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Abstract Cortical networks exhibit intrinsic dynamics that drive coordinated, large-scale

fluctuations across neuronal populations and create noise correlations that impact sensory coding.

To investigate the network-level mechanisms that underlie these dynamics, we developed novel

computational techniques to fit a deterministic spiking network model directly to multi-neuron

recordings from different rodent species, sensory modalities, and behavioral states. The model

generated correlated variability without external noise and accurately reproduced the diverse

activity patterns in our recordings. Analysis of the model parameters suggested that differences in

noise correlations across recordings were due primarily to differences in the strength of feedback

inhibition. Further analysis of our recordings confirmed that putative inhibitory neurons were

indeed more active during desynchronized cortical states with weak noise correlations. Our results

demonstrate that network models with intrinsically-generated variability can accurately reproduce

the activity patterns observed in multi-neuron recordings and suggest that inhibition modulates the

interactions between intrinsic dynamics and sensory inputs to control the strength of noise

correlations.

DOI: 10.7554/eLife.19695.001

Introduction
The patterns of cortical activity evoked by sensory stimuli provide the internal representation of the

outside world that underlies perception. However, these patterns are driven not only by sensory

inputs, but also by the intrinsic dynamics of the underlying cortical network. These dynamics can cre-

ate correlations in the activity of neuronal populations with important consequences for coding and

computation (Shadlen et al., 1996; Abbott and Dayan, 1999; Averbeck et al., 2006). The correla-

tions between pairs of neurons have been studied extensively (Cohen and Kohn, 2011; Ecker et al.,

2010; Averbeck et al., 2006), and recent studies have demonstrated that they are driven by dynam-

ics involving coordinated, large-scale fluctuations in the activity of many cortical neurons

(Sakata and Harris, 2009; Pachitariu et al., 2015; Okun et al., 2015). Inactivation of the cortical cir-

cuit suppresses these synchronized fluctuations at the level of the membrane potential, in both

awake and anesthetized animals, suggesting that this synchronization is cortical in origin (Cohen-

Kashi Malina et al., 2016). Importantly, the nature of these dynamics and the correlations that they

create are dependent on the state of the underlying network; it has been shown that various factors

modulate the strength of correlations, such as anesthesia (Harris and Thiele, 2011;

Schölvinck et al., 2015; Constantinople and Bruno, 2011), attention (Cohen and Maunsell, 2009;
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Mitchell et al., 2009; Buran et al., 2014), locomotion (Schneider et al., 2014; Erisken et al., 2014),

and alertness (Vinck et al., 2015; McGinley et al., 2015a). In light of these findings, it is critical that

we develop a deeper understanding of the origin and coding consequences of correlations at the

biophysical network level.

While a number of modeling studies have explored the impact of correlations on sensory coding

(Shadlen et al., 1996; de la Rocha et al., 2007; Averbeck et al., 2006; Pillow et al., 2008;

Ecker et al., 2011; Moreno-Bote et al., 2014), there have been few efforts to identify their biophys-

ical origin; the standard assumption that correlations arise from common input noise (de la Rocha

et al., 2007; Doiron et al., 2016; Lyamzin et al., 2015) simply pushes the correlations from spiking

to the membrane voltage without providing insight into their genesis. Models that use external noise

to create correlations have been used in theoretical investigations of how network dynamics can

transform correlations (Doiron et al., 2016), but no physiological source for the external noise used

in these models has yet been identified. However, no external noise is needed to generate the corre-

lated activity that is observed in vivo; in vitro experimental studies have shown that cortical networks

are capable of generating large-scale fluctuations intrinsically (Sanchez-Vives et al., 2010; Sanchez-

Vives and McCormick, 2000), and in vivo results suggest that the majority of cortical fluctuations

arise locally (Cohen-Kashi Malina et al., 2016; Shapcott et al., 2016). If the major source of the cor-

relations in cortical networks is, in fact, internal, then the network features that control these correla-

tions may be different from those that control correlations in model networks with external noise.

We demonstrate that network models with intrinsic variability are indeed capable of reproducing

the wide variety of activity patterns that are observed in vivo, and then proceed to use a large num-

ber of multi-neuron recordings and a model-based analysis to investigate the mechanisms that con-

trol intrinsically generated-noise correlations. For our results to provide direct insights into

physiological mechanisms, we required a model with several properties: (1) the model must be able

to internally generate the complex intrinsic dynamics of cortical networks, (2) it must be possible to

fit the model parameters directly to spiking activity from individual multi-neuron recordings, and (3)

the model must be biophysically interpretable and enable predictions that can be tested experimen-

tally. No existing model satisfies all of these criteria; the only network models that have been fit

directly to multi-neuron recordings have relied on either abstract dynamical systems (Curto et al.,

eLife digest Our brains contain billions of neurons, which are continually producing electrical

signals to relay information around the brain. Yet most of our knowledge of how the brain works

comes from studying the activity of one neuron at a time. Recently, studies of multiple neurons have

shown that they tend to be active together in short bursts called “up” states, which are followed by

periods in which they are less active called “down” states. When we are sleeping or under a general

anesthetic, the neurons may be completely silent during down states, but when we are awake the

difference in activity between the two states is usually less extreme. However, it is still not clear how

the neurons generate these patterns of activity.

To address this question, Stringer et al. studied the activity of neurons in the brains of awake and

anesthetized rats, mice and gerbils. The experiments recorded electrical activity from many neurons

at the same time and found a wide range of different activity patterns. A computational model

based on these data suggests that differences in the degree to which some neurons suppress the

activity of other neurons may account for this variety. Increasing the strength of these inhibitory

signals in the model decreased the fluctuations in electrical activity across entire areas of the brain.

Further analysis of the experimental data supported the model’s predictions by showing that

inhibitory neurons – which act to reduce electrical activity in other neurons – were more active when

there were fewer fluctuations in activity across the brain.

The next step following on from this work would be to develop ways to build computer models

that can mimic the activity of many more neurons at the same time. The models could then be used

to interpret the electrical activity produced by many different kinds of neuron. This will enable

researchers to test more sophisticated hypotheses about how the brain works.

DOI: 10.7554/eLife.19695.002
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2009) or probabilistic frameworks in which variability is modelled as stochastic and correlated vari-

ability arises through abstract latent variables whose origin is assumed to lie either in unspecified cir-

cuit processes (Ecker et al., 2014; Macke et al., 2011; Pachitariu et al., 2013; Pillow et al., 2008)

or elsewhere in the brain (Goris et al., 2014; de la Rocha et al., 2007). While these models are able

to accurately reproduce many features of cortical activity and provide valuable summaries of the

phenomenological and computational properties of cortical networks, their parameters are difficult

to interpret at a biophysical level.

One alternative to these abstract stochastic models is a biophysical spiking network,

(van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; Renart et al., 2010; Litwin-

Kumar and Doiron, 2012; Wolf et al., 2014). These networks can be designed to have interpretable

parameters, but have not been shown to internally generate large-scale fluctuations and noise corre-

lations of the kind routinely seen in multi-neuron recordings. Networks with structured connectivity

have been shown to generate correlated activity in small groups containing less than 5% of all neu-

rons (Litwin-Kumar and Doiron, 2012), but not in the entire network. Furthermore, large-scale neu-

ral network models have not yet been fit directly to multi-neuron recordings and, thus, their use has

been limited to attempts to explain qualitative features of cortical dynamics through manual tuning

of network parameters. This inability to fit the networks directly to recordings has made it difficult to

identify which of these network features, if any, play an important role in vivo. To overcome this limi-

tation, we used a novel computational approach that allowed us to fit spiking networks directly to

individual multi-neuron recordings. By taking advantage of the computational power of graphics

processing units (GPUs), we were able to simulate the network with millions of different parameter

values for 900 seconds each to find those that best reproduced the structure of the activity in a given

recording.

