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Single-Cell Motility Rapidly Quantifying Heteroresistance in
Populations of Escherichia coli and Salmonella
typhimurium

Giampaolo Pitruzzello,* Christoph G. Baumann, Steven Johnson,
and Thomas F. Krauss*

1. Introduction

Heterogeneity is present in all bacterial populations,[1] driven by

the intrinsic stochasticity of the processes involved in gene

expression and protein biosynthesis or by
the response to an external challenge that
triggers phenotypical differentiation.[2,3]

Importantly, heterogeneity is known to play
a crucial role during the exposure of bacte-
rial communities to antibiotics.[4]

Heterogeneity in response to antimicro-
bials manifests itself via a variety of
phenomena commonly described as
heteroresistance, whereby a bacterial popu-
lation separates into two or more subpopu-
lations that show different levels of
sensitivity to an antimicrobial challenge.
Unfortunately, the concept of heteroresist-
ance is not always clearly defined in the lit-
erature and the term itself has been used
rather liberally.[5,6]

Despite the increasing clinical evidence
supporting the importance of population-
wide heterogeneity, heteroresistance is
often missed in traditional antimicrobial
susceptibility tests (ASTs) because typical

ASTs only assess the bacterial community in its entirety and
use a single average value to describe a sample.[6–9] For example,
Band et al.[7,10] recently showed that colistin heteroresistance in
Enterobacter cloacae and Klebsiella pneumoniae went undetected by
traditional agar plating and led to a failure of treatment in mice
infection models. This failure is of particular concern consider-
ing that colistin (a bactericidal antibiotic) is a last-line defense
antibiotic and, even though colistin resistance is typically chro-
mosomally encoded, the emergence of plasmid-mediated mech-
anisms for the acquisition of resistance has recently been
reported in Enterobacteriaceae.[11] Moreover, currently available
techniques for profiling heteroresistance such as population
analysis profile (PAP) and genetic profiling are very time and
resource intensive. In addition, such methods might miss
low-occupancy subpopulations because they lack single-cell
sensitivity.[6,12]

In light of the considerations above, more rapid and high-
throughput methods for assessing heteroresistance are required.
In addition, a necessary condition for probing population-wide
heterogeneity is clearly the ability to measure single bacteria,
which some of the traditional methods (such as disc diffusion)
lack. In this context, the ability of microfluidic devices to spatially
isolate individual bacteria and monitor them over time has
already enabled rapid high-throughput analysis.[13,14] For
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Heterogeneous bacterial populations can display increased resistance to external

threats, such as exposure to antibiotics. Despite the mounting clinical evidence

supporting the importance of bacterial heterogeneity in acute infections, current

antimicrobial susceptibility tests (ASTs) are typically insensitive to cell-to-cell

differences as they only measure population-wide averages. Herein, the use of

single-cell motility to address this issue is demonstrated. It is shown for the first

time that antibiotic susceptibility detected as a change in single-cell motility is an

excellent proxy for polyclonal and monoclonal heteroresistance. It is also dem-

onstrated that motility and growth are both inhibited by an antibiotic with

strikingly similar patterns, thus enabling the quantification of minimum inhib-

itory concentration (MIC) using a high-throughput, single-cell motility assay. The

method allows for the detection of heteroresistance in Escherichia coli and

Salmonella typhimurium in 2 h or less and quantifies the MIC of an antibiotic in

1.5 h. The findings emphasize the need for characterizing bacterial heterogeneity,

and they highlight the importance of single-cell bacterial motility in assessing

both antibiotic susceptibility and population-wide heteroresistance.
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example, the microfluidic “mother machine” constrains bacterial
growth along narrow channels to allow for the long-term moni-
toring of single bacteria while controlling their local environ-
ment.[15–18] In the context of heteroresistance, the mother
machine has been used to link the existence of persister cells
to phenotypical suppression of their growth rate.[19] In other
examples, droplet microfluidics[20,21] and electrorotation[22] have
been used to study different manifestations of heteroresistance,
such as persistence or monoclonal heteroresistance.

Several methods have attempted to use nanomechanical cell
vibrations or motility to measure bacterial susceptibility to anti-
biotics. These include tethering bacteria to an atomic force
microscope (AFM) tip and measuring the cantilever deflections
over time,[23,24] monitoring the electrical voltage drop across a
microchannel caused by swimming bacteria,[25] or tracking the
nanomotion of bacteria tethered on a gold surface using surface
plasmon resonance imaging (SPRi).[26] These assays used spa-
tially constricted bacteria, where free swimming was prevented,
to show that population-wide changes in nanomechanical vibra-
tion and motility do occur on much shorter timescales than tra-
ditional bacterial growth assays, so that antibiotic susceptibility
and resistance could be detected in less than 1 h.[23,25]

However, these assays do not retain single-cell resolution infor-
mation, providing only a population-wide average measurement
of motion and because of this averaging are unable to directly
observe different phenotypes in a population of bacteria.

