respective PCR fragments were subcloned into the Kpn I and Xho I						
442	sites of the <i>pENTR2B</i> vector and subcloned into the 35S:GFP-MDC45 vector via LR						
443	reaction. To generate the <i>pCsVMV:PHYA-HA</i> construct, the fragment was amplified by PCR						
444	and subcloned into the Kpn I and BamH I sites of the pCsVMV:HA-1300 vector (Wang et al.,						
445	2013).						
446	To generate PHYApro:LUC (-1932 to -1 bp, upstream of the start codon), the promoter						
447	was amplified from Col-0 genomic DNA and inserted into the promoter-free <i>pLUC-N-1300</i>						
448	vector between the Pst I and Kpn I sites. To produce the CsVMV:PHYA-LUC construct, the						
449	coding sequence of LUC fragment was amplified by PCR and subcloned into the Xma I and						
450	<i>Nco</i> I sites of the <i>pCsVMV:HA-1300</i> vector. The <i>PHYA</i> fragment was amplified by PCR and						
451	subcloned into Kpn I and Xma I sites of pCsVMV:LUC-1300 vector.						
452	To generate constructs for the yeast two-hybrid assay, the TIC, TIC-NT, and TIC-CT						
453	fragments were amplified by PCR and inserted into the pB42AD vector via EcoR I and Xho						
454	I sites to generate the AD-TIC, AD-TIC-NT, AD-TIC-CT constructs, respectively. The						
455	LexA-PHYA-N, LexA-PHYA-C1, LexA-PHYA-C2 constructs were used as previously						
456	described (Zhang et al., 2018a).						

- 457 The *tic-3* mutant was generated by CRISPR (Clustered Regularly Interspaced Short
- 458 Palindromic Repeats)/Cas9-mediated gene editing as a previously described (Ma et al.,
- 459 2015). Briefly, the sgRNA (single-guide RNA, as listed in Supplemental Table S1) was
- designed to target the first exon of *TIC*. The sgRNA was cloned into the
- 461 *pYLCRISPR/Cas9Pubi-MH* vector (Ma et al., 2015). The resulting construct was
- transformed into Agrobacteria tumefaciens to obtain gene-edited Arabidopsis lines by the
- 463 floral dip method (Clough and Bent, 1998).
- 464 Total RNA extraction and qRT-PCR

Total RNA was extracted from ten-day-old Arabidopsis seedlings using the TRIzol 465 466 reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's protocol and treated with RNase-free DNase I (Thermo Fisher) before reverse transcription. Seedlings 467 were grown on MS medium under LD or LL conditions and harvested over a time course, as 468 noted. First-strand cDNA was synthesized using tM-MLV reverse transcriptase (Promega) 469 and oligo-dT primers. qRT-PCR was performed using SYBR Green Real-Time PCR Master 470 Mix (Toyobo, Osaka, Japan) according to the manufacturer's instructions on an Applied 471 Biosystems QuantStudio 3 instrument (Applied Biosystems, Thermo Fisher Inc.). ACTIN2 472 (AT3G18780) and PP2A (AT1G69960) were used for normalization. The mRNA expression 473 levels were calculated by the $2^{-\Delta C(t)}$ method from three biological replicates (separate 474 475 experiments) and three technical replicates (identical samples within an experiment) as described previously (Wang et al., 2013). The RT-qPCR primers for the respective genes in 476 this study are listed in Supplemental Table S1. 477

478 RNA-Sequencing and data analysis

479	For RNA-Sequencing, Col-0 and <i>tic-2</i> seedlings were grown on MS with 3% sucrose
480	under LD conditions for 10 days and then collected at pre-dawn (10 min before lights on)
481	and post-dusk (10 min after light off). Library generation and sequencing were performed as
482	previously described by Annoroad Gene Technology (Beijing, China) (Zhang et al., 2018b).
483	In brief, RNA-seq clean reads were mapped to the reference genome with HISAT2 (v2.1.0,
484	Sirén et al. 2014) after filtering out low-quality reads. Genes with expression levels of
485	FPKM (fragments per kilobase of exon model per million reads mapped) > 0.1 were
486	considered to be expressed and used for further analysis (Trapnell et al., 2010). Uniquely
487	aligned reads were counted for each annotated gene using the program HTSeq (v0.6.0).
488	Differential gene expression was evaluated using the DESeq2 (v1.6.3) to determine fold
489	change and q value, which is an adjusted p value to account for multiple testing; DEGs with
490	$ \log 2 \text{ Fold change} \ge 1$ and $q < 0.05$ were determined to be differentially expressed. The
491	fisher.test and p.adjust were used for GO (gene ontology) enrichment analysis and KEGG
492	(Kyoto Encyclopedia of Genes and Genomes) analysis. The Integrative Genomics Viewer
493	was used to visualize the reads for selected genes (Robinson et al., 2011; Thorvaldsdottir et
494	al., 2013).

