
This is a repository copy of Online scene visibility estimation as a complement to SLAM in 
UAVs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/187005/

Version: Accepted Version

Proceedings Paper:
Haggart, R. and Aitken, J.M. orcid.org/0000-0003-4204-4020 (2021) Online scene visibility 
estimation as a complement to SLAM in UAVs. In: Fox, C., Gao, J., Esfahani, A.G., Saaj, 
M., Hanheide, M. and Parsons, S., (eds.) Towards Autonomous Robotic Systems : 22nd 
Annual Conference, TAROS 2021, Lincoln, UK, September 8–10, 2021, Proceedings. 
TAROS 2021 : Towards Autonomous Robotic Systems, 08-10 Sep 2021, Lincoln, UK. 
Lecture Notes in Computer Science (13054). Springer Cham , pp. 365-369. ISBN 
9783030891763 

https://doi.org/10.1007/978-3-030-89177-0_38

This is a post-peer-review, pre-copyedit version of an article published in TAROS 2021 
Proceedings. The final authenticated version is available online at: 
https://doi.org/10.1007/978-3-030-89177-0_38.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Online Scene Visibility Estimation as a

Complement to SLAM in UAVs⋆

Rory Haggart, Jonathan M. Aitken

Department of Automatic Control & Systems Engineering, University of Sheffield
{rdehaggart1, jonathan.aitken}@sheffield.ac.uk

Abstract. Simultaneous localisation and mapping (SLAM) relies on
low-cost on-board sensors such as cameras and inertial measurement
units. It is crucial that the surroundings are visible to the cameras to
maximise the accuracy of the system. An estimation strategy is proposed
to augment ORB-SLAM2 that considers feature extraction capability,
distribution of the extracted features in the image frame, and the ability
of the algorithm to track features over time. The method is tested on
challenging datasets, and the output is evaluated against different visi-
bility conditions. The proposed method is shown to react appropriately
and consistently to ‘less visible’ conditions such as fog, sunlight, and
rapid motion in real time, with minimal computational load.

Keywords: Simultaneous Localisation and Mapping · Visibility

1 Introduction

In the field of robotic navigation, simultaneous localisation and mapping (SLAM)
uses low-cost, on-board sensors to build up a three-dimensional representation
of the local surroundings and localise the robot relative to points in this map.

Semi- and fully-autonomous systems are on the rise. Between 2011 and 2017
the number of patents relating to automated driving that were filed at the Eu-
ropean Patent Office rose by 330% [2]. In vehicles employing these systems, the
role of action and reaction is assumed by on-board sensors and actuators inter-
facing with decision making systems to control the vehicle. If a system using
SLAM with visible-light cameras can ‘understand’ how visible the scene is to
those cameras, it could adapt - re-orienting the cameras, or adjusting how many
features should be extracted from the incoming image stream.

⋆ Supported by the Department of Aerospace Engineering and the Department of
Automatic Control and Systems Engineering at the University of Sheffield. Also this
work is supported by the UK’s Engineering and Physical Sciences Research Council
(EPSRC) Programme Grant EP/S016813/1
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2 Related Work

2.1 SLAM

ORB-SLAM2 [5] is an indirect visual SLAM technique, meaning features are
extracted from preprocessed images and tracked between frames. The features
are described using binary descriptors and used to perform global bundle ad-
justments and loop closures that allows for a consistent position estimation.

VINS-Mono [8] is a popular and sophisticated visual-inertial algorithm that
has consistent and accurate tracking of sensor pose. The authors note that whilst
their technique may operate in poor visibility, improvements to investigate ob-
servability properties of the online camera data would be beneficial.

2.2 Scene Visibility Estimation

The authors of [6] present a model that accounts for the multiple scattering of
light in the atmosphere due to conditions such as fog and rain. This is based
on the glow surrounding light sources in inclement weather. It is one of several
attempts to estimate dynamic visibility distance based on the presence of fog.

In [7], the authors develop a technique that uses the observed contrast of
road markings. The system is tested for a variety of conditions - e.g. when
sunrise causes glare in the image, which interestingly resulted in a lower visibility
estimate than the more frequently studied case of fog. The method is shown to
be robust to a range of conditions, but relies on the presence of known features.

3 Methodology

The ORB-SLAM2 code was modified to use information about extracted fea-
tures in each frame to calculate the visibility estimation metric components (see
Table 1). Additional processes, such as ones to save the outputs, were also added.