Here, we harness the advantages of microfluidics to demon-
strate that bacterial motility at single-cell resolution can be used
as a reporter of heteroresistance. Motility is a useful bacterial
property because it is a fundamental characteristic of many path-
ogenic and nonpathogenic bacteria and vital to both chemotaxis
and the colonization of their preferred environmental niche.
Flagellated motility is also a key virulence factor for pathogenic
bacteria that colonize the mucosal membranes of the lungs, blad-
der, and intestine[27]; it is estimated that up to 80% of urinary
tract infections (UTIs) are caused by motile uropathogenic E. coli
(UPEC).[28] In addition, the flagellum itself has an additional
direct role in surface adhesion, biofilm formation, secretion of
effector molecules, and immunogenicity.[29,30] Hence, studying
motile bacteria is important for quantifying pathogenicity and
is of high relevance in clinical diagnosis.

We use hydrodynamic trapping[31–33] to capture individual
Gram-negative bacteria, which does not require functionalized
surfaces (e.g., with antibodies) and can be easily integrated into
microfluidic assays. Our method can profile hundreds of individ-
ual bacteria in parallel, allowing population-wide analysis of their
motility distribution. Using this assay, we clearly observe a het-
erogeneous motility response for both monoclonal and poly-
clonal bacterial populations to antibiotic challenge and verify
the observed heteroresistance profiles against traditional growth
assays (i.e., broth microdilution and agar plating). Notably,
single-cell motility signatures map directly to polyclonal and
monoclonal resistance and can therefore identify heteroresist-
ance in mixed bacterial populations within 2 h of exposure to
bacteriostatic or bactericidal antibiotics.

We also show, for the first time, that antibiotics inhibit bacte-
rial motility and growth with remarkably similar patterns and
dose dependence. By exploiting this similarity, we demonstrate
that single-cell motility can also be used as an excellent substitute

for population-level growth assays to quantify the minimum
inhibitory concentration (MIC) in a fraction of the time, specifi-
cally 1.5 h versus >16 h required by traditional growth-based
techniques.

2. Results

A 3D schematic of a hydrodynamic trap within the microfluidic
channel is shown in Figure 1a, while Figure 1b shows a micro-
graph of a trapping array taken with a phase contrast microscope.
The hydrodynamic trapping array can be fabricated and inte-
grated in a microfluidic device using our previously established
procedures[31] (see Experimental Section for more details). The
traps are sufficiently small to accommodate a single rod-like bac-
terium, as shown in Figure 1b and inset. In addition, once a trap
is occupied by a bacterium, the fluidic resistance of the trap
increases, preventing other bacteria from entering the same
trap.[33,34]

Bacteria were grown in liquid media and injected into the
chips using a microfluidic pump (see Experimental Section
and Supporting Information for more details). High-definition
videos of bacteria swimming inside the microchannels and
entering the traps were recorded and subsequently analyzed to
quantify single-cell motility, as detailed later.

2.1. Measurement of Motility

In proof-of-concept experiments, we characterized our method
by testing bacteria with different motility characteristics.
Specifically, we utilized Escherichia coli MG1655 and
Salmonella typhimurium as model motile strains, while E. coli
BW25113 was used as a nonmotile variant due to its impeded
flagellar motility.[35] To create additional nonmotile controls
(termed “dead” here), the non-motile E. coli and motile S. typhi-

murium strains were exposed to temperatures of 65 �C for 2 h in a
block heater. Heat-induced death was verified by resuspending a
small aliquot of these bacteria in fresh medium and incubating
overnight at 37 �C. No growth was observed. As a third
control, we treated both motile strains with carbonyl cyanide
m-chlorophenyl hydrazone (CCCP), which reversibly depolarizes
the bacterial inner membrane, thereby preventing rotation of the
flagellar motor.[36]

Intensity traces are obtained from the recorded videos by cal-
culating the average pixel intensity over time within regions of
interest (ROIs) located inside each trap, as shown in
Figure 2a,b. Typical traces produced by bacteria caught in single
traps are shown in Figure 2c–e. The trapping of a bacterium is
indicated by an abrupt change in intensity, while bacterial
motion results in signal fluctuations due to the in-plane and
out-of-plane movement of the trapped bacterium. Comparing
the intensity fluctuations during trapping establishes the link
between the intensity traces and the motility, as we have previ-
ously demonstrated.[31] For example, the motile E. coli MG1655
strain produces fluctuations of greater magnitude than that
observed for the nonmotile and the dead E. coli BW25113 bacte-
ria. We quantified the fluctuations by calculating the standard
deviation of the trace produced by a bacterium inside the trap,
σtrapped, during the entire time it was present within the trap
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(highlighted by the shaded areas in Figure 2c–e). To remove the
background noise, σtrapped was divided by the standard deviation
of the intensity for an empty trap, σempty. This unitless ratio,
σtrapped/σempty, was used as a proxy for bacterial flagellar motility,
as other forms of micro-scale motion inside the traps are negli-
gible compared with the variance produced by flagellar motor-
driven motion. The validity of these assumptions is further veri-
fied by analyzing the distribution of observed motility values in
different conditions.

Figure 2f,g shows histograms of the calculated motility distri-
bution for the different bacterial strains and conditions described
earlier. The histograms are fitted as Gaussian distributions to
retrieve average motilities and the relative spread. We note that
trapped motile E. coli and S. typhimurium cells do not swim
homogenously and that their behavior is best described by
bimodal Gaussian distributions. The analysis reveals a low-
motility sub-population centered at motility values of
(3.8� 2.0) for E. coli and (3.7� 2.2) for S. typhimurium, while
the main populations are at (11.6� 2.9) and (11.4� 2.4) for E.
coli and S. typhimurium, respectively.