495 Affinity Purification Followed by Mass Spectrometry

Two-week-old *TICpro:GFP-TIC* and *35Spro:GFP* seedlings were harvested at
pre-dawn and quickly frozen in liquid nitrogen. Affinity purification followed by mass
spectrometry was performed as previously described (Wang et al., 2020). Briefly, 3 mL of
ground tissue for each sample was used for protein extraction with 3 mL protein extraction

500	buffer. After homogenization, the clear supernatant was incubated with GFP-Trap beads
501	(ChromoTek) for 1 h at 4 °C with rotation. The beads were washed in ice-cold washing
502	buffer I; this step was repeated four times, followed by three rinses with washing buffer II.
503	An iST Sample Preparation kit (P.O.00027, PreOmics, Germany) was used for the next step.
504	After purification, the samples were separated into two equal parts and individually used for
505	spectral library building and quantitation analysis via the SWATH method. LC-MS was
506	performed at an on-site facility with an OrbiTRAP Fusion Lumos mass spectrometer
507	(Thermo Fisher Scientific, USA). All of the data were acquired with SWATH TM Acquisition
508	MicroApp 2.0. For statistical analysis using Student's <i>t</i> -test, quantitative data of the peptides
509	were exported to MarkerView software (SCIEX Ltd.). The putative interacting proteins of
510	TIC were identified based on the following criteria: proteins with at least two peptides that
511	were present in both samples of TICpro:GFP-TIC, and their abundance compared to the GFP
512	negative control was > 1.5 fold.
513	Chromatin immunoprecipitation

The ChIP assay was conducted as previously described with slight modifications (Wang et al., 2013). Two-week-old seedlings, grown at 22 °C on MS medium containing 3% sucrose and 0.8% agar under 12 L/ 12 D conditions, were harvest at dawn (ZT0) and dusk (ZT12). ChIP with *N. benthamiana* leaves was performed as described previously (An et al., 2018), with minor changes as below. The samples were cross-linked with 1% (V/V) formaldehyde under a vacuum for 10 min. The cross-linking was quenched by adding glycine to a final concentration of 125 mM and vacuum infiltration for an additional 5 min. The seedlings

521 were rinsed at least three times with cold double distilled water and dried with a paper towel

522	as thoroughly as possible before rapidly freezing the samples in liquid nitrogen. The
523	isolation and sonication of chromatin were performed as described previously (Bowler,
524	2004). GFP-Trap magnetic agarose beads (gtma-20-20rxns, ChromoTek) were used for
525	immunoprecipitation at 4 °C for at least 3 hours. Subsequently, washes with low-salt
526	washing buffer, high salt washing buffer, LiCl washing buffer, and TE buffer were all
527	performed on a magnetic stand. The reverse cross-linking of chromatin was performed by
528	incubating at 65 °C overnight. Both input DNA and ChIPed DNA were purified and analyzed
529	by qPCR. Enrichment of DNA (expressed as % input) was calculated by the following
530	equation: IP/Input (%)=2^[Ct(Input)-Ct(IP)]*100. All primers used in this assay are listed in
531	Supplemental Table S1.

532 Immunoblot analysis

533	For Co-IP assays, Agrobacteria harboring CsVMV:PHYA-HA and CsVMV:PHYB-HA
534	were transiently expressed alone or co-expressed with 35S:GFP-TIC, 35S: GFP-TIC-NT, or
535	35S:GFP-TIC-CT as noted in the leaves of five-week-old Nicotiana benthamiana plants. For
536	Co-IP assay of GFP-TIC with TPL-FLAG, the infiltrated leaves were cross-linked with 1%
537	formaldehyde as previously described (Kim et al., 2011). Total proteins were extracted from
538	the samples with buffer containing 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA,
539	0.1% Nonidet P-40, 1 mM PMSF, 1 mM DTT, and protease inhibitors (5 mg/mL
540	Chymostatin, 5 mg/mL Leupeptin, 5 mg/mL Pepstatin, 5 mg/mL Aprotinin, 50 mM MG132,
541	50 mM MG115, 50 mM ALLN, 2 mM NaF, 2 mM Na ₃ VO ₄). The supernatant was
542	subsequently incubated with GFP-trap beads for 3 h at 4°C. After four washes with protein
543	extraction buffer, the beads were resuspended in 2×SDS-PAGE sample buffer. The samples

544	were heated at 60 °C for 2 min and separated on a SDS-PAGE gel for immunoblot analysis.							
545	For protein extraction from Arabidopsis tissues, homozygous 35S:PHYA-YFP and							
546	35S:PHYA-YFP tic-2 seedlings were grown under constant light or under 12 h light/12 h							
547	dark conditions as indicated and harvested over a time course. Total proteins were extracted							
548	from the samples in the above buffer. Primary antibodies used in this study include anti-GFP							
549	(ab6556, Abcam), anti-HA (11867423001, Roche) anti-FLAG (Abmart), anti-Tubulin							
550	(T9026, Sigma) anti-Actin (EASYBIO), anti-phyA and anti-RPN6 (Zhang et al., 2018a), and							
551	anti-COP1 (Zhang et al., 2018a).							
552	Yeast Two-Hybrid assay							
553	The LexA-based yeast two-hybrid assay was performed as previously described							
554	(Zhang et al., 2018a). Briefly, the LexA-PHYA-N, LexA-PHYA-C1, LexA-PHYA-C2 and							
555	AD-TIC, AD-TIC-NT, AD-TIC-CT fusion plasmids were co-transformed into yeast strain							
556	EGY48, which contains the reporter plasmid <i>p8op: LacZ</i> (Clontech). Yeast transformation							
557	was performed according to the Yeast Protocols Handbook (Clontech). The co-transformed							
558	yeast cells were grown on synthetic dropout (SD) medium without tryptophan and leucine							
559	(SD-TL) for 3 days at 30°C. The transformants were then transferred to							
560	SD/-Trp/-Leu/-His/-Ade (SDTLHA) medium containing 40 mg/mL X-gal							
561	(5-bromo-4-chloro-3-indolyl-b-d-galactopyranoside) for blue color development. The							
562	primers used for the yeast two-hybrid assay are listed in Supplemental Table S1.							
563	Bimolecular Fluorescence Complementation assays							
564	For the Bimolecular Fluorescence Complementation (BiFC) assay, the full-length							

565	coding sequence	e of <i>TIC</i> was	subcloned into	o 2YC-pBl	and $2YN$ -	<i>bBI</i> , while t	he full-length
						,	0

- coding sequences of *TPL* and *PHYA* were inserted into *2YN-pBI* and *2YC-pBI*, respectively.
- All primers used for BiFC are listed in Supplemental Table S1. Agrobacteria containing the
- above plasmids were transiently expressed in five-week-old *N. benthamiana* leaves as
- 569 indicated. Agrobacterium containing H2B-mCherry was used as a nuclear marker. After
- 570 incubation for 48-72 h, the signals were examined under a confocal microscope (Olympus
- 571 FV1000MPE).

