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Robust top-down and bottom-up visual saliency for mobile robots using

bio-inspired design principles

Uziel Jaramillo-Avila1, Jonathan M. Aitken2, Kevin Gurney3 and Sean R. Anderson4

Abstract— Modern camera systems in robotics tend to pro-
duce overwhelming amounts of visual information due to their
high resolutions and high frame rates. This raises a fundamen-
tal question of how robots should focus attention on a region of
the visual scene, and how they should process information in the
periphery. This is particularly an issue for mobile robots, where
the computational resources of low-power embedded computing
boards tend to be much less than for workstations. In this paper,
we look to biological design in the primate brain for inspiration
on how to solve this problem. We develop a novel computational
fusion of bottom-up and top-down visual saliency information.
The bottom-up saliency is produced using standard colour,
intensity, and motion image processing methods. The top-down
saliency is produced using a deep convolutional neural network
for object detection and recognition, with foveated images for
computational efficiency. Regions of attention are obtained
using a computational model of the basal ganglia, thought to be
involved in optimal decision making, which improves robustness
to noise. The model of the basal ganglia is based on the multi-
hypothesis sequential probability ratio test (MSPRT). The visual
saliency scheme is evaluated on omnidirectional video feed
highlighting a proximity to human behaviour.

I. INTRODUCTION

There is an overwhelming amount of visual information

typically acquired by vision sensors in robotics, due to the

significant increases in camera resolution and, in recent

years, the use of omnidirectional cameras. This raises a

fundamental question of how robots should focus their

attention on a region of the visual scene, and how they

represent and process information in the periphery. In bi-

ology, visual saliency is used to shift attention, where the

fovea, a dense region of photoreceptors, is redirected to

the current point of interest [1]. The periphery is sampled

using a much less dense region of photoreceptors, where

density falls off exponentially away from the fovea [2]. This

is highly computationally efficient: it enables the brain to

compactly analyse the foveated region of attention in high

detail, whilst also monitoring the periphery with much lower

computational load. The aim of this paper is to model the

core, functional components of the human visual saliency
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system using machine learning analogs, in order to improve

the computational efficiency of robot vision systems, and

to expand on the problem of the computational burden of

vision in robotics: in recent years deep convolutional neural

networks (DCNNs) have become dominant for tasks such

as object detection and recognition. These algorithms work

impressively well, surpassing conventional methods on com-

petition problems in image recognition [3]. However, they

incur a major computational cost, and are often implemented

on workstations with high-end Graphics Processing Units

(GPUs). These DCNN systems are often not particularly well

suited for battery powered mobile robots.

In previous work we have demonstrated that applying

a foveated image transform can speed up DCNN object

detection and recognition in low power embedded GPUs

by up to a factor of 4×, with only a marginal drop in

detection and recognition performance in the foveated region

[4]. The foveated image transform in effect, zooms the area

of attention with dense sampling and reduces sampling in

the periphery. This type of foveated transform has been

used elsewhere in computer vision to similarly improve

computational efficiency [5]. The use of foveated vision

raises the challenge of directing the fovea towards a region

of interest. This is why it is necessary to use a visual saliency

system in conjunction with a foveated vision system.

We present a bioinspired visual saliency system that is

modelled at a high, functional level, on the human system.

This scheme is based on a standard model of human visual

saliency where bottom-up saliency is additively combined

with weighted top-down saliency to redirect the fovea [6].

We extend here primarily by introducing a computational

model of the basal ganglia. In the human brain it is thought

that the basal ganglia act as a central device that accumulates

saliency evidence over time to take robust decisions [7].

We use a simple computational model of the basal ganglia

[8], [9] that has been shown to be related to the multi-

hypothesis sequential probability ratio test (MSPRT) for

decision making [10]. This MSPRT is a computationally

lightweight model of basal ganglia decision making function,

not a detailed biophysical model such as in [11], but well

suited to robotic systems for its computational efficiency. The

decision making algorithm uses evidence accumulation of

the saliency over time and threshold testing to decide which

region is most salient.