In contrast, the nonmotile and dead BW25113 strains pro-
duced unimodal distributions with average values of
(2.5� 0.6) and (1.9� 0.4), respectively. The unimodality sug-
gests that all bacteria were motility impaired or dead, respec-
tively, while the difference between the average values shows
that it is easily possible to distinguish the viable, nonmotile
BW25113 from the same strain following heat inactivation.
We also note that the dead strains still produce σtrapped/σempty

ratios >1, which can be mainly ascribed to Brownian diffusion
and flow-induced motion of the dead cells within the traps.

To further elucidate the nature of the measured motion, we
considered the CCCP-treated bacteria and observed unimodal
motility distributions with average values of (2.3� 1.0) and
(2.4� 1.1) for E. coli and S. Typhimurium, respectively
(Figure 2f,g). Figure 2h illustrates the average motility values
for each of the conditions. The graph clearly shows that the motil-
ity of CCCP-treated motile MG1655 cells (red bars) is not signif-
icantly different from that of the nonmotile BW25113 cells

(green bar, p¼ 0.098), confirming that flagellated motility is
the major contributor to the observed motion prior to CCCP
treatment. In contrast, the difference between dead bacteria
(black bars) and both the nonmotile BW25133 and CCCP-treated
MG1655 cells is sufficient to be statistically significant
(p< 0.001). This observation suggests that even when the
flagellar motor is inhibited, viable strains engage in other
low-amplitude forms of microscale motion that produce detect-
able fluctuations above the background noise level.

Similar low-amplitude motion has been observed in surface-
tethered (where flagellated motility is restricted) bacte-
ria.[24,26,37,38] This type of motion has been ascribed to fluctua-
tions in the cell wall present in metabolically active bacteria. It
is interesting to note that our hydrodynamic traps can detect
the small difference between dead bacteria and live bacteria
undergoing low-amplitude microscale motions not caused by
rotation of the flagellar motor. This observation is supported
by the fact that both nonmotile and CCCP-treated cells produce
statistically significant higher-variance signals compared with
dead bacteria (see Figure 2h) even though their flagella do not
rotate. It is also worth mentioning that, unlike surface-tethered
bacteria, the recorded fluctuations in our assay include both lat-
eral and vertical flagellar-driven movements, as bacterial motion
is not restricted by surface attachment.

A further question that arises from the measured histograms
of motility concerns the nature of the observed bimodality for the
motile strains. We have explored this aspect by calculating the
time-dependent standard deviation using a sliding window of
5 s length that is moved over the entire duration of the trapping
event. This analysis shows that the high-amplitude microscale
motion produced by individual trapped bacteria is not constant
in time but oscillates between two types of motion which broadly
reproduce the bimodality observed in Figure 2f,g. Hence, we
conclude that bimodality does not only arise from different cells
swimming at different speeds, as Figure 2c–e may suggest, but
that it also occurs for individual cells. We ascribe this observation
to the presence of solid surfaces hindering flagellar bundling,
which is amplified by the constriction imposed by the

Direction of flow

(a) (b)

Figure 1. Schematic of the hydrodynamic trapping assay. a) 3D schematic of a single hydrodynamic trap. Traps are fabricated in SU8 on a glass slide and
sealed with PDMS microchannels. Bacteria are mechanically retained once they enter a trap. Trapping is monitored with a phase contrast microscope.
b) Phase contrast image (top view) of a trapping array with bacteria swimming inside the microfluidic channel. The main scale bar is 25 μm. The inset
shows a hydrodynamic trap occupied by a single bacterium.
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hydrodynamic trap. This results in cells spending prolonged
lengths of time in a slow random walk state where they do
not actively propel themselves (see SI 2 for the full analysis).

Overall, these results show that the measured motility signal is
a combination of flagellar motility, micro-scale motions due to
metabolic activity, and background factors such as Brownian dif-
fusion and flow-induced motion. However, flagellar motility pro-
duces a much larger signal that dominates our signature. The low-
amplitude fluctuations produced by nonmotile bacteria are above
the Brownian diffusion and flow-dominated motion of dead cells
and can be therefore considered fingerprints of bacterial viability.