We developed a novel biophysical spiking network with intrinsic variability and a small number of

parameters that was able to capture the apparently doubly chaotic structure of cortical activity

(Churchland and Abbott, 2012). Previous models with intrinsic variability have been successful in

capturing both the microscopic trial-to-trial variability in spike timing and long-timescale fluctuations

in spike rate in individual neurons (van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997;

Vogels and Abbott, 2005), but none of these models have been able to capture the coordinated,

large-scale fluctuations that are shared across neurons. By combining spike-frequency adaptation

(Destexhe, 2009; Latham et al., 2000) with high excitatory connectivity, our network is able to gen-

erate intrinsic global fluctuations that are of variable duration, arise at random times, and do not

necessarily phase-lock to external input, thus creating noise correlations in evoked responses. This

correlated intrinsic variability distinguishes our model from previous rate or spiking network models

(Parga and Abbott, 2007; Renart et al., 2010; Wolf et al., 2014; Doiron et al., 2016), as well as

from phenomenological dynamical systems (Macke et al., 2011; Pachitariu et al., 2013), all of which

create noise correlations by injecting common noise into all neurons, an approach which, by con-

struction, provides little insight into the biophysical mechanisms that generate the noise

(Doiron et al., 2016).

To gain insight into the mechanisms that control noise correlations in vivo, we took the following

approach: (1) we assembled multi-neuron recordings from different species, sensory modalities, and

behavioral states to obtain a representative sample of cortical dynamics; (2) we generated activity

from the network model to understand how each of its parameters controls its dynamics, and we

verified that it was able to produce a variety of spike patterns that were qualitatively similar to those

observed in vivo; (3) we fit the model network directly to the spontaneous activity in each of our

recordings, and we verified that the spike patterns generated by the network quantitatively matched

those in each recording; (4) we examined responses to sensory stimuli to determine which of the

model parameters could account for the differences in noise correlations across recordings – the

results of this analysis identified the strength of feedback inhibition as a key parameter and pre-

dicted that the activity of inhibitory interneurons should vary inversely with the strength of noise cor-

relations; (5) we confirmed this prediction through additional analysis of our recordings showing that

the activity of putative inhibitory neurons is increased during periods of cortical desynchronization

with weak noise correlations in both awake and anesthetized animals; (6) we repeated all of the

above analyses in recordings from mice during periods of locomotion to show that our results also

apply to the cortical state transitions that are induced by natural behavior. Our results suggest that

weak inhibition allows activity to be dominated by coordinated, large-scale fluctuations that cause
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the state of the network to vary over time and, thus, create variability in the responses to successive

stimuli that is correlated across neurons. In contrast, when inhibition is strong, these fluctuations are

suppressed and the network state remains constant over time, allowing the network to respond reli-

ably to successive stimuli and eliminating noise correlations.

Results

Cortical networks exhibit a wide variety of intrinsic dynamics
To obtain a representative sample of cortical activity patterns, we collected multi-neuron recordings

from different species (mouse, gerbil, or rat), sensory modalities (A1 or V1), and behavioral states

(awake or under one of several anesthetic agents). We compiled recordings from a total of 59 multi-

neuron populations across six unique recording types (i.e. species/modality/state combinations; see

Supplementary file 1). The spontaneous activity in different recordings exhibited striking differences

not only in overall activity level, but also in the spatial and temporal structure of activity patterns;

while concerted, large-scale fluctuations were prominent in some recordings, they were nearly

absent in others (Figure 1a). In general, large-scale fluctuations were weak in awake animals and

strong under anesthesia, but this was not always the case (see further examples in Figure 3 and sum-

mary statistics for each recording in Figure 1—figure supplement 1).

The magnitude and frequency of the large-scale fluctuations in each recording were reflected in

the autocorrelation function of the multi-unit activity (MUA, the summed spiking of all neurons in the

population in 15 ms time bins). The autocorrelation function of the MUA decayed quickly to zero for

recordings with weak large-scale fluctuations, but had oscillations that decayed slowly for recordings

with stronger fluctuations (Figure 1b). The activity patterns in recordings with strong large-scale fluc-

tuations were characterized by clear transitions between up states, where most of the population

was active, and down states, where the entire population was silent. These up and down state

dynamics were reflected in the distribution of the MUA across time bins; recordings with strong

large-scale fluctuations had a large percentage of time bins with zero spikes (Figure 1c).

To summarize the statistical structure of the activity patterns in each recording, we measured four

quantities. We used mean spike rate to describe the overall level of activity, mean pairwise correla-

tions to describe the spatial structure of the activity patterns, and two different measures to describe

the temporal structure of the activity patterns – the decay time of the autocorrelation function of the

MUA, and the percentage of MUA time bins with zero spikes. While there were some dependencies

in the values of these quantities across different recordings (Figure 1d), there was also considerable

scatter both within and across recording types. This scatter suggests that there is no single dimen-

sion in the space of cortical dynamics along which the overall level of activity and the spatial and

temporal structure of the activity patterns all covary, but rather that cortical dynamics span a multi-

dimensional continuum (Harris and Thiele, 2011). This was confirmed by principal component analy-

sis; even in the already reduced space described by our summary statistics, three principal compo-

nents were required to account for the differences in spike patterns across recordings (Figure 1e).

A deterministic spiking network model of cortical activity
To investigate the network-level mechanisms that control cortical dynamics, we developed a bio-

physically-interpretable model that was capable of reproducing the wide range of activity patterns

observed in vivo. We constructed a minimal deterministic network of excitatory spiking integrate-

and-fire neurons with non-selective feedback inhibition and single-neuron adaptation currents

(Figure 2a). Each neuron receives constant tonic input, and the neurons are connected randomly

and sparsely with 5% probability. The neurons are also coupled indirectly through global, supralinear

inhibitory feedback driven by the spiking of the entire network (Rubin et al., 2015), reflecting the

near-complete interconnectivity between pyramidal neurons and interneurons in local populations

(Hofer et al., 2011; Fino and Yuste, 2011; Packer and Yuste, 2011). The supralinearity of the inhib-

itory feedback is a critical feature of the network, as it shifts the balance of excitation and inhibition

in favor of inhibition when the network is strongly driven, as has been observed in awake animals

(Haider et al., 2013).

The model has five free parameters: three controlling the average strength of excitatory connec-

tivity, the strength of inhibitory feedback, and the strength of adaptation, respectively, and two
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controlling the strength of the tonic input to each neuron, which is chosen from an exponential distri-

bution. The timescales that control the decay of the excitatory, inhibitory and adaptation currents

are fixed at 5.10 ms, 3.75 ms and 375 ms, respectively. (These timescales have been chosen based

on the physiologically known timescales of AMPA, GABAA, and the calcium-dependent afterhyper-

polarizing current. We also verified that the qualitative nature of our results did not change when we

included slow conductances or clustered connectivity; see Figure 2—figure supplement 1.)

Note that no external noise input is required to generate variable activity; population-wide fluctu-

ations over hundreds of milliseconds are generated when the slow adaptation currents synchronize

across neurons to maintain a similar state of adaptation throughout the entire network, which, in

turn, results in coordinated spiking (Latham et al., 2000; Destexhe, 2009). The variability in the

Figure 1. Cortical networks exhibit a wide variety of intrinsic dynamics. (a) Multi-neuron raster plots showing examples of a short segment of

spontaneous activity from each of our recording types. Each row in each plot represents the spiking of one single unit. Note that recordings made

under urethane were separated into two different recording types, synchronized (sync) and desynchronized (desync), as described in the

Materials and methods. (b) The autocorrelation function of the multi-unit activity (MUA, the summed spiking of all neurons in the population in 15 ms

time bins) for each example recording. The timescale of the autocorrelation function (the autocorr decay) was measured by fitting an exponential

function to its envelope as indicated. (c) The values of the MUA across time bins sorted in ascending order. The percentage of time bins with zero

spikes (the ‘% silence’) is indicated. (d) Scatter plots showing all possible pairwise combinations of the summary statistics for each recording. Each point

represents the values for one recording. Colors correspond to recording types as in (a). The recordings shown in (a) are denoted by open circles. The

best fit line and the fraction of the variance that it explained are indicated on each plot. Spearman rank correlation p-values for each plot (from left to

right, top to bottom) are as follows: p<0:05;p<10�4;p<10�5;p<10�2;p ¼ 0:447;p<0:05. (e) The percent of the variance in the summary statistics across

recordings that is explained by each principal component of the values.

DOI: 10.7554/eLife.19695.003

The following figure supplement is available for figure 1:

Figure supplement 1. Statistics for all fits.