II. METHODS

The complete model of visual attention has the following

components. Each frame from the camera is processed by



a bottom-up pathway to extract low-level features such as

orientations, colour and intensity, as well as movement,

emulating low-level processing in the thalamus and visual

cortex. The image undergoes a foveated transform that is pro-

cessed in a top-down pathway by a DCNN object detection

and recognition system, emulating the ‘where’ and ‘what’

high-level processing in the ventral and dorsal pathways

of the brain. Thus, task relevant information is embedded

in terms of the discrete label categories that the DCNN is

trained to detect. The resulting saliency maps of the top-

down and bottom-up pathways are additively fused using

a weighted average. The resulting saliency of each image

region is transmitted to the MSPRT algorithm to select the

most salient region, emulating basal ganglia function. The

selected region modifies a final sensorimotor map, emulating

the sensorimotor map in superior colliculus that directs gaze.

The peak in the sensorimotor map defines the direction of

the fovea. A fast pathway interrupt is also included that links

low-level image processing movement detection to the final

sensorimotor map.

The system is tested and evaluated on an omnidirectional

dataset which includes human eye fixations (location and

duration) [12]. This type of videos are typically preserved

in an equirectangular projection covering an horizontal field

of view of 360° and of 180° vertically. It would be com-

putationally infeasible to process this entire projection in a

DCNN, and selecting a sub-region from the field of view

to transform to rectilinear coordinates is far from a trivial

question, and represents a large computational bottleneck

for robotic systems. We use our visual saliency scheme

to efficiently tackle this problem: where regions of the

omnidirectional image are only processed by the DCNN once

enough saliency evidence is accumulated by the MSPRT

algorithm for a given region.

A. Visual saliency scheme using bioinspired design princi-

ples

Given the large number of models that are present in the

literature aiming to establish a functional scheme of the brain

and visual processing, it is difficult to present an unanimous

agreement of its connectivity. One prominent theory, often

referred to as the “two-streams hypothesis” [13], is that the

brain has two distinct processing pathways for visual and

auditory information: the dorsal and ventral streams. The

former focuses on where objects are located in space and

in action planning [14], often called “where” stream. The

latter stream is associated with object categorization, also

known as the “what” stream. Fig. 1 presents a diagram of

the analogy between our current model and the connectivity

of regions in the the macaque brain and their functionality.

1) Bottom-up saliency using low-level image processing:

Different approaches have been proposed to adapt saliency

implementations to omnidirectional cameras. Most of these

are inherently computationally heavy, e.g. by (i) using deep

convolutional neural networks, (ii) making several rectilinear

projections from the image, obtaining their saliency and

fusing them back to an equirectangular one, or (iii) calculat-
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Fig. 1. Top: Brain regions involved in visual processing emphasising the
dorsal and ventral pathways: the where and what. It has been proposed that
a bottom-up saliency map is formed in the primary visual cortex [15]. The
basal ganglia is thought to accumulate evidence from different parts of the
cortex, including those associated with eye movements, such as the lateral
intraparietal area (LIP) and the frontal eye field (FEF). Middle: Functional
diagram of visual processing. Bottom: Visual saliency block diagram.

ing several complementary approaches and then aggregating

them into a global saliency. Here we opt to use for omnidi-

rectional frames the same bottom-up saliency method based

on the computational model presented in [16], i.e. Vocus2,

by making the adaptation from having a prior, or bias (λ),

towards the equator instead of the central point, along which

the vast majority of human fixations fall [17]. Using Vocus2

[16], the bias is defined at λeq = 5 × 10−5. The rest of

the major parameters are set to: σcenter = 1, σsurround = 2,

four stop layers and the use of the arithmetic mean for feature

and conspicuity fusion, which leads to lightweight bottom-

up saliency for the omnidirectional camera. To implement

bottom-up saliency, we used the Vocus2 C++ toolbox [18],

where we ported it as a Python library to integrate with the

rest of the visual saliency system.

