

This is a repository copy of *Spatial multi-criteria analysis to capture socio-economic factors in mangrove conservation*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/186954/</u>

Version: Supplemental Material

Article:

Trialfhianty, TI, Muharram, FW, Suadi et al. (2 more authors) (2022) Spatial multi-criteria analysis to capture socio-economic factors in mangrove conservation. Marine Policy, 141. 105094. ISSN 0308-597X

https://doi.org/10.1016/j.marpol.2022.105094

© 2022, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Methods

A. Map accuracy assessment

The tentative land use map derived from the interpretation process is then assessed to generate an accuracy value. Slovin's formula is used to calculate the number of sample points such as follows (Sevilla, 1984 in Handayani, 2020):

where n = minimum number of samples

N = number of population

e = tolerance limit of error (10 per cent)

By using this formula, the required sample points for accuracy assessment are 100 points based on 187,465 sqm of population size (N) using 10 per cent of the tolerance limit of error (e).

Table 1. Land use area of the tentative map							
No	Land use	Area (sqm)	Σ Sample points (n)				
1	Building	1,081	1				
2	Mangrove	15,218	8				
3	Meadow	22,748	12				
4	Other vegetation	1,966	1				
5	Pond	2,518	1				
6	Rice field	80,215	42				
7	River	63,201	34				
8	Sandbar	518	1				
	Population size (N)	187,465	100				

Table 1. Land use area of the tentative map

We use the image-to-image correction technique (Short, 1986 in Danoedoro, 2012) with high-resolution satellite images acquired in 2013 released by Badan Informasi Geospasial (Geospatial Information Agency/BIG) of Indonesia as a reference map. The sample points distribution (Figure 1) is defined by purposive stratified sampling considering the area with the most stable land use/not easily changed and the representation of each land use (Danoedoro, 2012).

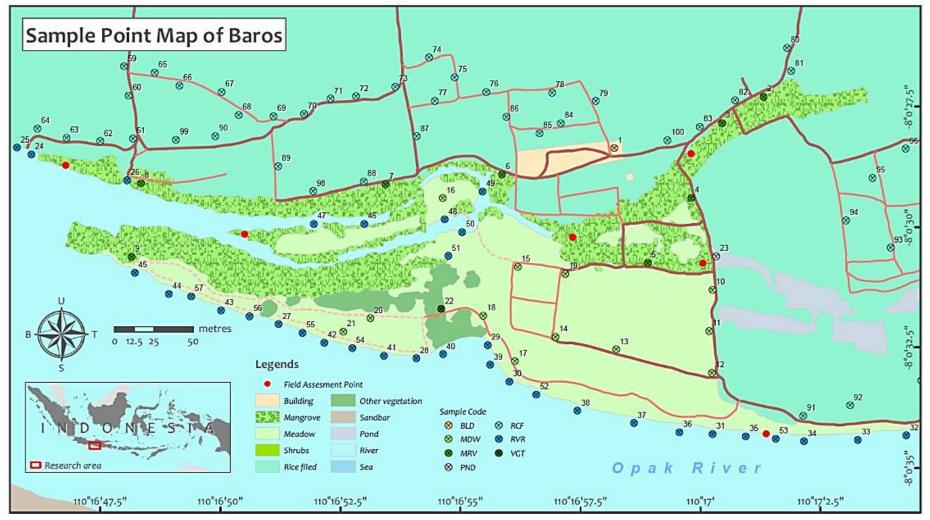


Figure 1. Sample point map of Baros

We plot all the sample points result in the error matrix as follows:

Land use class			Producer							
		Building	Mangrove	Meadow	Other vegetation	Pond	Rice field	River	Sandbar	Total
	Building	1								1
	Mangrove		6					3		9
	Meadow			8						8
	Other vegetation		1		1		2			4
User	Pond					1				1
	Rice field		1				41			42
	River			1				30		31
	Sandbar			3				1	0	4
	Total	1	8	12	1	1	43	34	0	100

The result above is then used to generate the Kappa coefficient with formula such as follows (Mather & Tso, 2016):

where \hat{k} = the Kappa coefficient

r = the number of columns (and rows) in a confusion matrix

 x_{ii} = entry (*i*, *i*) of the confusion matrix

 x_{i+} and x_{+I} = the marginal totals of row *i* and column *j*, respectively

N = the total number of observations

This formula resulted Kappa coefficient (k^{2}) as 0.83 with the overall accuracy of 88 per cent.