572 Transcriptional Repression Activity Assay in *N. benthamiana*

573 Agrobacteria carrying various fusion expression vectors (Effectors *GFP-TIC*;

574 Reporters *PHYApro:LUC-1300*, *PHYAAS4pro:LUC-1300*, *PHYAAS5pro:LUC-1300*,

575 *PHYA* Δ *S6pro:LUC -1300*) were used in the transcriptional repression activity assay. Each

576 reporter vector paired with *GFP-TIC* or *GFP* effectors were co-infiltrated into *N*.

577 *benthamiana* leaves via syringe infiltration as previously described (Li et al., 2019), with

578 p35S:GUS-HA as the reference plasmid. The luminescence signals were captured 2 days

- later using a CCD camera (LN/1300-EB/1, Princeton Instruments). The bioluminescence
- 580 intensity of the LUC signals was quantified using MetaMorph Microscopy Automation and
- 581 Image Analysis Software (Molecular Devices), as previously described (Li et al., 2019).
- 582 Acquisition of Fluorescent Signals from Nuclear Speckles

To observe the formation of phyA nuclear speckles, *PHYA-YFP* and *PHYA-YAP tic-2* seedlings were grown under constant darkness for 5 days. The samples were kept in the dark, and green light was used when necessary. The nuclear fluorescence intensity of hypocotyls close to the curved hooks was observed. The same magnification and other parameter

587	settings were maintained among different samples. After collecting the fluorescent signals in
588	the dark, the stationary glass slide was exposed to red light or far-red light for the indicated
589	time to acquire the corresponding fluorescent signals. For the same nucleus at different light
590	exposure times, the Intensity Mean Value with the same area was measured using ZEN Blue
591	Lite software. The Intensity Mean Value of each nucleus in the dark was used as a basal
592	control for calculation. The Objective was C-Apochromat 63X/1.2 W Korr UV VIS IR, the
593	laser wavelength was 514 nm and Detector Gain was 790 V, and the fluorescent signals were
594	detected under a Zeiss LSM980 laser-scanning microscope with elyra 7.
595	
596	Nuclear Protein Fractionation
597	The nuclear protein fractionation experiment was performed as previously described (Wang
598	et al., 2010). Briefly, seedlings grown in continuous darkness at 22 °C on half strength MS
599	with 1% sucrose for 5 days were treated with CHX for 30 min prior to a 15 min light
600	irradiation. 500 mg etiolated seedling tissue was ground into a fine powder in liquid nitrogen
601	and homogenized with 500 μl lysis buffer (20 mM Tris-HCl, pH 7.5, 20 mM KCl, 2 mM
602	EDTA, 2.5 mM MgCl2, 25% glycerol and 250 mM sucrose, 5 mM DTT, and 1 mM PMSF)
603	supplemented with protease inhibitors (5 mg/mL Chymostatin, 5 mg/mL Leupeptin, 5
604	mg/mL Pepstatin, 5 mg/mL Aprotinin, and 5 mg/mL Antipain). The homogenate was filtered
605	through a double layer of Miracloth. The flow-through was centrifuged at 1500g for 10 min.
606	The precipitates were resuspended in 1 mL of NRBT buffer (20 mM Tris-HCl, pH 7.5, 25%
607	glycerol, 2.5 mM MgCl ₂ , 0.2% Triton X-100, 1 mM PMSF, and 5 mg/mL protease inhibitors)
608	and were then centrifuged. The above step was repeated twice, and the pellets were

609	resuspended in 500 mL of NRB2 (20 mM Tris-HCl, pH 7.5, 0.25 M sucrose, 10 mM MgCl ₂ ,
610	0.5% Triton X-100, 5 mM β -mercaptoethanol, 1 mM PMSF and 5 mg/mL protease inhibitors)
611	followed by centrifugation; this step was repeated once. The nuclear pellets were finally
612	obtained after centrifuging at 16,000 g for 10 min at 4 °C and resuspended in 90 µl lysis
613	buffer. Histone H3 was used as a nuclear marker for immunoblot analysis.
614	Bioluminescence Assay and Estimation of the Circadian Period
615	The CCA1:LUC reporter gene was described previously (Wang et al., 2013).
616	Bioluminescence assays were performed as previously described (Wang et al., 2020). To
617	generate <i>tic-3 CCA1:LUC</i> lines, <i>tic-3</i> was crossed with <i>CCA1:LUC</i> , and the homozygous
618	segregants were confirmed in the F2 generation based on bulk F3 genotypes and phenotypes.
619	Screening of homozygous CCA1:LUC lines was based 100% kanamycin resistance.
620	Bioluminescence signals were obtained under constant red or blue light conditions as noted.
621	Bioluminescence signals were collected with a CCD camera (LN/1300-EB/1, Princeton
622	Instruments). Raw bioluminescence data were imported into the Biological Rhythms
623	Analysis software system (BRASS version 2.14) (Southern and Millar, 2005) and analyzed
624	with a Fourier transform-nonlinear least-squares suite of programs. Period lengths were
625	estimated as variance-weighted period \pm s.e.m. with a time window from 24 to 144 h.
626	
627	Statistical Analysis