Bottom-up saliency fits into our approach by first making

a global bottom-up estimation using a normally downscaled

frame. This greatly speeds up the process (we use a down-



Fig. 2. (Top) Example of an equirectangular frame, at 3840× 1920 pixel
resolution. (Bottom, from left to right), (a) Rectilinear projection centered
in [λ (horizontal coordinate system), φ (vertical coordinate system)] =
[0.5, 0.5], with a resolution of 768x384 pixels, representing about 114°
in latitude, as illustrated by the yellow borders in the equirectangular frame
(b) Projection centered at [0.2, 0.5], green region in the equirectangular
frame (c) Region centered in [0.8, 0.5] illustrated by the red border (d)

Centered in [0.5, 0.1] and bordered in blue (e) Centered in [0.5, 0.9] and
bordered in purple.

scale ratio of 5:1, to bring the 4K resolution frame to

Wide-VGA). Five regions are used as channels for evidence

accumulation; the central one (where the current fixation is

positioned), to its left, right, up and down, as exemplified in

Fig. 2.

2) Foveated image transform: Photoreceptor density and

cortical magnification factor have been well studied in the

biological domain [19], [20], which can be used to inform

computational models. A number of different computational

methods have been developed to transform a uniformly

sampled digital image into a foveated image, including

the log-polar transform, the reciprocal wedge-transform and

Cartesian foveated geometry. The advantage of the Cartesian

log-spaced sampling is that it distorts the original image less

than, e.g. a log-polar transform, and therefore has the key

benefit of enabling the use of transfer learning to speed-up

the training of the DCNN (i.e. initialising the DCNN weights

using a network pre-trained on uniformly sampled images).

The method used here [4] re-samples the uniform digital

image of size Nx×Ny pixels, to a new size of nx×ny pixels

with log-spacing, so that for the upper right quadrant of the

image with the fovea centred on (x0, y0) we have sample

locations,

xk = exp (k∆x) for k = 0, . . . , nx/2 (1)

yk = exp (k∆y) for k = 0, . . . , ny/2 (2)

where

∆x = 2n−1

x log (Nx/2) (3)

∆y = 2n−1

y log (Ny/2) (4)

An illustration of the foveated transform on omnidirec-

tional images in shown in Fig. 3, where first, a sub-region

of the full image is selected, which is transformed using

the equirectilinear projection following the method in [21].

Subsequently, the top salient location of that region is taken

Fig. 3. Top left: equirectangular sample frame (at 3840×1920 resolution).
Top right: masked region of interest, selected using the MSPRT algorithm.
Middle left: rectilinear projection of the area of interest (at 768 × 384
resolution) - a small dot in the chair near the center indicates it to be the
most salient point of that region. Middle right: selected rows and columns to
foveate the image. Bottom: foveated frame at 256×256 resolution, with the
bounding box of the TinyYolo [22] prediction, run at the same resolution.

as the central point to foveate using the transformation

described above.

3) Target selection using evidence: The overall, fused

saliency map SF is calculated as the weighted average of

the movement saliency map SM , bottom-up map SB and

top-down map ST ,

SF = αSB + βSM + γST (5)

where α, β and γ are the weights, and α + β + γ = 1.

The weights can be tuned to adjust the influence of each

saliency map. Here we set α = β = 0.4 and γ = 0.2. The

top-down weight γ is tuned to be smaller than the other

weights because the top-down influence consists of filled

rectangular bounding boxes for every object detected with

confidence ≥ 0.5, thus the bounding box tends to be larger

than the actual detected object, necessitating a reduction in

the weight, otherwise the object becomes over-weighted.

We use the MSPRT decision making model of the basal

ganglia [8], to perform region selection in the fused saliency

map SF . The MSPRT algorithm takes discrete channels of

salience as input and accumulates evidence for each channel

until a threshold is reached and a decision is made. To

implement the MSPRT algorithm we require a small number

of discrete input channels, but the fused saliency map, SF ,

consists of many contiguous pixels of the same size as

the input image. Therefore, we use a small number, nc,

of candidate regions in SF as the discrete input channels.

Here we use fixed regions corresponding to locations from an

equirectangular projection, and a binary mask, M , to extract

the region of interest, which is illustrated in Fig. 4.