2.2. Heteroresistance in an Engineered Polyclonal Population

Having verified that the assay is able to quantify and characterize
the heterogeneity of bacterial motility, we now examine the effect
of antibiotics. We start by creating polyclonal populations by

mixing susceptible (S) and resistant (R) E. coliMG1655 in different

ratios and following the motility distributions of the mixed popu-

lation over time in the presence of 10 μg mL�1 kanamycin (a bac-
tericidal antibiotic). Kanamycin-resistant strains were prepared by

transforming wild-type E. coli MG1655 with a plasmid encoding a
kanamycin-resistant gene followed by selection on appropriate

agar plates (see experimental details in SI 1.4 and SI 1.5).
Experimental results are shown in Figure 3, where each panel

represents a histogram of measured motility at a given time point

(different rows), for four different bacterial populations (different
columns). The histograms at t¼ 0 (first row) report cumulative

counts of no-antibiotic controls where bacteria were observed in

the absence of kanamycin. Kanamycin is then administered
shortly after t¼ 0. In the case of a fully susceptible population

(Column I of Figure 3), we observe a significant change in motil-
ity over time. Themotility starts as a bimodal distribution at t¼ 0,

then becomes weakly bimodal after 1 h (second row), and finally

(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Figure 2. Single-cell motility of bacterial strains in different conditions. a) Image of an empty and b) occupied trap. The ROI defined for the analysis of
pixel intensity is indicated by the dotted boxes. c–e) Typical pixel intensity traces over time for a motile E. coliMG1655 (blue), nonmotile E. coli BW25113
(green), and dead E. coli BW25113 (gray). The shaded regions represent the trapping time. f ) Normalized histograms of measured motility values for the
four conditions: motile E. coliMG1655 (blue), motile E. coliMG1655þ 20 μM CCCP (red), nonmotile E. coli BW25113 (green), and dead E. coli BW25113
(black). Continuous lines are obtained by Gaussian fits of the normalized histogram counts. g) Same conditions as (f ), but for S. Typhimurium (STm).
h) Average motility for all the described conditions. Error bars refer to the standard error over five replicates for the motile populations and two replicates
for the other conditions.
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turns into unimodal distribution after 2.2 h (third and fourth
rows of Column I). In fact, the final distribution at t¼ 3.5 h over-
laps with the nonmotile and dead populations, suggesting that
flagellar motility is almost completely suppressed by kanamycin
at this point. In contrast, the purely kanamycin-resistant popula-
tion (Column IV) does not show any significant change in motil-
ity over time. These results not only confirm the kanamycin
resistance of the transformed wild-type strain, but they also con-
firm that the time-dependent loss of motility is an effective mea-
sure of susceptibility to this bactericidal antibiotic.

Heteroresistant populations were obtained by mixing S and R
E. coli in different ratios, specifically 75:25 (Column II, Figure 3)
and 50:50 (Column III, Figure 3). In both cases, after about 1 h
exposure to kanamycin (second row), we detect a bacterial sub-
population that exhibits intermediate motility (most notably in
panel (j), labelled with “I”). This subpopulation represents the
fraction of susceptible bacteria in the mix, as it follows the same
trend as the fully susceptible population (see also Figure 4a–c
below). Similarly, the high-motility peaks represent the fraction
of resistant bacteria in the mix and this fraction continues to
grow in the presence of the antibiotic, most notable in the bottom
panels of Columns II and III.

To further highlight the versatility of our approach, we
exposed the 50:50 population of Column III to a mix of

antibiotics, here kanamycin and ampicillin, as shown in
Column V of Figure 3. We note that the introduction of ampicil-

lin inhibited the motility of the kanamycin-resistant subpopula-

tion, as evidenced by the high-motility peak decreasing both in
amplitude and in average value over time, until most cells lysed

due to the ampicillin-induced weakening of the bacterial cell wall.
We have also independently tested ampicillin on fully susceptible

and resistant populations to confirm that ampicillin also inhibits
motility (see results in SI 3). Using a cocktail of antibiotics is

common clinical practice, and by observing a markedly different
response compared with a single antibiotic, we confirm the via-

bility of our approach for both mixed bacterial populations and

for mixtures of different antibiotics (for additional detail, see SI 1
and SI 3).

2.3. Quantification of Heteroresistance in Polyclonal

Populations

The data presented in Figure 3 are very information rich, but the

motility histograms are mainly a qualitative comparison of dif-
ferent heterogeneous bacterial populations. We now provide a

more quantitative analysis of these data by plotting the motility
of each subpopulation as a function of time (Figure 4a–d). The
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Figure 3. Motility histograms for different polyclonal heteroresistant E. coli populations over time. a–d) 100:0 susceptible:resistant (S:R) E. coli popula-
tion. e–h) 75:25 S:R E. coli-mixed population. i–l) 50:50 S:R E. coli-mixed population. e–h) 0:100 S:R E. coli population. In all cases, 10 μgmL�1 kanamycin
was used. q–t) 50:50 S:R E. coli-mixed population exposed to 10 μgmL�1 kanamycin and 10 μg mL�1 of ampicillin (both bactericidal antibiotics).
Continuous lines represent unimodal, bimodal, or trimodal Gaussian fits depending on the conditions. The green and black Gaussian fits in panels
(d), (h), (l), (p), and (t) represent distributions of dead and nonmotile bacteria included as a reference. The gray shaded regions beneath the
Gaussian fits in all histograms represent a 50% motility threshold defining two subpopulations of different motility (i.e., low and high motility, respec-
tively). The ‘I’ in panels (b), (f ), (j), and (r) indicates transient intermediate-motility peaks.
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first observation is that the exponential decay of the high-motility

peak for the 100% susceptible population (Figure 4a) is very
closely mirrored by the behavior of the intermediate populations.