(a) (b)
(c)

Fig. 1: Example frames of (left to right) partially occluded, foggy, and featureless
scenes from the Midair [3] and InteriorNet [4] datasets
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Equation Description

a Sa = NF

NF,max

Sa is defined as the ratio of the number of extracted
features (NF ) to the target, defined by the user (NF,max).
This is how well the camera can ‘see’ the scene

b

Sb = 1− χ2

χ2
w

χ2 =
∑NB

i=0

(Obi
−Ebi

)2

Ebi

Ebi =
NF

NB

Each frame is divided into NB ‘bins’, each containing
some number (Obi) of the extracted features. A chi-
square value (χ2) of this binned distribution is calculated,
where Ebi is the ‘expected’ number of features in each
bin bi if the distribution of features was homogeneous.
Sb is defined as the complement to the chi-squared value
when normalised against a ‘worst-case’ value (χ2

w), rep-
resenting the condition of all extracted features being po-
sitioned exclusively in 1/8th of the frame. This evaluates
the homogeneity of the distribution

c Sc = NT

NLv

Sc is defined as the number of features that are tracked
(NT ) as a fraction of the number of features that are
theoretically located within the frustum of the camera
(NLv ). For more dynamic visibility, features may be lost
even whilst they remain within the cameras line of sight

Table 1: Three ORB-SLAM2 SVE Calculated Components.

4 Results and Discussion

Trajectory Condition Mean S Mean % Tracked

Sunny 0.737 96.92%

VO test 0 Sunset 0.723 94.76%

Foggy -0.324 2.59%

Table 2: The mean values of S (S = 0.2Sa+0.4Sb+0.4Sc) and of the percentage
of the trajectory that was successfully tracked by ORB-SLAM2 over 15 tests of
three conditions in a trajectory from the MidAir dataset.

With ORB-SLAM2 augmented to become ORB-SLAM2 SVE (ORB-SLAM2
with Scene Visibility Estimation), tests were performed using the MidAir [3],
InteriorNet [4], and Malaga [1] datasets. The set of visibility impairments that
could be tested were fog (Figure 1b), partial lens soiling (Figure 1a), direct
sunlight (Figure 2c), rapid motion, featureless scenery (Figure 3c), and planar
scenery. Tracking sustainability and visibility for some of the MidAir data are
shown in Table 2 with a sample visibility output from ORB-SLAM2 SVE in
Figure 2a.
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An assessment of the execution time using a tool developed by the authors
of ORB-SLAM3 revealed that the additional components had minimal impact
on the computational load, and that the implementation was efficient allowing
the algorithm to perform a high accuracy estimation.
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Fig. 2: (a) shows the visibility outputs from ORB-SLAM2 SVE for trajectory 15
of the Malaga dataset (b) shows the image frame with the highest associated Sb

(t ≈ 0.4 s) (c) shows the frame with the lowest associated Sb (t ≈ 22.3 s)

5 Conclusions

Refinement is still required. Across all tests, the strategy responded appropri-
ately in real time to qualitatively less visible frames as a result of factors including
fog, direct sunlight, and featureless scenery, improving on existing methods that
account for single factors. Sb proved the most intuitive metric, but no direct
correlation between Sb and tracking accuracy was observed. However, using the
ORB-SLAM2 visualiser, it was recognised that a poor distribution of tracked
features - rather than extracted features - in the frame led to a worsened pose
estimate. A detailed assessment was not completed. Additionally, Sb did not
always show adequate sensitivity in conditions such as partial lens soiling (see
Figure 1a), and this could indicate the need for tuneable parameters.

Sc should have been useful - as the number of tracked features decreases,
tracking accuracy should worsen. The expectation was that before tracking is
lost, Sc should start decreasing, though this was not always observed. The value
was also highly variable between frames, and trends were hard to decipher -
applying this calculation to keyframes rather than all frames may be a solution.

After these problems have been addressed, the visibility information could be
fed to the system to adapt performance or re-orient the hardware, as discussed
in Section 1.
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(b) Sa = 0.77, Sb =
0.81, Sc = 0.60
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−0.02, Sc = 0.00

Fig. 3: (a) shows the visibility outputs from ORB-SLAM2 SVE for trajectory
‘original 3 3’ in the ‘3FO4K7I2Q0PG’ subset of the InteriorNet dataset. (b)
shows the image frame with the highest associated visibility (t ≈ 4 s) (c) shows
the frame with the lowest associated visibility (t ≈ 9.19 s)
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