DOI: 10.7554/eLife.19695.004
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Figure 2. A deterministic spiking network model of cortical activity. (a) A schematic diagram of our deterministic spiking network model. An example of

a short segment of the intracellular voltage of a model neuron is also shown, along with the corresponding excitatory, inhibitory and adaptation

currents. (b) An example of macroscopic variability in cortical recordings and network simulations. The top two multi-neuron raster plots show

spontaneous activity generated by the model. By adding a very small perturbation, in this case one spike added to a single neuron, the subsequent

activity patterns of the network can change dramatically. The middle traces show the intracellular voltage of the model neuron to which the spike was

added. The bottom two raster plots show a similar phenomenon observed in vivo. Two segments of activity extracted from different periods during the

same recording were similar for three seconds, but then immediately diverged. (c) The autocorrelation function of the MUA measured from network

simulations with different model parameter values. Each column shows the changes in the autocorrelation function as the value of one model

parameter is changed while all others are held fixed. The fixed values used were wI ¼ 0:22;wA ¼ 0:80;wE ¼ 4:50; b1 ¼ 0:03; b0 ¼ 0:013. (d) The summary

statistics measured from network simulations with different model parameter values. Each line shows the changes in the indicated summary statistic as

one model parameter is changed while all others are held fixed. Fixed values were as in panel c.

DOI: 10.7554/eLife.19695.005

The following figure supplement is available for figure 2:

Figure supplement 1. Model networks with long timescales and structured architecture.

DOI: 10.7554/eLife.19695.006
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model arises through chaotic amplification of small changes in initial conditions or small perturba-

tions to the network that cause independent simulations to diverge. In some parameter regimes, the

instability of the network is such that the structure of the spike patterns generated by the model is

sensitive to changes in the spike times of individual neurons. In fact, a single spike added randomly

to a single neuron during simulated activity is capable of changing the time course of large-scale

fluctuations, in some cases triggering immediate population-wide spiking (Figure 2b, top rows). Sim-

ilar phenomena have been observed in vivo previously (London et al., 2010) and were also evident

in our recordings when comparing different extracts of cortical activity; spike patterns that were sim-

ilar for several seconds often then began to diverge almost immediately (Figure 2b, bottom rows).

Multiple features of the network model can control its dynamics
The dynamical regime of the network model is determined by the interactions between its different

features. To determine the degree to which each feature of the network was capable of influencing

the structure of its activity patterns, we analyzed the effects of varying the value of each model

parameter. We started from a fixed set of parameter values and simulated activity while indepen-

dently sweeping each parameter across a wide range of values. The results of these parameter

sweeps clearly demonstrate that each of the five parameters can exert strong control over the

dynamics of the network, as both the overall level of activity and the spatial and temporal structure

of the patterns in simulated activity varied widely with changes in each parameter (Figure 2c–d).

With the set of fixed parameter values used for the parameter sweeps, the network is in a regime

with slow, ongoing fluctuations between up and down states. In this regime, the amplification of a

small perturbation results in a sustained, prolonged burst of activity (up state), which, in turn, drives

a build-up of adaptation currents that ultimately silences the network for hundreds of milliseconds

(down state) until the cycle repeats. These fluctuations can be suppressed by an increase in the

strength of feedback inhibition, which eliminates slow fluctuations and shifts the network into a

regime with weak, tonic spiking and weak correlations (Figure 2c–d, first column); in this regime,

small perturbations are immediately offset by the strong inhibition and activity is returned to base-

line. Strong inhibition also offsets externally-induced perturbations in balanced networks

(Renart et al., 2010), but in our model such perturbations are internally-generated and would result

in runaway excitation in the absence of inhibitory stabilization. The fluctuations between up and

down states can also be suppressed by decreasing adaptation (Figure 2c–d, second column); with-

out adaptation currents to create slow, synchronous fluctuations across the network, neurons exhibit

strong, tonic spiking.

The dynamics of the network can also be influenced by changes in the strength of the recurrent

excitation or tonic input. Increasing the strength of excitation results in increased activity and stron-

ger fluctuations, as inhibition is unable to compensate for the increased amplification of small pertur-

bations (Figure 2c–d, third column). Increasing the spread or baseline level of tonic input also results

in increased activity, but with suppression, rather than enhancement, of slow fluctuations (Figure 2c–

d, fourth and fifth column). As either the spread or baseline level of tonic input is increased, more

neurons begin to receive tonic input that is sufficient to overcome their adaptation current and,

thus, begin to quickly reinitiate up states after only brief down states and, eventually, transition to

tonic spiking.

The network model reproduces the dynamics observed in vivo
The network simulations demonstrate that each of its features is capable of controlling its dynamics

and shaping the structure of its activity patterns. To gain insight into the mechanisms that may be

responsible for creating the differences in dynamics observed in vivo, we fit the model to each of

our recordings. We optimized the model parameters so that the patterns of activity generated by

the network matched those observed in spontaneous activity (Figure 3a). We measured the agree-

ment between the simulated and recorded activity by a cost function which was the sum of discrep-

ancies in the autocorrelation function of the MUA, the distribution of MUA values across time bins,

and the mean pairwise correlations. Together, these statistics describe the overall level of activity in

each recording, as well as the spatial and temporal structure of its activity patterns.

Fitting the model to the recordings required us to develop new computational techniques. The

network parametrization is fundamentally nonlinear, and the statistics used in the cost function are

Stringer et al. eLife 2016;5:e19695. DOI: 10.7554/eLife.19695 7 of 33
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Figure 3 continued on next page
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themselves nonlinear functions of a dynamical system with discontinuous integrate-and-fire mecha-

nisms. Thus, as no gradient information was available to guide the optimization, we used Monte

Carlo simulations to generate activity and measure the relevant statistics with different parameter

values. By using GPU computing resources, we were able to design and implement network simula-

tions that ran 10000x faster than real time, making it feasible to sample the cost function with high

resolution and locate its global minimum to identify the parameter configuration that resulted in

activity patterns that best matched those of each recording. We also verified that the global mini-

mum of the cost function could be identified with 10x fewer samples of simulated activity using a

Gibbs sampling optimizer with simulated annealing (Figure 3—figure supplement 1), but the results

presented below are based on the global minima identified by the complete sampling of parameter

space.

The model was flexible enough to capture the wide variety of activity patterns observed across

our recordings, producing both decorrelated, tonic spiking and coordinated, large-scale fluctuations

between up and down states as needed (see examples in Figure 3b, statistics for all recordings and

models in Figure 1—figure supplement 1, and parameter values and goodness-of-fit measures for

all recordings in Figure 3—figure supplement 2). The fits were also quantitatively accurate. We

found that the median variance explained by the model of the autocorrelation function of the MUA,

the distribution of MUA values across time bins, and the mean pairwise correlations were 82%, 90%,

and 97% respectively (Figure 3—figure supplement 3b). In fact, these fits were about as good as

possible given the length of our recordings: the fraction of the variance in the statistics of one half of

each recording that was explained by the statistics of the other half of the recording were 84%,

98%, and 100% respectively (Figure 3—figure supplement 3a). Because we used a cost function

that captured many different properties of the recorded activity while fitting only a very small num-

ber of model parameters, the risk of network degeneracies was relatively low (Gutierrez et al.,

2013; Marder et al., 2015). Nonetheless, we also confirmed that analysis of model parameters cor-

responding to local minima of the cost function did not lead to a different interpretation of our

results (see Figure 3—figure supplement 4).

Strong inhibition suppresses noise correlations
Our main interest was in understanding how the different network-level mechanisms that are capa-

ble of controlling intrinsic dynamics contribute to the correlated variability in responses evoked by

sensory stimuli. The wide variety of intrinsic dynamics in our recordings was reflected in the differen-

ces in evoked responses across recording types; while some recordings contained strong, reliable

responses to the onset of a stimulus, other recordings contained responses that were highly variable

across trials (Figure 4a). There were also large differences in the extent to which the variability in

evoked responses was correlated across the neurons in each recording; pairwise noise correlations

were large in some recordings and extremely weak in others, even when firing rates were similar

(Figure 4b).

Because evoked spike patterns can depend strongly on the specifics of the sensory stimulus, we

could not make direct comparisons between experimental responses across different species and

modalities; our goal was to identify the internal mechanisms that are responsible for the differences

in noise correlations across recordings and, thus, any differences in spike patterns due to differences

in external input would confound our analysis. To overcome this confound and enable the

Figure 3 continued

The following figure supplements are available for figure 3:

Figure supplement 1. Optimization performance of the MCMC procedure.

DOI: 10.7554/eLife.19695.008

Figure supplement 2. Costs and parameter fits.

DOI: 10.7554/eLife.19695.009

Figure supplement 3. Variance explained by model fits.

DOI: 10.7554/eLife.19695.010

Figure supplement 4. Analysis of local minima.