B. Mangrove survey

Data were collected using a quadrant sampling method within a 100m² area in each sample location. The sample area was marked using 40m rope, mangrove data such as tree species, individual tree counts and diameter of each tree were collected to calculate several values, following Curtis and McIntosh (1950):

$$FRi = \left(\frac{Fi}{\Sigma F}\right) x \ 100 \ \dots \ (8)$$

Where, Fi = frequency of species i

Pi = number of plots where species i occurs

FRi = relative frequency of species i $\sum F$ = total number of all species $\sum P$ = total number of plots

$$Ci = \frac{BA}{A}$$
, where $BA = \frac{\pi DBH2}{4}$(9)

$$RCi = \left(\frac{ci}{\Sigma c}\right) x \ 100 \ \dots \ (10)$$

Where,

Ci = covered area for species i BA = basal area (cm) DBH = diameter of mangrove (cm) A = total area of the plot (m2) $\sum C$ = covered area for all species RCi = relative coverage of species i

$$Di = \frac{ni}{A} \tag{11}$$

$$RDi = \left(\frac{ni}{\Sigma n}\right) x \ 100 \ \dots \ (12)$$

Where,

Di = density of species i (individual/ha)

ni = counts per species i

 $\sum n = \text{total number counts for all species}$

A = total area of sample

RDi = relative density of species i

Important value index = RD + FR + RC(13)

The important value index of mangrove area ranged between 0-300. This number showed the dominance level of individual mangrove species in a particular area. The calculation above (11) follows Curtis (1959).

C. Water quality survey

Table 2	. Method	for	assessing	water	quality

Table 2. We not assessing water quanty					
Parameter	Method	Equiptment	Material		
Temperature	Insitu	Termometer	-		
		Hg scale 0-			
		100°C			
pH	-	pH meter	-		
Salinity	-	Refractometer	-		

TSS	Gravimetric	Paper filter (2,5µm), analytic scale	-
DO	Winkler	Erlenmeyer, oxygen bottle, pipette	MnSO ₄ , oxygen reagent, H ₂ SO ₄ , starch, and 1/80 N Na ₂ S ₂ O _{3.}
CO_2	Alkalimetric	Erlenmeyer, oxygen bottle, pipette	Phenolphthalein (PP) and 1/44 N NaOH
Alkalinity	Alkalimetric	Erlenmeyer, oxygen bottle, pipette	Phenolphthalein (PP), $1/50$ N H ₂ SO ₄ and methyl orange (MO).
Nitrate	Spectrophotometry		
Phosphate	Spectrophotometry		

D. Susceptibility assessment

We categorised the level of susceptibility to abrasion in Baros as follows:

- (1) High level: shore area with a distance of 0–100 metres from the shoreline and elevation of 0-25 metres above sea level
- (2) Moderate level: beach area with a distance of >100-400 metres from the shoreline and an elevation of 25-35 metres above sea level
- (3) Low level: beach area with a distance of >400-500 metres from the shoreline and elevation of >35 metres above sea level

E. Questionnaire

GENERAL

- Did you help develop the mangrove area of Baros mangrove? If so, what kind of assistance did you contribute?
- 2) Are there any changes that occurred before/after the mangrove area in Baros mangrove?
- 3) What are the benefits of the mangrove area in Baros mangrove that you feel?
- 4) Do you use the mangrove area in Baros?If yes, proceed to question number 5. If not, it is enough.
- 5) What kind of use do you do?
- 6) Where is exactly the part of mangrove area that you use?
- 7) How long have you been using the mangrove area for this activity?

8) Are the results of your use of the mangrove area used to increase your income?

FARMER

- 1) How much area of paddy field/plantation do you have (m2)?
- 2) What types of plants do you produce on the land?
- 3) How much does it cost to buy/rent rice fields/plantations (per m2)?
- 4) In one year how many times do you do planting activities (from planting seeds to harvesting)?
- 5) Has the area changed after the mangrove area was in Baros mangrove? If yes, from _____ m² to _____ m²
- 6) Did the amount of production (harvest) change after the mangrove area was located in Baros mangrove?
 If yes, from _____ kg to _____ kg
- 7) What is the frequency with which you irrigate your fields/plantations (per week)?
- 8) How much does it cost you to irrigate your fields/gardens?

Operational Cost (one planting period)

Type of plant	Number of seeds	Price of seeds	Amount of fertilizer	Price of fertilizer	Number of harvests (kg)	Price of plants harvested (Rp/kg)

CATTLEMAN

- 1) Do you feed your livestock in the mangrove area?
 - If yes, the question is continued to number 2. If not, it is completed.
- 2) What kind of livestock do you have?
- 3) How many cattle do you have?
- 4) When exactly do you go to the mangrove area to feed your livestock?
- 5) How much feed does your livestock need at a time (kg/day)?
- 6) What is the price of animal feed that is usually sold in the market (Rp/kg)?

AQUACULTURE

- 1) What types of fishery commodities do you cultivate in the mangrove area?
- 2) How much mangrove area do you use for cultivation activities?
- 3) How many fishery commodities do you cultivate?
- 4) What is the size of the commodity that you are cultivating?
- 5) What components do you need to set up a cultivation unit?
- 6) What components do you need to run a cultivation business every day?
- 7) How much do you have to spend to buy the components mentioned above?