The differences between two means were statistically analyzed using a Student's *t*-test. Statistically significant differences were defined as those with P < 0.05. Significance levels are indicated as* P < 0.05,**P < 0.01, and ***P < 0.001. To analyze the significance of

631	differences among more than two populations, one-way ANOVA with Tukey's honestly
632	significant difference (HSD) was used. ANOVA was performed using SPSS (Statistical
633	Package for the Social Sciences) software. The symbols above the column represent the
634	number of plants for each sample. The lowercase letters indicate significant differences ($P <$
635	0.05) among the different samples. The methods used for statistical analysis are indicated in
636	the figure legends, and "biological replicates" means that the experiments were performed
637	with different plants. The results of ANOVA and Student's t-tests are provided in
638	Supplemental File S1.
639	Accession Numbers
640	Sequence data from this article can be found in the Arabidopsis Genome Initiative or
641	GenBank/EMBL databases under the following accession numbers: TIC (At3g22380),
642	PHYA (At1g09570), FHY1 (At2g37678), FHL (At5g02200), PAR1 (At2g42870), PHYB
643	(At2g18790), TPL (At1g15750), CHR4 (At5g44800), SSRP1 (At3g28730), PIL1
644	(At2g46970), HB2 (At3g10520), COP1 (At2g32950). The RNA-seq raw data have been
645	deposited in the NCBI SRA database under accession number GSE156016.
646	Supplemental Data
647	Supplemental Figure S1. Hypocotyl growth of <i>tic-2</i> under photoperiodic and continuous
648	dark conditions.
649	Supplemental Figure S2. Flowering time and circadian phenotypes of <i>tic-3</i> .
650	Supplemental Figure S3. Hypocotyl phenotypes and fluence response curves of <i>tic-3</i> for
651	FRc, Rc, and Bc

652	Supplemental Figure S4. Hypocotyl growth of <i>tic-3</i> under photoperiodic and continuous
653	dark conditions.

Supplemental Figure S5. *TICpro:GFP-TIC* genetically rescues the hypocotyl defects of
 tic-2.

656 **Supplemental Figure S6.** RNA-Sequencing analysis of the *tic-2* mutant.

- 657 **Supplemental Figure S7.** Gene Ontology analysis of DEGs in the *tic-2* mutant.
- **Supplemental Figure S8.** Overlapping DEGs at pre-dawn vs. post-dusk in the *tic-2* mutant.
- 659 **Supplemental Figure S9.** Venn diagrams showing the overlapping genes between phyA
- 660 direct targets and upregulated or downregulated DEGs in *tic-2* at post-dusk.
- 661 **Supplemental Figure S10.** Validating the transcript levels of the genes that are oppositely
- regulated by TIC and phyA in *tic-2* and *phyA-211*, as determined by time-course RT-qPCR.

Supplemental Figure S11. Validating the transcript levels of FR signaling components in
 tic-3.

- 665 **Supplemental Figure S12.** Transcript level of *PHYA* in *tic-2* under constant light conditions.
- 666 Supplemental Figure S13. Additional biological repeat of the ChIP-qPCR assay with
- 667 *TICpro:GFP-TIC* seedlings.
- 668 **Supplemental Figure S14.** TOC1 does not associate with the *PHYA* promoter.
- 669 Supplemental Figure S15. Additional biological repeat of RT-qPCR to measure *PHYA*
- transcript levels in *tic-2* vs. Col-0 in constant darkness and after transfer to red light.
- 671 Supplemental Figure S16. Transient repression assay of TIC on the *PHYA* promoter lacking
- 672 the S4, S5, or S6 region.

673	Supplemental Figure S17. The putative EAR domain of TIC is required for TIC to interact
674	with TPL.
675	Supplemental Figure S18. ChIP-qPCR assay of TPL on the <i>PHYA</i> promoter.

Supplemental Figure S19. TPL marginally facilitates the repression of *PHYA* transcription

677 by TIC.

- **Supplemental Figure S20.** PHYA protein stability in *tic-2* in the absence of sucrose.
- 679 Supplemental Figure S21. Nuclear speckle formation of PHYA-YFP increases in *tic-2* upon
- 680 FR or R light irradiation.
- 681 **Supplemental Figure S22.** Total and nuclear PHYA-YFP protein abundance in *PHYA-YFP*
- and *PHYA-YFP tic-2*.
- 683 **Supplemental Figure S23.** Photoperiodic hypocotyl growth phenotype of *tic-2 phyA-211*.
- 684 Supplemental Figure S24. Protein abundance of COP1 and PHYA in Col-0 and *tic-2* grown
- 685 in continuous FR or R light.
- 686 **Supplemental Table S1.** The primers used in this study.
- 687 Supplemental Data Set S1. DEGs identified in *tic-2* at pre-dawn and post-dusk
- 688 Supplemental Data Set S2. Interactors of TIC identified by IP-MS
- 689 Supplemental File S1. Summary of statistical analyses

690 ACKNOWLEDGMENTS

- 691 We thank Dr. Zhuang Lu and Ms. Jingquan Li from the Plant Science Facility of the
- Institute of Botany, Chinese Academy of Sciences for their excellent technical assistance on
- mass spectrometry and confocal microscopy, respectively. We thank Dr. Lin Li (Fudan

- 694 University) for sharing *35S:PHYA-YFP* transgenic seeds.
- This work was supported by the Strategic Priority Research Program of the Chinese
- Academy of Sciences (Grant No. XDB27030206), the National Natural Science Foundation
- of China (31770287) and (to L.W.), and a BBSRC grant (BB/V006665/1) to S. J.D.