DOI: 10.7554/eLife.19695.011
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Figure 4. Deterministic spiking networks reproduce the noise correlations observed in vivo. (a) Multi-neuron raster plots and PSTHs showing examples

of evoked responses from each of our recording types. Each row in each raster plot represents the spiking of one single unit. Each raster plot for each

recording type shows the response on a single trial. The PSTH shows the MUA averaged across all presentations of the stimulus. Different stimuli were

used for different recording types (see Materials and methods). (b) A scatter plot showing the mean spike rates and mean pairwise noise correlations

(after binning the evoked responses in 15 ms bins) for each recording. Each point represents the values for one recording. Colors correspond to

recording types as in (a). Values are only shown for the 38 of 59 recordings that contained both spontaneous activity and evoked responses. The

Spearman’s rank correlation was significant with p=0.0105. (c) A schematic diagram illustrating the modelling of evoked responses. We constructed the

external input using recordings of responses from more than 500 neurons in the inferior colliculus (IC), the primary relay nucleus of the auditory

midbrain that provides the main input to the thalamocortical circuit. We have shown previously that the Fano factors of the responses of IC neurons are

close to one and the noise correlations between neurons are extremely weak (Garcia-Lazaro et al., 2013), suggesting that the spiking activity of a

population of IC neurons can be well described by series of independent, inhomogeneous Poisson processes. To generate the responses of each

model network to the external input, we averaged the activity of each IC neuron across trials, grouped the IC neurons by their preferred frequency, and

selected a randomly chosen subset of 10 neurons from the same frequency group to drive each cortical neuron. (d) The top left plot shows the sound

waveform presented in the IC recordings used as input to the model cortical network. The top right plot shows PSTHs formed by averaging IC

responses across trials and across all IC neurons in each preferred frequency group. The raster plots show the recorded responses of two cortical

populations on successive trials, along with the activity generated by the network model fit to each recording when driven by IC responses to the same

sounds. (e) A scatter plot showing the noise correlations of responses measured from the actual recordings and from simulations of the network model

fit to each recording when driven by IC responses to the same sounds. The Spearman rank correlation for the recordings versus the model were

p<10�5. The recordings shown in (d) are denoted by open circles.

Figure 4 continued on next page
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comparison of noise correlations across recording types, we simulated the response of the network

to the same external input for all recordings. We constructed the external input using recordings of

spiking activity from the inferior colliculus (IC), a primary relay nucleus in the subcortical auditory

pathway (Figure 4c–d). Using the subset of our cortical recordings in which we presented the same

sounds that were also presented during the IC recordings, we verified that the noise correlations in

the simulated cortical responses were similar to those in the recordings (Figure 4e).

The parameter sweeps described in Figure 2 demonstrated that there are multiple features of

the model network that can control its intrinsic dynamics, and a similar analysis of the noise correla-

tions in simulated responses to external input produced similar results (Figure 4—figure supple-

ment 1). To gain insight into which of these features could account for the differences in noise

correlations across our recordings, we examined the dependence of the strength of the noise corre-

lations in each recording on each of the model parameters. While several parameters were able to

explain a significant amount of the variance in noise correlations across recordings, the amount of

variance explained by the strength of inhibitory feedback was by far the largest (Figure 5a). The pre-

dominance of inhibition in the control of noise correlations was confirmed by the measurement of

partial correlations (the correlation between the noise correlations and each parameter that remains

after factoring out the influence of the other parameters; partial r2 for inhibition: 0.67, excitation:

0.02, adaptation: 0.08, tonic input spread: 0.17, and tonic input baseline: 0.04). We also performed

parameter sweeps to confirm that varying only the strength of inhibition was sufficient to result in

large changes in noise correlations in the parameter regime of each recording (Figure 5b).

Strong inhibition sharpens tuning and enables accurate decoding
We also examined how different features of the network controlled other aspects of evoked

responses. We began by examining the extent to which differences in the value of each model

parameter could explain differences in stimulus selectivity across recordings. To estimate selectivity,

we drove the model network that was fit to each cortical recording with external inputs constructed

from IC responses to tones, and used the simulated responses to measure the width of the fre-

quency tuning curves of each model neuron. Although each model network received the same exter-

nal inputs, the selectivity of the neurons in the different networks varied widely. The average tuning

width of the neurons in each network varied most strongly with the strength of the inhibitory feed-

back in the network (Figure 5c; partial r2 for inhibition: 0.74, excitation: 0.06, adaptation: 0.48, tonic

input spread: 0.01, and tonic input baseline: 0.37), and varying the strength of inhibition alone was

sufficient to drive large changes in tuning width (Figure 5d). These results are consistent with experi-

ments demonstrating that inhibition can control the selectivity of cortical neurons (Lee et al., 2012),

but suggest that this control does not require structured lateral inhibition.

We also investigated the degree to which the activity patterns generated by the model fit to each

cortical recording could be used to discriminate different external inputs. We trained a decoder to

infer which of seven possible stimuli evoked a given single-trial activity pattern and examined the

extent to which differences in the value of each model parameter could account for the differences

in decoder performance across recordings. Again, the amount of variance explained by the strength

of inhibitory feedback was by far the largest (Figure 5e; partial r2 for inhibition: 0.5, excitation: 0.16,

adaptation 0.27, tonic input spread 0.02, and tonic input baseline 0.03); decoding was most accurate

for activity patterns generated by networks with strong inhibition, consistent with the weak noise

correlations and high selectivity of these networks. Parameter sweeps confirmed that varying only

the strength of inhibition was sufficient to result in large changes in decoder performance

(Figure 5f).

Figure 4 continued

DOI: 10.7554/eLife.19695.012

The following figure supplement is available for figure 4:

Figure supplement 1. Parameter sweeps for responses to external input.

DOI: 10.7554/eLife.19695.013
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Figure 5. Strong inhibition suppresses noise correlations and enhances selectivity and decoding. (a) Scatter plots

showing the mean pairwise noise correlations measured from simulations of the network model fit to each

recording when driven by external input versus the value of the different model parameters. Colors correspond to

recording types as in Figure 4. The recordings shown in Figure 4d are denoted by open circles. Spearman’s rank

correlation p-values for inhibition, excitation, adaptation, tonic input spread, and tonic input baseline were

p<10�18; p ¼ 0:339;p ¼ 0:011;p<10�2, and p<10�3 respectively. (b) The mean pairwise noise correlations measured

from network simulations with different values of the inhibition parameter wI . The values of all other parameters

were held fixed at those fit to each recording. Each line corresponds to one recording. Colors correspond to

recording types as in Figure 4. (c,e) Scatter plots showing tuning width and decoding error, plotted as in (a). For

(c), Spearman rank correlation p-values for inhibition, excitation, adaptation, tonic input spread, and tonic input

baseline were p<10�15;p ¼ 0:642; p<10�4; p<10�2, and p<10�9 respectively. For (e), Spearman rank correlation

p-values for inhibition, excitation, adaptation, tonic input spread, and tonic input baseline were

Figure 5 continued on next page
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Activity of fast-spiking (FS) neurons is increased during periods of
cortical desynchronization with weak noise correlations
Our model-based analyses suggest an important role for feedback inhibition in controlling the way

in which responses to sensory inputs are shaped by intrinsic dynamics. In particular, our results pre-

dict that inhibition should be strong in dynamical regimes with weak noise correlations. To test this

prediction, we performed further analysis of our recordings to estimate the strength of inhibition in

each recorded population. We classified the neurons in each recording based on the width of their

spike waveforms (Figure 6—figure supplement 1). The waveforms for all recording types fell into

two distinct clusters, allowing us to separate fast-spiking (FS) neurons from regular-spiking (RS) neu-

rons. In general, more than 90% of FS cortical neurons have been reported to be parvalbumin-posi-

tive (PV+) inhibitory neurons (Nowak et al., 2003; Kawaguchi and Kubota, 1997; Barthó et al.,

2004; Cho et al., 2010; Madisen et al., 2012; Stark et al., 2013; Cohen and Mizrahi, 2015), and

this value approaches 100% in the deep cortical layers where we recorded (Cardin et al., 2009).

While the separation of putative inhibitory and excitatory neurons based on spike waveforms is

imperfect (nearly all FS neurons are inhibitory, but a small fraction (less than 20%) of RS neurons are

also inhibitory [Markram et al., 2004]), it is still effective for approximating the overall levels of

inhibitory and excitatory activity in a population.