This is illustrated by the red dashed curves in Figure 4b–d, which
show the time evolution of the intermediate (“I”) peaks from

Columns II, III, and V of Figure 3. This confirms our expectation
that the susceptible subpopulations behave exactly as the pure

populations. This is unsurprising, but it is important to note that
our method can clearly identify these subpopulations.

In contrast, bacteria in the slow random walk state (i.e., low-

motility peak) appear weakly affected by the action of the antibi-

otic, as suggested by their delayed loss of motility evidenced by
the orange curves in Figure 4a–c. It has previously been demon-

strated that antibiotics alter the nanomechanical vibrations of
susceptible bacteria.[23,24]However, the magnitude of these vibra-

tions is an order of magnitude smaller than the motion that we
can reproducibly detect in our device. Therefore, it is likely that

the low-motility bacteria are affected by the antibiotic, but their

change in motion is not observable reliably in our assay.
Next, we consider the fraction of high-motility subpopulation

alone by calculating the areas under the Gaussian fits for motility

values higher that 50% of the motility measured in the absence of

antibiotic (i.e., gray shaded regions in histograms of Figure 3).

We then fit the time-dependent change in the areas as the
sum of exponential and logistic terms (continuous lines in

Figure 4e). The exponential term models the decrease in motility
due to the bactericidal effects of kanamycin on susceptible cells,

while the sigmoidal logistic term accounts for the multiplying
resistant bacteria (a full derivation of the model is presented

in SI 4).
Two important parameters can be extracted from the resulting

curves: the subpopulation conversion rate and the magnitude of

the fitting function at t¼ 2 h (Figure 4f ). The conversion rate cap-

tures the time-dependent loss of motility in terms of a time con-
stant for exponential decay (b), while the magnitude of the fitting

function informs about the composition of the population after
2 h of antibiotic exposure. We observe a linear correlation

between the high-motility subpopulation and the initial fraction
of resistant E. coli (blue curve in Figure 4f ), which supports the

key finding that heteromotility is an excellent reporter for heter-

oresistance. In this case, heteroresistance was engineered by
mixing the polyclonal subpopulations, but the linearity of the

curve indicates that the method could be readily calibrated for
unknown populations. Furthermore, in the context of
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Figure 4. Motility of each subpopulation for different polyclonal heteroresistant E. coli populations. a–d) Time evolution of the motility of each sub-
population for different initial compositions of the population. The green and black shaded areas represent the motility of dead and nonmotile bacteria.
e) High-motility subpopulation fraction f1 over time for all of the mixed population experiments. Continuous lines represent best fits to an exponential
logistic model derived in SI 4. f ) (left-hand side (LHS) axis) Value of the high-motility subpopulation fraction after 2 h of exposure to kanamycin as a
function of the initial fraction of resistant bacteria in the sample. (right-hand side (RHS) axis) Exponential decay time constant (1/t* in Equation S2,
Supporting Information) obtained from fitting the curves in panel. e) Shaded areas in all panels represent standard deviation based on two replicates (for
the 50:50 S:Rþ KAN/AMP case) or three replicates (for all other cases).
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Figure 5, we show that our motility method can also be used to
identify heteroresistance in an unknown population. The expo-
nential decay time constant (orange curve in Figure 4f ) is also
correlated with the initial fraction of resistant bacteria, thereby
providing another fingerprint of the composition of the
population.

In addition, the rate of motility loss can provide information
about the mode of action of the antibiotic, as shown by a com-
parison between kanamycin, trimethoprim (a bacteriostatic anti-
biotic), and ampicillin (see SI 3). The comparison between these
three antibiotics in SI 3, as well as our previous work,[31] also
demonstrates that motility is an independent metric of suscepti-
bility, which is robust against changes in bacterial morphology,
such as trimethoprim-induced filamentation or the formation of
V-shaped bacteria following exposure to ampicillin.

2.4. Determination of the MIC

In the following experiments, we explored a different method to
rapidly characterize an “unknown” bacterial sample and there-
fore show the diagnostic potential of our device. We investigated
the dependence of motility on antibiotic concentration at a fixed
time point to probe for heteroresistance. Fixing the measure-
ment time point while varying the drug concentration provides

a better insight into the level of resistance in the subpopulations
and, as an added additional benefit, enables the simultaneous

determination of the MIC. We first consider the determination
of the MIC.

The motility of purely susceptible populations of E. coli

MG1655 or S. Typhimurium at a fixed time point (1.5 h) was mea-
sured for twofold serial dilutions of kanamycin and in two dif-
ferent growth media (lysogeny broth [LB] and Müller-Hinton

broth [MHB]). Results from the motility assay were compared
with a traditional growth assay (i.e., the broth microdilution

method), as illustrated schematically in Figure 5a. For both pro-
cedures, we initially selected a bacterial isolate from an agar plate,
suspended it in growth medium, and allowed it to incubate over-

night at 37 �C. It is worth highlighting that most microfluidic
platforms require the first culturing step followed by dilution

to a suitable optical density (OD),[22–26,39,40] even though this
aspect may not be explicitly emphasized. This is often the case
unless an enrichment step is integrated in the workflow or the

microfluidic device itself.[41,42] After this first step, a typical large-
scale growth assay requires further overnight incubation at 37 �C
in the presence of the antibiotic to make changes in the OD

induced by the drug detectable. In contrast, our motility assay
eliminates the need for the second, long incubation step.