To implement the MSPRT model of basal ganglia for

region selection, the fused saliency map, SF , is divided

into nc discrete regions corresponding to the number of



Fig. 4. Sample of region masks Mi; (from left to right) (a) Sample frame,
(b) mask M0 for region centered at [λ, φ], (c) mask M1 for region [λ −

0.3, φ], (d) mask M2 for [λ+0.3, φ], (e) mask M3 for region [λ, φ−0.4],
(f) mask M4 for region [λ, φ + 0.4]. The borders of the Mi masks are
pre-saved on a lookup table (LUT) for all possible locations with a 0.01
resolution for λ and φ.

input channels, and a channel i is selected (disinhibited in

the context of the basal ganglia) if the output Oi, from

accumulated evidence in channel i, crosses a fixed threshold

Θ, where

Oi(T ) = −yi(T ) + log

nc∑

j=1

exp (yj(T )) for i = 1, . . . , nc

(6)

where yi(T ) = gYi(T ) (g is a scaling parameter set to g = 1
here), and where

Yi(T ) =

T∑

t=t0

si(t) for i = 1, . . . , nc (7)

where Yi(T ) is the accumulated evidence in channel i,
between frames [t0, T ] and si is a scalar value of saliency

obtained from summing over a region S′
F,i, which is the ith

region of SF extracted using a binary mask Mi. We use

t0 = T − 25, so that Yi(T ) takes as evidence the stimuli

present in the last ∼ 1 second (assuming a framerate of 25-

30 fps). Note that the threshold Θ is a hyperparameter that

must be tuned to give effective performance, typically in a

speed-accuracy sense (i.e. faster decisions with less accuracy

or slower decisions with more accuracy).

In order to incorporate an inhibition of return (IOR)

influence, which partially impairs a winning region once it

crosses the threshold Θ, we add an influencing factor Ωi to

each evidence channel in Eqn. (7),

Yi(T ) = Ωi

T∑

t=t0

si(t) (8)

where Ωi = 1 for a channel that has not been selected and

Ωi = 0.5 for a channel that has just been selected, returning

linearly over time to Ωi = 1 (over an interval of 10 time-

steps here).

B. Omnidirectional image processing

Transforming from an equirectangular to rectilinear cam-

era projection (where straight lines are displayed undis-

torted), and then performing object detection, is a compu-

tationally heavy operation. But even if the former can be

considered simply an implementation requirement, the latter

(or both of them together) is arguably the biggest bottleneck,

in a comparable sense in which the human eye can only target

the fovea an thus identify objects with certainty in a very

small region. It is also equivalent in how the eye and head

movement can not be guided by the immediate prominent

stimulus in every instant, given movement constraints, both

for a human and for a mobile robot.

Functionally, projecting from an equirectangular represen-

tation to rectilinear is restricted to a section of about 0.3 of

the equirectangular frame along the equator. Since 1.0 of the

figure is the full 360°, a region of 114° represents; 114 ÷
360 = 0.3166. With help of the [21] Toolbox, a sub-region

of this size of the 4K equirectangular frame is transformed

to a frame in the range of Wide-VGA resolution (768× 384
pixels). Although for certain applications, this image size

might be enough to run through object detection, depending

on the GPU capability, we sustain the hypothesis that taking

it a step further and foveating in the most promising region

of interest is advantageous, since it enables the system to

run on low power GPUs, which is here exemplified using

the TinyYolo [22] DCNN at 224× 224 resolutions.

The information flow described in the previous paragraph

also permits to sustain the analogy to the human vision

system, which is continually faced with the same dilemma.

The average human field of view has an approx. 210°

forward-facing horizontal range, and a 150° vertical one [23].

Although the high acuity region, known as fovea centralis,

is concentrated in a region of about 5°, and the foveola in

1°, with the highest visual acuity. Hence, humans constantly

chose from an unbounded, often unstructured environment,

the region to fit into our field of view (by body/head move-

ments) and subsequently, fixate our fovea into small targets

(by eye movements), leaving the majority of the region in

our peripheral vision. Three consecutive 114° regions along

the latitude would cover most of the 360° field of view,

depending on where the central point is located. Equivalently

three 57° (conserving the 2:1 image ratio) regions cover most

of the 180° longitude field of view.