Given the results of our model-based analyses, we hypothesized that the overall level of activity

of FS neurons should vary inversely with the strength of noise correlations. To identify sets of trials in

each recording that were likely to have either strong or weak noise correlations, we measured the

level of cortical synchronization. Previous studies have shown that noise correlations are strong when

the cortex is in a synchronized state, where activity is dominated by concerted, large-scale fluctua-

tions, and weak when the cortex is in a desynchronized state, where these fluctuations are sup-

pressed (Pachitariu et al., 2015; Schölvinck et al., 2015).

We began by analyzing our recordings from V1 of awake mice. We classified the cortical state

during each stimulus presentation based on the ratio of low-frequency LFP power to high-frequency

LFP power (Sakata and Harris, 2012) and compared evoked responses across the most synchro-

nized and desynchronized subsets of trials (Figure 6a). As expected, noise correlations were gener-

ally stronger during synchronized trials than during desynchronized trials, and this variation in noise

correlations with cortical synchrony was evident both within individual recordings and across animals

(Figure 6b–c). As predicted by our model-based analyses, the change in noise correlations with cor-

tical synchrony was accompanied by a change in FS activity; there was a four-fold increase in the

mean spike rate of FS neurons from the most synchronized trials to the most desynchronized trials,

while RS activity remained constant (Figure 6d–f).

We next examined our recordings from gerbil A1 under urethane in which the cortex exhibited

transitions between distinct, sustained synchronized and desynchronized states (Figure 6g). As in

our awake recordings, cortical desynchronization under urethane was accompanied by a decrease in

noise correlations and an increase in FS activity (Figure 6h–k). In fact, both FS and RS activity

increased with cortical desynchronization under urethane, but the increase in FS activity was much

larger (110% and 42%, respectively). The increase in RS activity suggests that cortical desynchroniza-

tion under urethane may involve other mechanisms in addition to an increase in feedback inhibition

(a comparison of the model parameters fit to desynchronized and synchronized urethane recordings

(Figure 3—figure supplement 2) suggests that the average level of tonic input is significantly higher

during desynchronization (desynchronized: 0.075 ± 0.008, synchronized: 0.0195 ± 0.0054, p ¼0.006)).

The change in cortical state that accompanies locomotion can be
explained by an increase in feedback inhibition
Finally, we asked whether the same mechanisms might be used to control the changes in network

dynamics that accompany transitions in behavioral state, such as those induced by locomotion. We

Figure 5 continued

p<10�9; p ¼ 0:799;p ¼ 0:0766;p<10�2, and p<10�4 respectively. (d,f) The tuning width and decoding error

measured from network simulations with different values of the inhibition parameter wI , plotted as in (b).

DOI: 10.7554/eLife.19695.014
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Figure 6. Fast-spiking neurons are more active during periods of cortical desynchronization with weak noise correlations. (a) The cortical synchrony at

different points during two recordings from V1 of awake mice, measured as the log of the ratio of low-frequency (3–10 Hz) LFP power to high-frequency

(11–96 Hz). The distribution of synchrony values across each recording is also shown. The lines indicate the median of each distribution. (b) A scatter

plot showing the noise correlations measured during trials in which the cortex was in either a relatively synchronized (sync) or desynchronized (desync)

state for each recording. Each point indicates the mean pairwise correlations between the spiking activity of all pairs of neurons in one recording (after

binning the activity in 15 ms bins). Trials with the highest 50% of synchrony values were classified as sync and trials with the lowest 50% of synchrony

values were classified as desync. Values for 13 different recordings are shown. The Wilcoxon two-sided signed-rank test p-value was p<10�2. (c) A

scatter plot showing noise correlations versus the mean synchrony for trials with the highest and lowest 50% of synchrony values for each recording.

Colors indicate different recordings. The Spearman rank correlation significance among all recordings was p<10�2. (d) Spectrograms showing the

average LFP power during trials with the highest (sync) and lowest (desync) 20% of synchrony values across all recordings. The values shown are the

deviation from the average spectrogram computed over all trials. (e) The average PSTHs of FS and RS neurons measured from evoked responses

during trials with the highest (sync) and lowest (desync) 20% of synchrony values across all recordings. The lines show the mean across all neurons, and

the error bars indicate ±1 SEM. (f) The median spike rate of FS and RS neurons during the period from 0 to 500 ms following stimulus onset, averaged

across trials in each synchrony quintile. The lines show the mean across all neurons, and the error bars indicate ±1 SEM. The Wilcoxon two-sided

signed-rank test comparing FS activity between the highest and lowest quintile had a significance of p<10�9 and for RS activity, the significance was

p<10�2. (g) The cortical synchrony at different points during a urethane recording, plotted as in (a). The line indicates the value used to classify trials as

synchronized (sync) or desynchronized (desync). (h) A scatter plot showing the noise correlations measured during trials in which the cortex was in either

a synchronized (sync) or desynchronized (desync) state. Values for two different recordings are shown. Each point for each recording shows the noise

correlations measured from responses to a different sound. The Wilcoxon two-sided signed-rank test between sync and desync state noise correlations

had a significance of p<10�3. (i) Spectrograms showing the average LFP power during synchronized and desynchronized trials, plotted as in (d). (j) The

average PSTHs of FS and RS neurons during synchronized and desynchronized trials, plotted as in (e). (k) The median spike rate of FS and regular-

Figure 6 continued on next page
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recorded four separate populations of 100–200 neurons each, from two head-fixed mice that were

allowed to run on a treadmill. We found that stationary periods were often accompanied by slow

timescale population-wide fluctuations in firing (Figure 7a–b, top row). We fit the network model to

these stationary periods, and verified that we could reproduce these dynamics (Figure 7a–b, top

row, and statistics for all recordings and models in Figure 7—figure supplement 1). Running epochs

were, by comparison, much more desynchronized (Figure 7a–b, bottom row), consistent with previ-

ous observations made with intracellular and LFP measurements (Vinck et al., 2015; Niell and

Stryker, 2010; McGinley et al., 2015a; Polack et al., 2013; Bennett et al., 2013).

To determine which changes in our model best captured this state transition, we allowed either

one or two parameters to change from the values fit to stationary periods. By changing two parame-

ters, inhibition and adaptation, the model was able to reproduce the statistics of the neural popula-

tion activity during running (Figure 7a–b, bottom row). Out of all the possible single-parameter

changes, the best fits were achieved through changes in inhibition, while out of all the possible two-

parameter changes, the best fits were achieved through changes in inhibition and adaptation

(Figure 7c). In all four recordings, the model captured the change in dynamics associated with run-

ning through an increase in inhibition and a decrease in adaptation (Figure 7d). The changes in FS

and RS activity in the recordings were consistent with such changes. Although both FS and RS popu-

lations increased their activity during running, the relative increase in FS activity was significantly

larger (Figure 7e; on average, FS activity increased by 87% and RS activity increased by 28%). Our

results suggest that the increase in RS activity during running despite increased FS activity is likely

due to an accompanying decrease in adaptation.

Discussion
We have shown here that a deterministic spiking network model is capable of intrinsically generating

population-wide fluctuations in neural activity, without requiring external modulating inputs. It has

been observed in vitro that population-wide fluctuations in neural activity persist without external

input (Sanchez-Vives et al., 2010; Sanchez-Vives and McCormick, 2000). Such fluctuations also

arise in vivo in localized cortical networks, in both awake and anesthetized animals, without feedfor-

ward inputs (Shapcott et al., 2016) or any external inputs (Cohen-Kashi Malina et al., 2016). How-

ever, no previous models have been able to reproduce such large-scale coordinated activity in a

deterministic network of connected neurons; previous models only reproduced single-neuron vari-

ability (Vogels and Abbott, 2005; Litwin-Kumar and Doiron, 2012). By fitting our spiking network

model with adaptation currents directly to experimental recordings, we demonstrated that the

model is able to reproduce the wide variety of multi-neuron cortical activity patterns observed in

vivo without the need for external noise. Through chaotic amplification of small perturbations, the

model generates activity with both trial-to-trial variability in the spike times of individual neurons and

coordinated, large-scale fluctuations of the entire network. These fluctuations continue in the pres-

ence of sensory stimulation, thus creating noise correlations in a deterministic neural network.