698	Author	contributions
-----	--------	---------------

- 699 Y.W., C.S., Y.J.Y., Y.Q.H., H.W., N.L., H.L., J.D., and B.L. performed the research. J.G.L.,
- S.J.D., and L.W. designed the experiments and analyzed the data. Y.W., S.J.D., and L.W.
- 701 wrote the paper.

702 Conflict of Interest

The authors declare no competing interests.

704 **References**

705	Abe, H., Yamamoto, K.T., Nagatani, A., and Furuya, M. (1985). Characterization Of Green Tissue-Specific
706	Phytochrome Isolated Immunochemically From Pea-Seedlings. Plant And Cell Physiology 26,
707	1387-1399.
708	An, J.P., Wang, X.F., Li, Y.Y., Song, L.Q., Zhao, L.L., You, C.X., and Hao, Y.J. (2018). EIN3-LIKE1, MYB1, and
709	ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene
710	Biosynthesis and Anthocyanin Accumulation. Plant Physiol 178 , 808-823.
711	Casal, J.J., Candia, A.N., and Sellaro, R. (2014). Light perception and signalling by phytochrome A. J Exp Bot
712	65, 2835-2845.
713	Chen, F., Li, B.S., Li, G., Charron, J.B., Dai, M.Q., Shi, X.R., and Deng, X.W. (2014). Arabidopsis Phytochrome A
714	Directly Targets Numerous Promoters for Individualized Modulation of Genes in a Wide Range of
715	Pathways. Plant Cell 26, 1949-1966.
716	Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated
717	transformation of Arabidopsis thaliana. The Plant journal : for cell and molecular biology 16, 735-743.
718	Debrieux, D., Trevisan, M., and Fankhauser, C. (2013). Conditional involvement of constitutive
719	photomorphogenic1 in the degradation of phytochrome A. Plant Physiol 161 , 2136-2145.
720	Ding, Z., Millar, A.J., Davis, A.M., and Davis, S.J. (2007). TIME FOR COFFEE encodes a nuclear regulator in the
721	Arabidopsis thaliana circadian clock. Plant Cell 19, 1522-1536.
722	Fankhauser, C. (2001). The phytochromes, a family of Red/Far-red absorbing photoreceptors. Journal Of
723	Biological Chemistry 276, 11453-11456.

724	Hall, A., Bastow, R.M., Davis, S.J., Hanano, S., McWatters, H.G., Hibberd, V., Doyle, M.R., Sung, S., Halliday,
725	K.J., Amasino, R.M., and Millar, A.J. (2003). The TIME FOR COFFEE gene maintains the amplitude and
726	timing of Arabidopsis circadian clocks. Plant Cell 15, 2719-2729.
727	Hong, L.W., Yan, D.W., Liu, W.C., Chen, H.G., and Lu, Y.T. (2014). TIME FOR COFFEE controls root meristem
728	size by changes in auxin accumulation in Arabidopsis. J Exp Bot 65, 275-286.
729	Ito, J., Fukaki, H., Onoda, M., Li, L., Li, C., Tasaka, M., and Furutani, M. (2016). Auxin-dependent
730	compositional change in Mediator in ARF7- and ARF19-mediated transcription. P Natl Acad Sci USA
731	113, 6562-6567.
732	Kim, T.S., Kim, W.Y., Fujiwara, S., Kim, J., Cha, J.Y., Park, J.H., Lee, S.Y., and Somers, D.E. (2011). HSP90
733	functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE.
734	Proceedings Of the National Academy Of Sciences Of the United States Of America 108,
735	16843-16848.
736	Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E., and Nagy, F. (1999). Light
737	quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11,
738	1445-1456.
739	Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adam, E., Schafer,
740	E., and Nagy, F. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A,
741	B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14,
742	1541-1555.
743	Kolmos, E., Herrero, E., Bujdoso, N., Millar, A.J., Toth, R., Gyula, P., Nagy, F., and Davis, S.J. (2011). A
744	reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is
745	modulated by phytochrome signals in Arabidopsis. Plant Cell 23, 3230-3246.
746	Li, B., Wang, Y., Zhang, Y., Tian, W., Chong, K., Jang, J.C., and Wang, L. (2019). PRR5, 7 and 9 positively
747	modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in
748	Arabidopsis. Nucleic Acids Res 47, 5001-5015.
749	Li, N., Zhang, Y., He, Y., Wang, Y., and Wang, L. (2020). Pseudo Response Regulators regulate photoperiodic
750	hypocotyl growth by repressing PIF4/5 transcription. Plant Physiol 183, 686-699.
751	Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008). Photoexcited CRY2 interacts with CIB1
752	to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535-1539.
753	Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M. (2006). TOPLESS regulates apical embryonic fate in
754	Arabidopsis. Science 312, 1520-1523.
755	Ma, X.L., Zhang, Q.Y., Zhu, Q.L., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z.F., Li, H.Y., Lin, Y.R., Xie, Y.Y.,
756	Shen, R.X., Chen, S.F., Wang, Z., Chen, Y.L., Guo, J.X., Chen, L.T., Zhao, X.C., Dong, Z.C., and Liu, Y.G.
757	(2015). A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in
758	Monocot and Dicot Plants. Molecular Plant 8, 1274-1284.
759	Martin-Arevalillo, R., Nanao, M.H., Larrieu, A., Vinos-Poyo, T., Mast, D., Galvan-Ampudia, C., Brunoud, G.,
760	Vernoux, T., Dumas, R., and Parcy, F. (2017). Structure of the Arabidopsis TOPLESS corepressor
761	provides insight into the evolution of transcriptional repression. P Natl Acad Sci USA 114 , 8107-8112.
762	McClung, C.R. (2019). The Plant Circadian Oscillator. Biology (Basel) 8, 14.
763	Nagatani, A. (2004). Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol 7, 708-711.
764	Nohales, M.A., and Kay, S.A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nat
765	Struct Mol Biol 23, 1061-1069.
766	Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M., Bossche, R.V.,
767	Sewell, J., Gil, E., Garcia-Casado, G., Witters, E., Inze, D., Long, J.A., De Jaeger, G., Solano, R., and