As exemplified in Fig. 2, with [λ0, φ0] = [0.5, 0.5] (i.e. the

center of the frame) the area that can be easily transformed

to a rectilinear representation is delimited by the yellow

border. Moving the focus point to [λ0 − 0.3, φ0] and [λ0 +
0.3, φ0] would produce the regions delimited by green and

red borders, respectively. A similar process can be done to

transform the blue and purple bordered regions by centering

in [λ0, φ0 − 0.4] and [λ0, φ0 + 0.4] accordingly. This is a

coarse rule where, due to the equirectangular distortion, a

different amount of overlap is caused depending on where

the central point is. Even with this overlap, most of the

scene is covered by the five regions, particularly along the

equator, where the vast majority of fixation will fall [12].

By bordering the omnidirectional scene in such a way, it can

be approached with a divide-and-conquer outlook. By first

exploring the saliency of the full scene, and transforming to

rectilinear only a subsection once enough saliency has been

accumulated for it.



C. Experimental Data: Eye movements for 360° videos

The Omnidirectional dataset [12] that was used consists

of 19 videos, each of 20 seconds in equirectangular format.

With frame rates between 24 - 30 fps, observed by an

average of 49.63 participants (median = 50), it amounts

to over half a million fixated-on frames. With this data,

we aim to get an overall behaviour comparison between

human fixations and our proposed visual saliency system,

whilst also demonstrating how the regions of interest selected

by the system (and foveated on) proffer a good strategy

to select visual information to run through a light-weight

DCNN object detection system, without it requiring any

special modification or retraining.

As a point of interest, the distribution of the duration

of fixations (in terms of frames) is compared between

the dataset of human fixations and those produced by our

MSPRT system. To ensure that both systems are looking

at similar data (since neither a human observer nor our

system look at the whole 360° at a time), the fixation point

[λ, φ] from the observers in the dataset is followed in every

frame, also deriving the rest of the I channels from it. The

MSPRT threshold cross Oi(n) < Θ, triggers a new foveal

transformation and CNN detection feedback.

III. RESULTS

As a first step, we show the object detection performance

empirically on the omnidirectional dataset, showing a big

advantage to foveating over different segments of the frame,

in contrast to trying to perform detection on the full frame.

Fig. 5 illustrates how for YoloV3 and TinyYolo at lower reso-

lutions, the system fails to make detections, partially because

of the omnidirectional distortion (although most objects are

near the equator, where the distortion is less) and partially

because the wide angle representation ends up making most

objects too small to be found by a lightweight object detector.

One important point to note is that by varying to location of

the fovea, we obtain different but complementary detections,

in contrast to performing detection at every frame at a high

resolution, where the drawbacks will be persistent.

The Kolmogorov-Smirnov Chi-Square K-S and Chi-

Square χ2 are two goodness-of-fit test values (for statistical

hypothesis testing), that are commonly used to analyse visual

saliency algorithms. Given the histograms of duration of

fixations, for the ground truth and our implementation, H1

represents the distribution of duration of human fixations, and

H2 represents the duration of MSPRT fixation, both with a

bin-width equal to 1, and considering m = 45 bins. Then

the K-S and χ2 are defined as [24],

K-S = max
1≤i≤m

|

m∑

i=1

H1(i)−

m∑

i=1

H2(i)| (9)

χ2 =

m∑

i=1

(H1(i)−H2(i))
2

H1(i) +H2(i)
(10)

To illustrate how the system compares to human fixation

behaviour, a simple first test is to study the histograms of

0 0.5 1

0

0.5

1

S
o
fa

Foveation (all)

0 0.5 1

0

0.5

1

8
 S

o
fa

Foveation (tiny-yolo256)