The development of a network model that can reproduce experimentally-observed activity pat-

terns through intrinsic variability alone is a major advance beyond previous models (Doiron et al.,

2016; de la Rocha et al., 2007; Renart et al., 2010; Ecker et al., 2014). Networks in the classical

balanced state produce activity with zero mean pairwise correlations between neurons

(Doiron et al., 2016; van Vreeswijk and Sompolinsky, 1996; Renart et al., 2010) and, thus, are

not suitable to describe the population-wide fluctuations that are observed in many brain states in

vivo (Okun et al., 2015). To obtain single-neuron rate fluctuations in balanced networks, structured

Figure 6 continued

spiking RS neurons during the period from 0 to 500 ms following stimulus onset during synchronized and desynchronized trials. The points show the

mean across all neurons, and the error bars indicate ±1 SEM. The Wilcoxon two-sided signed-rank test comparing FS activity between the sync and

desync had a significance of p<10�3 and for RS activity, the significance was p<10�5.

DOI: 10.7554/eLife.19695.015

The following figure supplement is available for figure 6:

Figure supplement 1. Classification of neuron types by spike width.
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Figure 7. The change in dynamics during locomotion is best explained by an increase in inhibition and a reduction in adaptation. (a) We recorded

populations of neurons in head-fixed mice that were allowed to run on a treadmill. We obtained four separate recordings from two mice, which we

divided into running and stationary epochs. The raster plots and PSTHs show evoked responses recorded of one example population when the animal

was stationary (top) or running (bottom), along with the activity generated by the network model fit to each set of epochs. The units for the vertical axis

on the PSTH are spikes / cell / s. The arrow indicates stimulus onset. (b) Model and data summary statistics for stationary (top) and running (bottom)

epochs for one example population, plotted as in Figure 3. The model fits shown for running epochs were achieved by allowing two parameters

(inhibition and adaptation) to change from fits to stationary epochs. (c) We fit our network model to activity from stationary epochs and investigated

which changes in either one or two parameters best captured the change in dynamics that followed the transition to running. The best achieved cost

with changes in each parameter (values along diagonal), or pair of parameters (values off diagonal), is shown (lower is better). (d) For the pair of

parameters that best described the change in dynamics that followed the transition to running, model inhibition increased and adaptation decreased

for each recording. (e) The spike rates of both FS and RS neurons were increased by running, but the relative increase was significantly larger for FS

neurons in all four recordings (Wilcoxon rank-sum test, p ¼ 0:043;p<10�5;p<10�2;p ¼ 0:037 respectively). Across all recorded neurons, FS activity

increased by 87% and RS activity increased by 28% during running (Wilcoxon rank-sum test, p<10�6).

Figure 7 continued on next page
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connectivity has been used to create clustered networks (Doiron et al., 2016). However, while clus-

tered networks do produce activity with positive correlations between a small fraction of neuron

pairs (less than 1 in 1000), the average noise correlations across all pairs are still near zero and, thus,

these networks are still unable to generate population-wide fluctuations.

We were able to overcome the limitations of previous models and generate intrinsic large-scale

variability that is quantitatively similar to that observed in vivo by using spike-frequency adaptation

currents in excitatory neurons, which have been well-documented experimentally (Nowak et al.,

2003; Compte et al., 2003). The population-wide fluctuations generated by the interaction between

recurrent excitation and adaptation were a robust feature of the network and persisted in more

sophisticated networks that included multiple conductance timescales, many more neurons, spiking

inhibitory neurons, structured connectivity, and kurtotic distributions of synaptic efficacies (see Fig-

ure 2—figure supplement 1).

Although several features of the model network are capable of controlling its intrinsic dynamics,

our analysis suggests that differences in feedback inhibition account for the differences in correla-

tions across our in vivo recordings. When we fit the model to each of our individual recordings, we

found that noise correlations, as well as stimulus selectivity and decoding accuracy, varied strongly

with the strength of inhibition in the network. We also found that the activity of putative inhibitory

neurons in our recordings was increased during periods of cortical desynchronization with weak

noise correlations. Taken together, these results suggest that the control of correlated variability by

inhibition plays a critical role in modulating the impact of intrinsic cortical dynamics on sensory

responses.

Inhibition controls the strength of the large-scale fluctuations that drive
noise correlations
Our results are consistent with experiments showing that one global dimension of variability largely

explains both the pairwise correlations between neurons (Okun et al., 2015) and the time course of

population activity (Ecker et al., 2014). In our network model, the coordinated, large-scale fluctua-

tions that underlie this global dimension of variability are generated primarily by the interaction

between recurrent excitation and adaptation. When inhibition is weak, small deviations from the

mean spike rate can be amplified by strong, non-specific, recurrent excitation into population-wide

events (up states). These events produce strong adaptation currents in each activated neuron, which,

in turn, result in periods of reduced spiking (down states) (Latham et al., 2000; Destexhe, 2009;

Curto et al., 2009; Mochol et al., 2015). The alternations between up states and down states have

an intrinsic periodicity given by the timescale of the adaptation currents, but the chaotic nature of

the network adds an apparent randomness to the timing of individual events, thus creating intrinsic

temporal variability. Several previous studies (Tsodyks et al., 1998; Loebel et al., 2007) have mod-

elled alternations between up states and down states using synaptic depression rather than spike-

frequency adaptation. However, to our knowledge, there is no experimental evidence for the

involvement of synaptic depression in the control of cortical state.

The intrinsic temporal variability in the network imposes a history dependence on evoked

responses; because of the build-up of adaptation currents during each spiking event, external inputs

arriving shortly after an up state will generally result in many fewer spikes than those arriving during

a down state (Curto et al., 2009). This history dependence creates a trial-to-trial variability in the

total number of stimulus-evoked spikes that is propagated and reinforced across consecutive stimu-

lus presentations to create noise correlations. However, when the strength of the inhibition in the

network is increased, the inhibitory feedback is able to suppress some of the amplification by the

recurrent excitation, and the transitions between clear up and down states are replaced by weaker

fluctuations of spike rate that vary more smoothly over time. If the strength of the inhibition is

Figure 7 continued
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The following figure supplement is available for figure 7:

Figure supplement 1. Statistics for all fits.
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increased even further, such that it becomes sufficient to counteract the effects of the recurrent exci-

tation entirely, then the large-scale fluctuations in the network disappear, weakening the history

dependence of evoked responses and eliminating noise correlations.

Strong inhibition sharpens tuning curves and enables accurate decoding
by stabilizing network dynamics
Numerous experiments have demonstrated that inhibition can shape the tuning curves of cortical

neurons, with stronger inhibition generally resulting in sharper tuning (Isaacson and Scanziani,

2011). The mechanisms involved are still a subject of debate, but this sharpening is often thought to

result from structured connectivity that produces differences in the tuning of the excitatory and

inhibitory synaptic inputs to individual neurons; lateral inhibition, for example, can sharpen tuning

when neurons with similar, but not identical, tuning properties inhibit each other. Our results, how-

ever, demonstrate that strong inhibition can sharpen tuning in a network without any structured con-

nectivity simply by controlling its dynamics.

In our model, broad tuning curves result from the over-excitability of the network. When inhibi-

tion is weak, every external input will eventually excite every neuron in the network because those

neurons that receive the input directly will relay indirect excitation to the rest of the network. When

inhibition is strong, however, the indirect excitation is largely suppressed, allowing each neuron to

respond selectively to only those external inputs that it receives either directly or from one of the

few other neurons to which it is strongly coupled. Thus, when inhibition is weak and the network is

unstable, different external inputs will trigger similar population-wide events (Bathellier et al.,

2012), so the selectivity of the network in this regime is weak and its ability to encode differences

between sensory stimuli is poor. In contrast, when inhibition is strong and the network is stable, dif-

ferent external inputs will reliably drive different subsets of neurons, and the activity patterns in the

network will encode different stimuli with high selectivity and enable accurate decoding.

Two different dynamical regimes with weak noise correlations
A number of studies have observed that the noise correlations in cortical networks can be extremely

weak under certain conditions (Ecker et al., 2010; Renart et al., 2010; Hansen et al., 2012;

Pachitariu et al., 2015). It was originally suggested that noise correlations were weak because the

network was in an asynchronous state in which neurons are continuously depolarized with a resting

potential close to the spiking threshold (Renart et al., 2010; van Vreeswijk and Sompolinsky,

1996). Experimental support for this classical asynchronous state has been provided by intracellular

recordings showing that the membrane potential of cortical neurons is increased during locomotion

(McGinley et al., 2015a) and hyper-arousal (Constantinople and Bruno, 2011), resulting in tonic

spiking. However, other experiments have shown that the membrane potential of cortical neurons in

behaving animals can also be strongly hyperpolarized with clear fluctuations between up and down

states (Sachidhanandam et al., 2013; Tan et al., 2014; McGinley et al., 2015a; Polack et al., 2013)

(for a table listing the species and brain area investigated in each of these studies, see

Supplementary file 2).