Instead, after dilution into a fresh medium, the culture is simply

(c)

(a)

(b) (d)

Figure 5. Comparison between the motility assay and the broth microdilution methods. a) Schematic illustration of microdilution plate-based and micro-
fluidic chip motility assays. Starting from an overnight bacterial suspension, the microdilution plate-based method produces a value of the MIC by
measuring the OD of bacterial suspension after 16 h of incubation. In the microfluidic chip-based assay, the motility is measured after 1.5 h of exposure
to kanamycin within the device. b,c,d) Normalized OD (blue circles) measured after 16 h of incubation and normalized motility (red circles) after 1.5 h of
exposure to increasing kanamycin concentrations of (b) E. coli in LB, c) S. Typhimurium (STm) in LB, and d) STm in MHB. Shaded areas denote standard
deviation based on six replicates (OD, blue areas) and three replicates (motility, red areas). The continuous lines are best-fit curves to the sigmoidal
Gompertz function for both OD and motility. The MIC values are obtained as the x-axis intercept of the tangent at the inflection point of the fitted curves
(dashed–dotted lines) and reported in the corresponding color-coded inset boxes.
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spiked with the antibiotic and injected directly into the microflui-
dic device.

The motility is then measured after only 1.5 h of exposure to
kanamycin. The normalized OD for the growth assay after 16 h
and the normalized motility values after 1.5 h are provided in
Figure 5b–d (refer to SI 1 for additional experimental details).
The similarity of the curves for both assays is striking. It indicates
that kanamycin inhibits both growth and motility according to a
similar dose-dependent pattern. Both curves were fit to a
Gompertz function[43] where the tangent is normally used to
determine the MIC.[23,43] Note that the resulting MIC values
for both assays are in very close agreement, as indicated in
the insets of Figure 5b–d (see SI 1.3 for further details). This
excellent agreement confirms that single-cell motility is a
viable proxy for colony-level growth as used in traditional,
low-throughput antibiotic susceptibility tests.

2.5. Heteroresistance in a Monoclonal Population

When examining Figure 5c for S. Typhimurium in LB in more
detail, it is apparent that the curves for both growth and motility
deviate from the predicted sigmoidal dependence at a concentra-
tion of around 1 μg mL�1, which is much lower than the calcu-
lated MIC (14 μg mL�1). This shows that some fraction of the S.
Typhimurium population is already affected at this lower antibi-
otic concentration, while the remainder of the population is not.
Such behavior is atypical, considering that the population is
monoclonal (i.e., genetically identical) for which one would
expect a much sharper decrease at an antibiotic concentration
two- to fourfold lower than the MIC[5,6] (e.g., as observed in
Figure 5d for the same strain of S. Typhimurium cultured in
MHB).

Such a wide range of growth inhibitions spanning an order of
magnitude of concentration, in conjunction with the biphasic
pattern, suggests that S. Typhimurium grown in LB is heterore-
sistant to kanamycin. Here, we adopt a recent definition of the
term heteroresistance[5–7] in which a bacterial population is
assumed to be heteroresistant if the MIC is more than eight
times higher than the lowest noninhibitory concentration. The
eightfold threshold criterion is necessary to ensure that one is
not simply describing subpopulations with only marginal
changes in the MIC, which are commonly found in most iso-
lates.[6] In other words, partial growth inhibition occurring over
a sufficiently large range of concentrations can be considered as a
signature of the presence of distinct subpopulations with signifi-
cantly different levels of resistance. The biphasic trend we
observe (Figure 5c) adds further weight to this argument. To con-
firm the observation of heteroresistance, we also conducted a tra-
ditional PAP test on agar plates (as described in SI 1.6). Overall,
both the PAP and the growth assay confirm the capability of our
motility assay to detect heteroresistance even for a monoclonal
population, further supporting the use of motility as a viable
proxy for bacterial growth and antibiotic susceptibility.

A comparison of the data in Figure 5c,d also reveals
two intriguing observations. Firstly, S. Typhimurium cultured
in LB displays heteroresistance to kanamycin. The S.

Typhimurium cells originated from a single colony grown on
an agar plate; therefore, the population is isogenic.

Nevertheless, it is well known that a genetically identical popula-
tion of cells does not necessarily have a homogeneous phenotype,
because the intrinsic stochasticity of gene expression can result
in subpopulations with a different phenotype that may in turn
confer adaptive advantages to a population under stress. For
example, Sanchez-Romero et al.[44] observed that an isogenic pop-

ulation of S. Typhimurium strain SL1344 showed heterogeneous
population-wide expression of the ompC gene, which encodes an
abundant outer membrane porin. As aminoglycoside antibiotics
such as kanamycin gain entry to Gram-negative bacteria through
porin channels in their outer membrane,[45,46] the reduced
expression of ompC in some cells contributes to an increased
resistance to the antibiotic.[47]