0 0.5 1

0

0.5

1

tiny-yolo 416

0 0.5 1

0

0.5

1

yolo 416

0 0.5 1

0

0.5

1

yolo 608

bo
ttl
e
bo

w
l

ch
ai
r

cl
oc

k

di
ni
ng

ta
bl

la
pt

op

m
ic
ro

w
av

e
ov

en

pe
rs

on

re
fri

ge
ra

t
si
nk

tv
m

on
ito

r

10 1

10 2

10 3
Detections fov

Fig. 5. (From left to right) Example of object detections performed at
different network resolutions and for the foveated regions, for one of the
videos on the omnidirectional dataset; (a) Detections on foveated frames,
mapped back to their equirectangular location, using the TinyYolo network
at 256× 256 resolution, (b) Repeating the detection on foveated frames at
the same resolution, following the observation position of all participants
in the omnidirectional dataset (c) No detections were possible when tested
on every equirectangular frame using TinyYolo at 416 × 416 resolution
(d) Detections using yoloV3 at 416 × 416 on omnidirectional frames (e)

Detections using yoloV3 at 608×608 on omnidirectional frames (f) Graph
of the main detected objects on the foveated frames.

1 PortoRiverside

0 10 20 30 40 50

Time steps

0

0.05

0.1

0.15

0.2

F
ix

a
ti
o

n
 p

ro
b

a
b

lil
ty

2 Diner

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

3 PlanEnergyBioLab

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

4 Ocean

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

5 Waterpark

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Eye fixations

MSPT fixations

Fig. 6. Histogram of duration of the fixations in the first five videos of
the [12] dataset. For each video, the horizontal axis represents the number
of frames that the fixation lasts, and the vertical the probability that the
fixation falls within that range.

the duration of fixations, using the human recorded data

provided for the omnidirectional dataset [12]. Fig. 6 shows

an histogram of their duration for the first five videos of the

dataset. Tables I compile the Kolmogorov-Smirnov (K-S) and

Chi-Square (χ2) for the first 15 videos. With total average

values of K-S = 0.269 and χ2 = 0.284, illustrating the

similarity for most videos between both histograms, noting

that if H1 = H2, then K-S = χ2 = 0. Evidently the

proximity between the histograms can be brought closer for

each video, by parameter tuning, if it were the sole goal.

Another relevant aspect to evaluate is how often top salient

locations are fixated-on, both in contrast to human fixations

and to a simple Winner-Takes-All (WTA) rule. In Fig. 7

we illustrate how the WTA fixates on a small number of

prominent locations (the larger the circle is drawn represents

the number of times that the location is fixated-on), while the

human data and the MSPRT and more broadly distributed.



Video 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K-S 0.149 0.306 0.254 0.280 0.128 0.463 0.457 0.252 0.224 0.141 0.219 0.324 0.174 0.255 0.059

χ2 0.113 0.342 0.298 0.275 0.086 0.563 0.556 0.243 0.159 0.185 0.241 0.333 0.159 0.181 0.045

TABLE I

KOLMOGOROV-SMIRNOV (K-S) AND CHI-SQUARE (χ2) GOODNESS-OF-FIT TESTS FOR STIMULUS VIDEOS 1 TO 14.
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Fig. 7. Representation of the top 20 fixations for the first five stimulus
videos. The size of the circle represents how many times each location
appears, with a [λ, φ] precision of [0.01, 0.01]. The eye fixations from the
dataset (illustrated in red) are not too often dominated by a single location,
behaviour which is much more closely imitated by an evidence accumulation
system, like the presented MSPRT, than by a WTA rule in every frame.

IV. CONCLUSIONS

In this paper, we have developed a novel robust visual

saliency system for mobile robots, to select a region of

interest in the visual scene, which fuses top-down and

bottom-up saliency, and performs region selection using a

bioinspired evidence accumulation algorithm related to basal

ganglia decision making. The key components of the system

are: top-down saliency using a foveated image transform with

DCNNs for fast object detection and recognition (the where

and what), which is combined with biasing by task relevant

information; bottom-up saliency using standard low-level im-

age processing from intensity, colour and orientation maps;

movement saliency combined with a fast path interrupt to by-

pass the evidence accumulation algorithm and rapidly direct

attention towards potential hazards. The results demonstrate

that the visual saliency system works effectively to select

regions of attention; that is speeds up DCNN processing; that

the system emulates human visual saliency more closely than

schemes that use a winner-take-all decision making rule; and

that the system is more robust to noise.
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