Many forms of arousal tend to reduce the power of these low-frequency fluctuations in membrane

potential (Sachidhanandam et al., 2013; Bennett et al., 2013; Polack et al., 2013; McGinley et al.,

2015a; Crochet et al., 2011); however, there is mounting evidence suggesting that different forms

of arousal may have distinct effects on neural activity (McGinley et al., 2015b). Locomotion in partic-

ular tends to depolarizate cortical neurons, and in some cases increases tonic spiking (Niell and

Stryker, 2010). In contrast, task-engagement in stationary animals has been associated with hyper-

polarization and suppression of activity (McGinley et al., 2015a; Otazu et al., 2009; Buran et al.,

2014) (but not all studies find a decrease in membrane potential during task engagement

[Sachidhanandam et al., 2013]). The existence of two different dynamical regimes with weak noise

correlations was also apparent in our recordings; while some recordings with weak noise correlations

resembled the classical asynchronous state with spontaneous activity consisting of strong, tonic spik-

ing (e.g. desynchronized urethane recordings and some awake recordings), other recordings with

weak noise correlations exhibited a suppressed state with relatively low spontaneous activity that

contained clear, albeit weak, up and down states (e.g. FMM recordings and other awake recordings).
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Our model was able to accurately reproduce spontaneous activity patterns and generate evoked

responses with weak noise correlations in both of these distinct regimes.

In addition to strong inhibition, the classical asynchronous state with strong, tonic spiking appears

to require a combination of weak adaptation and an increase in the number of neurons receiving

strong tonic input (see parameter sweeps in Figure 2c–d and parameter values for awake mouse V1

recordings in Figure 3—figure supplement 2). Since large-scale fluctuations arise from the synchro-

nization of adaptation currents across the population, reducing the strength of adaptation dimin-

ishes the fluctuations (Destexhe, 2009; Curto et al., 2009; Mochol et al., 2015). Increasing tonic

input also diminishes large-scale fluctuations, but in a different way (Latham et al., 2000); when a

subset of neurons receive increased tonic input, their adaptation currents may no longer be sufficient

to silence them for prolonged periods, and the activity of these neurons during what would other-

wise be a down state prevents the entire population from synchronizing. When the network in the

asynchronous state is driven by an external input, it responds reliably and selectively to different

inputs. Because the fluctuations in the network are suppressed and its overall level of activity remains

relatively constant, every input arrives with the network in the same moderately-adapted state, so

there is no history dependence to create noise correlations in evoked responses.

Unlike in the classical asynchronous state, networks in the suppressed state have slow fluctuations

in their spontaneous activity, and the lack of noise correlations in their evoked responses is due to

different mechanisms (see parameter values for gerbil A1 FMM recordings in Figure 3—figure sup-

plement 2). The fluctuations in the hyperpolarized network are only suppressed when the network is

driven by external input. In our model, this suppression of the correlated variability in evoked

responses is caused by the supralinearity of the feedback inhibition (Rubin et al., 2015). The level of

spontaneous activity driven by the tonic input to each neuron results in feedback inhibition with a

relatively low gain, which is insufficient to suppress the fluctuations created by the interaction

between recurrent excitation and adaptation. However, when the network is strongly driven by

external input, the increased activity results in feedback inhibition with a much higher gain, which

stabilizes the network and allows it to respond reliably and selectively to different inputs. This

increase in the inhibitory gain of the driven network provides a possible mechanistic explanation for

the recent observation that the onset of a stimulus quenches variability (Churchland et al., 2010)

and switches the cortex from a synchronized to a desynchronized state (Tan et al., 2014), as well as

for the suppression of responses to high-contrast stimuli in alert animals (Zhuang et al., 2014).

Experimental evidence for inhibitory stabilization of cortical dynamics
The results of several previous experimental studies also support the idea that strong inhibition can

stabilize cortical networks and enhance sensory coding. In vitro studies have shown that pharmaco-

logically reducing inhibition increases the strength of the correlations between excitatory neurons in

a graded manner (Sippy and Yuste, 2013). In vivo whole-cell recordings in awake animals have dem-

onstrated that the stimulus-evoked inhibitory conductance, measured at the soma, is much larger

than the corresponding excitatory conductance (Haider et al., 2013). This strong inhibition in awake

animals quickly shunts the excitatory drive and results in sharper tuning and sparser firing than the

balanced excitatory and inhibitory conductances observed under anesthesia (Wehr and Zador,

2003; Haider et al., 2013). During locomotion, fluctuations in activity are reduced and both inhibi-

tory neurons and excitatory neurons increase their firing, but inhibitory neurons are modulated more

strongly in our recordings (Figure 7). There is controversy in the literature as to whether somato-

statin-positive (SOM+) inhibitory neurons increase their activity during running, but several studies

have found an increase in putative parvalbumin-positive (PV+) inhibitory neuron firing during running

(Niell and Stryker, 2010; Polack et al., 2013; Vinck et al., 2015; Pakan et al., 2016), consistent

with our results.

While some of the increased inhibition in awake behaving animals may be due to inputs from

other brain areas (Yu et al., 2015), the increased activity of local inhibitory interneurons appears to

play an important role (Schneider et al., 2014; Kato et al., 2013; Kuchibhotla et al., 2016). How-

ever, not all studies have observed increased inhibition in behaving animals (Zhou et al., 2014), and

the effects of behavioral state on different inhibitory interneuron types are still being investigated

(Gentet et al., 2010, 2012; Polack et al., 2013). In our model, we ignored the diversity of interneur-

ons in cortex. However, our analyses are generalizable to any interneuron population that may be

upregulated during cortical desynchronization. Any interneuron population that exerts a net
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inhibitory effect on pyramidal neurons could act to suppress large-scale fluctuations (Pfeffer et al.,

2013). Determining how each class of inhibitory interneurons contributes to the control of cortical

dynamics and modeling those contributions explicitly are important topics for future research.

The effects of local inhibition on sensory coding have also been tested directly using optoge-

netics. While the exact roles played by different inhibitory neuron types are still under investigation

(Lee et al., 2014; Seybold et al., 2015), the activation of inhibitory interneurons generally results in

sharper tuning, weaker correlations, and enhanced behavioral performance (Wilson et al., 2012;

Lee et al., 2012; Chen et al., 2015), while suppression of inhibitory interneurons has the opposite

effect, decreasing the signal-to-noise ratio and reliability of evoked responses across trials

(Zhu et al., 2015; Chen et al., 2015). These results demonstrate that increased inhibition enhances

sensory processing and are consistent with the overall suppression of cortical activity that is often

observed during active behaviors (Otazu et al., 2009; Schneider et al., 2014; Kuchibhotla et al.,

2016; Buran et al., 2014). In fact, one recent study found that the best performance in a detection

task was observed on trials in which the pre-stimulus membrane voltage was hyperpolarized and

low-frequency fluctuations were absent (McGinley et al., 2015a), consistent with a suppressed, inhi-

bition-stabilized network state.

Acetylcholine and norepinephrine can modulate the inhibitory control
of cortical dynamics
Neuromodulators can exert a strong influence on cortical dynamics by regulating the balance of

excitation and inhibition in the network. While the exact mechanisms by which neuromodulators con-

trol cortical dynamics are not clear, several lines of evidence suggest that neuromodulator release

serves to enhance sensory processing by increasing inhibition. Increases in acetylcholine (ACh) and

norepinephrine (NE) have been observed during wakefulness and arousal (Berridge and Water-

house, 2003; Jones, 2008), and during periods of cortical desynchronization in which slow fluctua-

tions in the LFP are suppressed (Goard and Dan, 2009; Chen et al., 2015; Castro-Alamancos and

Gulati, 2014). Stimulation of the basal forebrain has been shown to produce ACh-mediated

increases in the activity of FS neurons and decrease the variability of evoked responses in cortex

(Sakata, 2016; Castro-Alamancos and Gulati, 2014; Goard and Dan, 2009). In addition, optoge-

netic activation of cholinergic projections to cortex resulted in increased firing of SOM+ inhibitory

neurons and reduced slow fluctuations (Chen et al., 2015). The release of NE in cortex through

microdialysis had similar effects, increasing fast-spiking activity and reducing spontaneous spike

rates (Castro-Alamancos and Gulati, 2014), while blocking NE receptors strengthened slow fluctua-

tions in membrane potential (Constantinople and Bruno, 2011). More studies are needed to tease

apart the effects of different neurotransmitters on pyramidal neurons and interneurons (Castro-

Alamancos and Gulati, 2014; Chen et al., 2015; Sakata, 2016), but much of the existing evidence

is consistent with our results in suggesting that acetylcholine and norepinephrine can suppress intrin-

sic fluctuations and enhance sensory processing in cortical networks by increasing inhibition.