Second, the S. Typhimurium heteroresistance is only observed
when cells are grown in LB. This may be due to the difference in
osmolarity between the two media. It is known that the level of
expression for porin genes and the relative amounts of porins

with different channel sizes in the outer membrane strongly
depend on pH, osmolarity, nutrient availability, and temperature
of the medium.[48] Considering that pH and temperature were
constant across all experiments, and that both media types
can normally support rich bacterial growth, it suggests that
the observed heteroresistance in LB may be due to differences
in osmolarity. High osmolarity has been linked to an increased
production of the narrow OmpC porin compared with the larger
OmpF porin in E. coli and S. Typhimurium.[49] Considering that
LB has a higher monovalent salinity than MHB, a likely explana-

tion is that S. Typhimurium cells in LB produce a comparatively
higher fraction of the narrow OmpC porin, through which kana-
mycin uptake is hindered. In conjunction with the aforemen-
tioned different expression levels for the ompC and ompF

genes occurring in individual cells, this may favor the formation
of a resistant subpopulation featuring reduced kanamycin
uptake.

Overall, these results show that the reduction in motility of E.
coli and S. Typhimurium exposed to kanamycin is directly corre-
lated with the inhibition of bacterial growth and therefore, to the
gold-standard method for assessing antibiotic susceptibility.
Crucially, the inhibition of motility manifests quickly and can

be clearly detected after only 1.5 h of observation at the single-cell
level, as opposed to >16 h, as required by large-scale bacterial
growth assays. In addition, given the remarkable similarity
between the measured trends, we suggest that bacterial motility
can be used instead of growth to rapidly quantify the MIC and
detect monoclonal or polyclonal heteroresistance.

3. Discussion and Conclusion

Heterogeneity dominates the observed motility distributions of
bacilli such as E. coli and S. Typhimurium. This heterogeneity
is observed both at the single-cell level, meaning that trapped bac-
teria can occupy two distinct motility states, and at the population
level, as highlighted by a small fraction of cells that consistently

swim slower than the rest of the population. These observations
align with the broader concept of phenotypical heterogeneity that
bacterial populations may use as a strategy for maximizing pop-
ulation-wide fitness.
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The single-cell resolution provided by hydrodynamic trapping
enables characterization of heteroresistance in both monoclonal
and polyclonal bacterial communities. In the case of E. coli, we
used polyclonal populations consisting of genetically distinct E.
coli obtained by mixing wild-type susceptible cells and trans-
formed resistant cells. Such a scenario emulates a situation
where heterogeneity may arise in mixed infections (i.e., infec-
tions caused by strains of different resistances), as has been
observed for example with Mycobacterium tuberculosis[50] or
Helicobacter pylori.[51]

In the case of such mixed populations, we first noted a rapid
exponential loss of motility caused by kanamycin acting on the
susceptible portion of the E. coli population, while the remaining
motile bacteria are a fingerprint of a resistant subpopulation that
continued to swim and divide in the presence of the antibiotic.
Measuring this fingerprint only requires a 2 h observation of
swimming cells in the presence of kanamycin. The uptake of
aminoglycoside antibiotics like kanamycin is known to occur
in three phases.[46] It is not until the last phase that RNA mis-
reading and consequent cell death is initiated and the accompa-
nying lag time has been estimated to be in the range of
30–60min.[52,53] This lag time is consistent with the timescale
over which the high-motility subpopulation loses its swimming
ability (Figure 4e). We also verified that the addition of ampicillin
inhibited the proliferation of the kanamycin-resistant subpopu-
lation, thereby demonstrating that our motility assay can mea-
sure the action of antibiotic cocktails, as well as antibiotics
with different mechanisms of action (SI 3). The latter attribute
was demonstrated using our hydrodynamic trapping approach to
detect susceptibility to bacteriostatic antibiotics like trimetho-
prim (see SI 3.1), which induces a more gradual loss of motility
due to filamentation rather than cell death.

In the case of S. Typhimurium, we detected monoclonal hetero-
resistance (i.e., heteroresistance in a population of genetically iden-
tical clones). The presence of heteroresistance was detected as a
biphasic inhibition of motility observed over a large range of kana-
mycin concentrations below the MIC. Remarkably, the inhibition
of large-scale growth induced by the same range of concentrations
follows an identical trend, thus demonstrating the suitability of
single-cell motility for detecting monoclonal heteroresistance after
only 1.5 h of exposure to kanamycin. The presence of heteroresist-
ance was also confirmed by a standard PAP test conducted using
agar plates. The observed monoclonal heteroresistance could be
explained by the heterogeneous expression of porin genes as also
suggested in a previous study.[44] This heterogeneity, possibly in
conjunction with other epigenetic factors (e.g., higher osmolarity
of LB favors production of the narrower OmpC channel), could
contribute to the establishment of a subpopulation which is more
resilient to kanamycin because of reduced drug uptake. It is
unlikely that the monoclonal heteroresistant population had
acquired low-level kanamycin resistance through mutations, as
these are typically observed at much lower frequencies.[44]