768	Goossens, A. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464,
769	788-791.
770	Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P.
771	(2011). Integrative genomics viewer. Nature biotechnology 29, 24-26.
772	Sanchez-Villarreal, A., Davis, A.M., and Davis, S.J. (2018). AKIN10 activity as a cellular link between
773	metabolism and circadian-clock entrainment in Arabidopsis thaliana. Plant Signal Behav 13,
774	e1411448.
775	Sanchez-Villarreal, A., Shin, J., Bujdoso, N., Obata, T., Neumann, U., Du, S.X., Ding, Z., Davis, A.M., Shindo,
776	T., Schmelzer, E., Sulpice, R., Nunes-Nesi, A., Stitt, M., Fernie, A.R., and Davis, S.J. (2013). TIME FOR
777	COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis
778	thaliana. Plant J 76, 188-200.
779	Sanchez, S.E., Rugnone, M.L., and Kay, S.A. (2020). Light Perception: A Matter of Time. Mol Plant 13,
780	363-385.
781	Seaton, D.D., Toledo-Ortiz, G., Ganpudi, A., Kubota, A., Imaizumi, T., and Halliday, K.J. (2018). Dawn and
782	photoperiod sensing by phytochrome A. Proc Natl Acad Sci U S A 115, 10523-10528.
783	Seo, H.S., Watanabe, E., Tokutomi, S., Nagatani, A., and Chua, N.H. (2004). Photoreceptor ubiquitination by
784	COP1 E3 ligase desensitizes phytochrome A signaling. Genes & Development 18 , 617-622.
785	Shalit-Kaneh, A., Kumimoto, R.W., Filkov, V., and Harmer, S.L. (2018). Multiple feedback loops of the
786	Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. P Natl
787	Acad Sci USA 115, 7147-7152.
788	Shanklin, J., Jabben, M., and Vierstra, R.D. (1987). Red Light-Induced Formation Of Ubiquitin-Phytochrome
789	Conjugates - Identification Of Possible Intermediates Of Phytochrome Degradation. Proc Natl Acad
790	Sci U S A 84, 359-363.
791	Sharrock, R.A., and Clack, T. (2002). Patterns of expression and normalized levels of the five Arabidopsis
792	phytochromes. Plant Physiol 130, 442-456.
793	Shin, J., Heidrich, K., Sanchez-Villarreal, A., Parker, J.E., and Davis, S.J. (2012). TIME FOR COFFEE represses
794	accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate
795	signaling in Arabidopsis. Plant Cell 24, 2470-2482.
796	Shin, J., Sanchez-Villarreal, A., Davis, A.M., Du, S.X., Berendzen, K.W., Koncz, C., Ding, Z., Li, C., and Davis,
797	S.J. (2017). The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a
798	light-dependent manner. Plant Cell Environ 40, 997-1008.
799	Somers, D.E., Devlin, P.F., and Kay, S.A. (1998). Phytochromes and cryptochromes in the entrainment of the
800	Arabidopsis circadian clock. Science 282, 1488-1490.
801	Southern, M.M., and Millar, A.J. (2005). Circadian genetics in the model higher plant, Arabidopsis thaliana.
802	Methods Enzymol 393, 23-35.
803	Thorvaldsdottir, H., Robinson, J.T., and Mesirov, J.P. (2013). Integrative Genomics Viewer (IGV):
804	high-performance genomics data visualization and exploration. Briefings in bioinformatics 14,
805	178-192.
806	Toth, R., Kevei, E., Hall, A., Millar, A.J., Nagy, F., and Kozma-Bognar, L. (2001). Circadian clock-regulated
807	expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127 , 1607-1616.
808	Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J.,
809	and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated
810	transcripts and isoform switching during cell differentiation. Nature biotechnology 28, 511-515.
811	von Arnim, A.G., and Deng, X.W. (1994). Light inactivation of Arabidopsis photomorphogenic repressor COP1

- 812 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell **79**, 1035-1045.
- von Arnim, A.G., Osterlund, M.T., Kwok, S.F., and Deng, X.W. (1997). Genetic and developmental control of
 nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114,
 779-788.
- Wang, L., Fujiwara, S., and Somers, D.E. (2010). PRR5 regulates phosphorylation, nuclear import and
 subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29, 1903-1915.
- Wang, L., Kim, J., and Somers, D.E. (2013). Transcriptional corepressor TOPLESS complexes with
 pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. P
 Natl Acad Sci USA 110, 761-766.
- Wang, Y., He, Y., Su, C., Zentella, R., Sun, T.P., and Wang, L. (2020). Nuclear Localized O-Fucosyltransferase
 SPY Facilitates PRR5 Proteolysis to Fine-Tune the Pace of Arabidopsis Circadian Clock. Mol Plant 13, 446-458.
- Wenden, B., Kozma-Bognar, L., Edwards, K.D., Hall, A.J., Locke, J.C., and Millar, A.J. (2011). Light inputs
 shape the Arabidopsis circadian system. Plant J 66, 480-491.
- Yang, C., Xie, F., Jiang, Y., Li, Z., Huang, X., and Li, L. (2018). Phytochrome A Negatively Regulates the Shade
 Avoidance Response by Increasing Auxin/Indole Acidic Acid Protein Stability. Dev Cell 44, 29-41 e24.
- Zhang, S., Li, C., Zhou, Y., Wang, X., Li, H., Feng, Z., Chen, H., Qin, G., Jin, D., Terzaghi, W., Gu, H., Qu, L.J.,
 Kang, D., Deng, X.W., and Li, J. (2018a). TANDEM ZINC-FINGER/PLUS3 Is a Key Component of
 Phytochrome A Signaling. Plant Cell 30, 835-852.
- Zhang, Y., Wang, Y., Wei, H., Li, N., Tian, W., Chong, K., and Wang, L. (2018b). Circadian Evening Complex
 Represses Jasmonate-Induced Leaf Senescence in Arabidopsis. Mol Plant 11, 326-337.
- Zhu, J.Y., Oh, E., Wang, T., and Wang, Z.Y. (2016). TOC1-PIF4 interaction mediates the circadian gating of
 thermoresponsive growth in Arabidopsis. Nat Commun 7, 13692.