Cultivation Production

No.	Type of commodity cultivated	Quantity	Size (kg)	Selling price (Rp)

*one harvest period

FISHERS

- 1) Do you carry out fishing activities in the mangrove area?
 - If yes, continue to question number 2. If not, it is sufficient.
- 2) How many trips/fishing activities do you take in one month?
- 3) How much time do you spend doing fishing activities?
- 4) When exactly do you do fishing activities? (morning, evening, afternoon)
- 5) What components do you need to carry out fishing activities? (example: supplies, gasoline)
- 6) How much do you have to pay for these components each time you catch fish? o Supplies, Rp _____
 - o Gasoline, Rp_____
 - o Others, Rp_____
- 7) Where do you sell the catch?

Catch Production (average in one day fishing)

No.	Type of fishing	Type of catch (type of	Quantity	Selling price
110.	gear	fish, crab or shrimp)	(kg)	(Rp)

F. Matrix calculation

1) AHP matrix on Natural Value of Coastal Environment (NVC) criterion

	Water quality	Chlorophyll	Important value index of mangrove
Water quality	1	5	8
Chlorophyll	1/5	1	3
Important value index of	1/8	1/3	1
mangrove			

	Priority	Rank
Water quality	0.742	1
Chlorophyll	0.183	2

Important value index of	0.075	3
mangrove	0.075	
CR = 0.046 (4.6%)		

2)	AHP matrix on Commercial Value (CMV) criterion					
		Feedlots	Traditional fishing	Aquaculture		
	Feedlots	1	5	3		
	Traditional fishing	1/5	1	1		
	Aquaculture	1/3	1/1	1		

Priority	Rank
0.659	1
0.156	3
0.185	2
	0.659 0.156

CR = 0.03 (3%)

3) AHP matrix for zoning scenario

-	C	NVC	CMV	RCV	APD	
Zoning	Criteria	Natural Value		Recreational and	Accessibility	
	Chiena	of Coastal	Value	Cultural Value	and Potential	
		Environment			Disturbance	
	NVC	1	7	6	5	
	Natural Value of					
	Coastal Environment					
	CMV					
Restricted	Commercial Value	1/7	1	4	2	
	RCV					
Access Zone	Recreational and	1/6	1/4	1	1	
	Cultural Value				-	
	APD					
	Accessibility and	1/5	1/2	1	1	
	Potential					
	Disturbance					
	NVC	1	2	6	5	
	Natural Value of					
Sanctuary	Coastal					
	Environment					
	CMV Commonial Value	1/2	1	1	3	
	Commercial Value RCV					
Zone	Recreational and	1/6	1	1	2	
	Cultural Value	1/0	1	1	2	
	APD					
	Accessibility and	1/5	1/3	1⁄2	1	
	Potential					
	Disturbance					
Habitat Protection Zone	NVC	1	2	4	5	
	Natural Value of					
	Coastal					
	Environment					
	CMV	1/2	1	1	3	
	Commercial Value					
	RCV	1/4	1	1	5	

	Cultural Value									
	APD									
	Accessibility and Potential	1/5	1/3	1/5	1					
	Disturbance									
Zoning	Criteria	Priority	Rank	_						
	NVC									
	Natural Value of	0.658	0.658	1						
	Coastal		-							
	Environment									
	CMV	0.075	4							
Restricted	Commercial Value	.	•							
Access	RCV	0.001	2							
Zone	Recreational and	0.091	3							
	Cultural Value									
	APD	0.4==								
	Accessibility and	0.177	2	2						
	Potential		-							
D 0.004	Disturbance									
R = 0.094										
(9.4%)										
	NVC									
	Natural Value of	0 554	1							
	Coastal	0.554	1							
	Environment									
	CMV	0.150	3							
anctuary	Commercial Value	0.150	3							
Zone	RCV			-						
LUIIC	Recreational and	0.082	4							
	Cultural Value									
	APD									
	Accessibility and	0.214	2							
	Potential	0.214	2							
	Disturbance									
R = 0.051										
(5.1%)										
	NVC									
	Natural Value of	0.500								
	Coastal	0.508	1							
	Environment									
	CMV	0.010	2							
Habitat	Commercial Value	0.213	2							
rotection	RCV									
Zone	Recreational and	0.068	0.068	4						
	Cultural Value		-							
	APD	0.211								
	Accessibility and		0.211	0.211	-					
	Potential				0.211	0.211	0.211	0.211	0.211	0.211
	Disturbance									
D 0.064										
R = 0.064										

References

- Curtis JT, McIntosh RP., 1950. The Interrelations of certain analytic and synthetic photo socio logical characters. Ecology 31:438–455
- Danoedoro, P., 2012. Introduction to Digital Remote Sensing (in Bahasa Indonesia). Andi Publisher, Yogyakarta.
- Handayani, A. P., Deliar, A., Sumarto, I., & Syabri, I., 2020. Bandwidth Modelling on Geographically Weighted Regression with Bisquare Adaptive Method using Kriging Interpolation for Land Price Estimation Model. Indonesian Journal of Geography, 52(1), 36. https://doi.org/10.22146/ijg.43724
- Mather, P., & Tso, B., 2016. *Classification Methods for Remotely Sensed Data*. In Vasa. CRC Press. https://doi.org/10.1201/9781420090741