Overall, the key insight that this study offers is that bacterial
motility can directly and rapidly report on bacterial heteroresist-
ance and antibiotic susceptibility. As a consequence, motility can
be used as a valuable high-throughput parameter to characterize
certain types of heteroresistance at the single-cell level. Single-
cell motility and growth are also affected with remarkably similar
dose-dependent patterns. This similarity is a powerful finding

that allows for motility to be used as a rapid phenotypic measure
of the MIC of bacteriostatic and bactericidal antibiotics.
Ultimately, these capabilities arise from the fact that changes

in motility due to the antibiotic treatment happen on a much
shorter timescale (<2 h) compared with bulk bacterial growth
(>16 h). By conducting high-throughput single-cell measure-
ments, changes to the motility phenotype are detected as soon
as they happen. In contrast, in existing bulk assays, the sample

heterogeneity is masked by the spatial or temporal averaging
inherent to the data acquisition procedures, which also extend
the time needed for phenotypical changes to be detected. This
means that our method is limited by the biological timescale
of the antibiotic action on motility, rather than by the need to

wait for detectable cell growth.
We envisage that a microfluidic, motility-sensing device could

rapidly quantify the MIC, while simultaneously detecting mono-
clonal or polyclonal heteroresistance in a bacterial sample. Our
assay is mainly applicable to motile bacterial strains, given that
flagellar motor-driven motility is used as the indicator of suscep-

tibility. However, we note that flagellated motility is a virulence
factor in many pathogenic bacteria and has a significant role in
colonization, such as with UTIs.[27–30] The geometry of the hydro-
dynamic traps can be selected for a given cell shape,[31,34] so that
our platform could also be tuned to different bacterial morphol-

ogies. We have shown some examples of elongated and V-shaped
E. coli following treatment with trimethoprim and ampicillin,
respectively, thus demonstrating the applicability of our platform
to different cellular morphologies (see SI 3). Multiple devices
could be used in parallel to further increase sample throughput,

while providing a massive reduction in material handling
requirements and processing time. These design features could
be integrated into future drug screening or point-of-care diagnos-
tics, where changes in single-cell motility could be monitored
alone as or in conjunction with other parameters like cell
morphology or metabolism.

4. Experimental Section

Traps and Microfluidic Chip Fabrication: The hydrodynamic traps were
fabricated in the electron-beam resist SU8 on microscope slides following
the protocol we previously developed.[31] The microfluidic channel was fab-
ricated in polydimethylsiloxane (PDMS) with a SU8 mold on silicon by
crosslinking a mixture of silicon elastomer and curing agent (Dow
Corning) in a 7:1 ratio. The mixture was baked for 12–16 h at 60 �C before
being peeled off the mold and bonded to the previously fabricated trapping
arrays by treating both surfaces with O2 plasma for 2 min at a flow of 5
standard cubic centimeters per minute (sscm).

Culturing and Transformation of Bacterial Strains: Aliquots from frozen
glycerol stocks of E. coli MG1655, E. coli BW25113, and Salmonella enterica
enterica serovar Typhimurium strain LT2 were plated onto LB, Miller formu-
lation, agar plates and incubated overnight at 37 �C. Single colonies were
picked from the plates and suspended in LB orMHB depending on the exper-
iment and incubated at 37 �C overnight in static conditions, before being
diluted into fresh LB or MHB to a concentration of �107 CFU mL�1.
Antibiotic resistant E. coli were prepared by transforming strains via electro-
poration with plasmid DNA encoding the appropriate antibiotic resistance
gene cassette, and transformants were selected on agar plates supplemented
with the appropriate antibiotic (i.e., 100 μg mL�1 ampicillin, 30 μg mL�1

kanamycin). Dead bacteria were obtained by heat inactivation at 65 �C in
a block heater. More details about bacterial transformations, selection,
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mixing, growth curve measurements, and antibiotic serial dilutions for the
determination of the MIC can be found in the Supplementary Information.

Hydrodynamic Trapping Experiments: Prior to bacteria injection, the
assembled microfluidic chips were flushed with a 1% (w/v) solution of
bovine serum albumin (BSA) in phosphate-buffered saline (PBS) to pre-
vent bacterial attachment. The BSA solution was injected at 30 μLmin�1

and then pumped at 1 μLmin�1 for at least 30 min before each experi-
ment. Bacterial solutions (�300 μL) were then injected at 15 μLmin�1

before decreasing the flow rate to 10–15 nLmin�1. A microfluidic syringe
pump (LEGATO 180, KD Scientific) was used throughout all the experi-
ments. Videos of the trapping experiment were recorded with a DSLR cam-
era (Nikon D3300) using a Leica phase contrast microscope (Leica DM
IRB) equipped with a 60� magnification objective (Leica, NA 0.7).
Videos were recorded at 50 fps and were typically 3–5 min in length.

Data Analysis: Videos were processed using a custom, semiautomated
MATLAB script that retrieved the average pixel intensity as a function of
time from ROIs centered within each hydrodynamic trap for a wide-field
image (240 μm� 135 μm) of the entire trapping array. Intensity traces
from these ROIs were processed with the same MATLAB script to calcu-
late the standard deviation in a given observation window for a trapped
bacterium (σtrapped) and the corresponding empty trap (σempty).
Subsequent data analysis, Gaussian and Gompertz fits, and error calcu-
lations were all performed with standard MATLAB functions. All experi-
ments were repeated at least in duplicate, unless otherwise stated, and
the standard error of the average (σtrapped/σempty) ratio was reported for
each experimental condition. More details about some of these proce-
dures can be found in the Supplementary Information.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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