Figure 1. Hypocotyl phenotypes and fluence response curves of *tic-2* under constant far red, red, and blue light.

(A), (C) and (E) Hypocotyl phenotypes of Col-0 and *tic-2*. Seedlings were grown under far red light (FR ~0.1, 0.3, 0.5, and 1 μ mol m⁻² s⁻¹), red light (R ~5, 10, 20, and 40 μ mol m⁻² s⁻¹) or blue light (B ~1, 5, 10, and 20 μ mol

 $m^{-2} s^{-1}$) for 5 days. Representative seedlings are shown. Bars = 5 mm. **(B)**, **(D)** and **(F)** Fluence response curves of *tic-2* under constant FR, R, and B blue light for the seedlings shown in (A), (C) and (E), respectively; data represent mean ± s.e.m. (n ≥ 15), and the asterisks indicate

- significant difference, according to Student's *t*-test (***p < 0.001).
- 10

Figure 2. TIC and phyA regulate the transcription of a subset of genes in an opposite manner.

(A) and (B) Volcano plots showing significantly up-regulated (red dots, p < 0.05) or down-regulated (blue dots, p < 0.05) differentially expressed genes (DEGs) in *tic-2* at pre-dawn (10 min before lights on) (A) or post-dusk (10 min after lights off) (B). The *x* axis represents the value of log2 fold change of *tic-2* against Col-0, and the *y* axis shows the adjusted –log10 of the *p* value for the DEGs.

(C) Venn diagram showing the number of overlapping genes between phyA direct targets (Chen, et al., 2014) and DEGs in *tic-2* at pre-dawn. The *p* values were calculated according to hypergeometric test. The heatmap in the right panel shows the hierarchical clustering of the target genes that were co-regulated by phyA and TIC. Scale represents fold change.

(D) Visualization of RNA-seq raw read counts for *PAR1*, *FHY1* and *FHL* using Integrative Genomics Viewer browser.

(E-G) Transcript levels of *PAR1* (E), *FHY1* (F) and *FHL* (G) in *phyA-211* and *tic-2* under LD conditions. Gene expression levels were normalized by the geometric mean of *ACT2* and *PP2A*. Data represent mean \pm s.e.m (n = 3, biological replicators)

25 (n = 3, biological replicates).

15

Figure 3. TIC represses PHYA transcription mainly at dawn.

30

40

(A) Time course RT-qPCR showing that PHYA transcript levels increase in *tic-2* predominantly at pre-dawn. Gene expression levels were normalized by the geometric mean of *ACT2* and *PP2A*. Data represent mean ± s.e.m (n = 3, biological replicates).

(B) Representative image of *PHYApro:LUC* co-infiltrated with 35S:GFP or 35S:GFP-TIC in *N. benthamiana*, with *pGUS-HA* as a reference plasmid.

(C) Quantification of bioluminescence signals of PHYApro:LUC co-infiltrated with 35S:GFP or 35S:GFP-TIC

35 in *N. benthamiana*. Data represent mean ± s.e.m. (n = 9), and the asterisks indicate significant difference, according to Student's *t*-test (****p* < 0.001).</p>
(2) large problem of the strength of the strengt

(D) Immunoblot detecting the respective protein levels in (B).

(E) ChIP assays of 35S:GFP and TICpro:GFP-TIC tic-2 using tissues harvested at dawn (ZT0) and dusk (ZT12). The locations of the amplicons used in the ChIP assay are shown in the upper diagram. Data represent mean ± s.e.m. (*p < 0.05 and n.s. indicates no significant difference (p > 0.05), according to Student's *t*-test). The experiments were performed at least twice with similar results.

(**F**) RT-qPCR showing that *PHYA* transcript levels were higher in *tic-2* vs. Col-0 in constant darkness and decreased after transfer to an acute pulse of R for 60 min. Data represent mean \pm s.e.m (n = 3, technical replicates). Asterisks indicate significant difference (**p* < 0.05, ***p* < 0.01 and ****p* < 0.001) and n.s. indicates

45 no significant difference (p > 0.05), as determined by Student's *t*-test. The experiments were conducted twice with similar results.

(G) Immunoblot with PHYA antibody in *tic-2* and Col-0 under the indicated light conditions (CBB: Coomassie Brilliant Blue).

Figure 4. TPL interacts with TIC to repress *PHYA* transcription.

(A) List of the nuclear proteins identified by affinity-purification followed by mass spectrometry (AP-MS) with GFP-TIC. Samples were collected at pre-dawn.

(B) Spectrum of a representative peptide of TPL protein identified by AP-MS.

55 (C) Co-immunoprecipitation analysis showing that GFP-TIC interacts with TPL-FLAG. Total proteins were extracted from transiently co-infiltrated *N. benthamiana* leaves as indicated. The immunoprecipitation was performed with GFP-Trap beads.

(D) Physical interaction between TIC-cYFP and TPL-nYFP detected in the nucleus in a BiFC assay. H2B-mCherry is a nuclear marker. Scale bar = $5 \mu m$.

(E) RT-qPCR assay showing the transcript level of *PHYA* is higher in *tpl-1* at ZT0 but not ZT12. Gene expression levels were normalized by the geometric mean of *ACT2* and *PP2A*. Data represent mean ± s.e.m (n = 3, biological replicates). Asterisks indicate significant difference, according to Student's *t*-test (****p* < 0.001).

(**F-G**) Hypocotyl phenotypes of Col-0 and *tpl-1* grown in continuous FR light (FR ~1 μ mol m⁻² s⁻¹). Data represent mean ± s.e.m. (n ≥ 15, **p* < 0.05 according to Student's *t*-test). Scale bar = 5 mm.

Figure 5. TIC physically interacts with phyA in the nucleus.

(A) Spectrum of a representative peptide of phyA protein identified by AP-MS with GFP-TIC.

70 **(B)** Co-immunoprecipitation analysis showing that GFP-TIC interacts with PHYA-HA but not PHYB-HA. GFP-Trap beads were used to precipitate protein complexes that were extracted from co-infiltrated *N*. *benthamiana* leaves as indicated.

(C) BiFC assay showing that TIC physically interacts with phyA in the nucleus. H2B-mCherry was used as a nuclear marker. Scale bar = 10 μ m.

(D) Yeast two-hybrid assays showing that the TIC C terminus mediates the interaction with phyA. The constructs used in the yeast two-hybrid assays are shown in the upper diagram.
 (E) Co-immunoprecipitation assay showing a stronger interaction between TIC C terminus and phyA. The constructs of TIC used in the Co-IP assays are shown in the upper diagram.

Figure 6. TIC facilitates the light-promoted proteolysis of phyA.

(A) Bioluminescence imaging and intensity quantification of CsVMV:PHYA-LUC transiently co-infiltrated with GFP or GFP-TIC in N. benthamiana leaves, with pGUS-HA as a reference plasmid. Data represent mean ±

- s.e.m. (n = 13), and the asterisks indicate significant difference, according to Student's *t*-test (****p* < 0.001).
 (B) Immunoblot detecting the respective protein levels in (A). Data represent mean ± s.e.m. (n = 3), ****p* < 0.001, as determined by Student *t*-test. CBB, Coomassie Brilliant Blue-stained gel.
 (C) and (E) Immunoblots showing PHYA-YFP protein in 7-day-old etiolated seedlings of PHYA-YFP and PHYA-YFP tic-2 after transferring to FR or R for the indicated time points.
- 90 **(D) and (F)** Quantitative analysis of PHYA-YFP protein levels as shown in (C) and (E), respectively. Data represent means \pm s.e.m from three biological replicates, asterisks indicate significant difference (*p < 0.05) and n.s. indicates no significant difference (p > 0.05), according to Student's *t*-test. PHYA-YFP protein abundance was detected with GFP antibody, Col-0 served as a negative control. Actin antibody was used as a loading control.
- (G) Immunoblot of PHYA-YFP protein in seedlings grown under LD conditions. (H) Quantitative analysis the protein abundance of PHYA-YFP relative to Actin. Data represent means \pm s.e.m from three biological replicates, asterisk indicates significant difference (*p < 0.05, **p < 0.01) and n.s. indicates no significant difference (p > 0.05), as determined by Student's *t*-test. PHYA-YFP protein abundance was detected with GFP antibody, Col-0 served as a negative control. Actin antibody was used as a loading
- 100 control.

Figure 7. Epistatic relationship between PHYA and TIC.

- **(A)**, **(C)**, and **(E)** Hypocotyl phenotypes of Col-0, *tic-2*, *phyA-211*, and *tic-2 phyA-211*. The indicated seedlings were grown under far red light (FR ~0.1, 0.3, 0.5, and 1 μ mol m⁻² s⁻¹), red light (R ~5, 10, 20, and 40 μ mol m⁻² s⁻¹) or blue light (B ~1, 5, 10, and 20 μ mol m⁻² s⁻¹) for 5 days. Representative seedlings are shown in (A), (C), and (E), bars = 5 mm.
- (B), (D), and (F) Quantitative analysis of hypocotyl length of the Col-0, *tic-2*, *phyA-211*, and *tic-2 phyA-211* plants shown in (A), (C) and (E), respectively. Data represent mean \pm s.e.m. (n \geq 15), and the lowcase letters indicate significant differences by one-way ANOVA followed by Tukey's honestly significant difference (HSD) test (SPSS Statistics) (p < 0.01).

Figure 8. Genetic relationship between PHYA and TIC in regulating gene expression. (A-E) Transcript levels of FHY1 (A), FHL (B), PAR1 (C), PIL1(D), and HB2 (E) in tic-2, phyA-211 and tic-2 phyA-211 under 12 h L/ 12 h D conditions. Data represent mean ± s.e.m. from three biological replicates. The gene expression levels were normalized by the geometric mean of ACT2 and PP2A expression.

Figure 9. A proposed model depicting the role of TIC in regulating dawn-phased phyA activity and hypocotyl growth.

TIC recruits the co-repressor TPL and yet unknown transcription factors (TFs) in the nucleus to form a transcription repressive complex, which subsequently represses the expression of a subset of genes including *PHYA* and other hypocotyl related genes (*FHY1*, *FHL*, and so on) in the morning. Meanwhile, TIC directly interacts with phyA to facilitate its proteolysis. By integrating both transcriptional and post-translational

mechanisms, TIC finely regulates hypocotyl growth in response to light signals.