Simulating the neocortical architecture
Recently, there have been major efforts toward constructing neural network simulations of increas-

ingly larger scale (Izhikevich and Edelman, 2008) and biological fidelity (Markram et al., 2015).

There are many biological sources of information that can constrain the parameters of such large-

scale simulations, including physiological (Markram et al., 2015), anatomical (Lee et al., 2016;

Cossell et al., 2015; Wertz et al., 2015) and genetic (Pfeffer et al., 2013; Tasic et al., 2016). How-

ever, while such complex simulations may be able to capture the relevant properties of a circuit and

replicate features of its neural activity in detail, they may not necessarily provide direct insight into

the general mechanisms that underlie the circuit’s function. Thus, a complementary stream of

research is needed to seek minimal functional, yet physiologically-based, models that are capable of

reproducing relevant phenomena. The model we have investigated here includes only a very

restricted set of physiological properties, yet is able to reproduce a wide range of dynamics

observed across different species, brain areas, and behavioral states. This simple model provides a

compact and intuitive description of the circuit mechanisms that are capable of coordinated dynam-

ics in networks with intrinsic variability. We have already shown that the same mechanisms can also
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control the dynamics of more complex functional models, but further work is needed to develop

methods to bridge the gap between functional models and large-scale digital reconstructions.

Materials and methods
All of the recordings analyzed in this study have been described previously, except for the awake V1

data recorded during locomotion. Only a brief summary of the relevant experimental details are pro-

vided here. Each recording is considered as a single sample point to which we fit our model. Thus,

our sample size is 59. This is justified as sufficient because our samples span multiple brain regions

and multiple species, and may be considered as representative activity for a range of different brain

states. Due to the sample size, we used the Spearman’s (non-parametric) rank correlation in most of

our analyses.

Mouse V1, awake passive
The experimental details for the mouse V1 awake passive recordings have been previously described

(Okun et al., 2015). The recordings were performed on male and female mice older than 6–7 weeks,

of C57BL/6J strain. Mice were on 12 hr non-reversed light-dark regime. The mice were implanted

with head plates under anesthesia. After head plate implant each mouse was housed individually.

After a few days of recovery the mice were accustomed to having their head fixed while sitting or

standing in a custom built tube. On the day of the recording, the mice were briefly anesthetised

with isoflurane, and a small craniectomy above V1 was made. Recordings were performed at least

1.5 hr after the animals recovered from the anesthesia. Buzsaki32 or A4�8 silicon probes were used

to record the spiking activity of populations of neurons in the infragranular layers of V1.

Visual stimuli were presented on two of the three available LCD monitors, positioned ~25 cm

from the animal and covering a field of view of ~120˚ � 60˚, extending in front and to the right of

the animal. Visual stimuli consisted of multiple presentations of natural movie video clips. For record-

ings of spontaneous activity, the monitors showed a uniform grey background.

Mouse V1, running
Two additional recordings were performed on two female mice, 14 and 20 weeks old. These mice

expressed ChR2 in PV+ neurons (Pvalbtm1(cre)Arbr driver crossed with Ai32 reporter). Mice were on

12 hr non-reversed light-dark regime. The mice were implanted with head plates under anesthesia.

After head plate implant each mouse was housed individually. After a few days of recovery the mice

were accustomed to having their head fixed while standing or running on a styrofoam treadmill. On

the day of the recording, the mice were briefly anesthetized with isoflurane and a small craniectomy

was made above V1. Recordings were performed at least 1.5 hr after recovery from the anesthesia.

Mice were head-fixed above the treadmill and allowed to run at will while multi-neuron recordings

were made across all layers using probes that were inserted roughly perpendicular to the cortical

surface. Raw voltage signals were referenced against an Ag/AgCl wire in a saline bath above the cra-

niectomy, amplified with analog Intan amplifiers, and digitized at 25 kHz with a WHISPER acquisition

system. Visual stimuli were presented on three LCD monitors, positioned as three sides of a square,

20 cm from the animal and covering a field of view of approximately 270 x 70, centered on the direc-

tion of the mouses nose (Okun et al., 2015). Visual stimuli consisted of drifting gratings of different

sizes, approximately centered on the receptive field location of the recorded neurons. Stimuli were

either 1 or 2 s long, and in the periods between stimuli (durations of 0.4–1 s), the monitors showed a

uniform grey background.

Rat A1
The experimental procedures for the rat A1 recordings have been previously described

(Luczak et al., 2009). Briefly, head posts were implanted on the skull of male Sprague Dawley rats

(300–500 g, normal light cycle, regular housing conditions) under ketamine-xylazine anesthesia, and

a hole was drilled above the auditory cortex and covered with wax and dental acrylic. After recovery,

each animal was trained for 6–8 d to remain motionless in the restraining apparatus for increasing

periods (target, 1–2 hr). On the day of the recording, each animal was briefly anesthetized with iso-

flurane and the dura resected; after a 1 hr recovery period, recording began. The recordings were

made from infragranular layers of auditory cortex with 32-channel silicon multi-tetrode arrays.
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Sounds were delivered through a free-field speaker. As stimuli we used pure tones (3, 7, 12, 20,

or 30 kHz at 60 dB). Each stimulus had duration of 1 s followed by 1 s of silence. All procedures con-

formed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Gerbil A1
The gerbil A1 recordings have been described in detail previously (Pachitariu et al., 2015). Briefly,

adult male gerbils (70–90 g, P60-120, normal light-dark cycle, group housed) were anesthetized with

one of three different anesthetics: ketamine/xylazine (KX), fentanyl/medetomidine/midazolam

(FMM), or urethane. A small metal rod was mounted on the skull and used to secure the head of the

animal in a stereotaxic device in a sound-attenuated chamber. A craniotomy was made over the pri-

mary auditory cortex, an incision was made in the dura mater, and a 32-channel silicon multi-tetrode

array was inserted into the brain. Only recordings from A1 were analyzed. Recordings were made

between 1 and 1.5 mm from the cortical surface (most likely in layer V). All gerbils recorded were

used in this study, except for one gerbil under FMM which exhibited little to no neural activity during

the recording period.

Sounds were delivered to speakers coupled to tubes inserted into both ear canals for diotic

sound presentation along with microphones for calibration. Repeated presentations of a 2.5 s seg-

ment of human speech were presented at a peak intensity of 75 dB SPL. For analyses of responses

to different speech tokens, seven 0.25 s segments were extracted from the responses to each 2.5 s

segment.

Gerbil IC
The gerbil IC recordings have been described in detail previously (Garcia-Lazaro et al., 2013).

Recordings were made under ketamine/xylazine anesthesia using a multi-tetrode array placed in the

low-frequency laminae of the central nucleus of the IC. Experimental details were otherwise identical

to those for gerbil A1. In addition to the human speech presented during the A1 recordings, tones

with a duration of 75 ms and frequencies between 256 Hz and 8192 Hz were presented at intensities

between 55 and 85 dB SPL with a 75 ms pause between each presentation.

All relevant data are available from the authors upon request.

Spike sorting and filtering
Details of spike sorting for most recordings have been described in detail before in the respective

original publications. Briefly, recordings from mouse V1 (awake passive) and rat A1 were spike

sorted with KlustaKwik and further manually inspected in KlustaViewa. Recordings from gerbil A1 or

IC were spike sorted with a custom-modified version of KlustaKwik. The unpublished recordings

from mouse V1 (awake running) were spike sorted with Kilosort using the default settings

(Pachitariu et al., 2016) and inspected in Phy (Rossant et al., 2016). Only units with spike rates

above 0.1 Hz were considered in the analysis. The spike waveforms considered in the FS/RS classifi-

cation for all recordings were obtained from the Kilosort templates, which correspond to the mean

spike shapes.

Spiking network model
We developed a network model using conductance-based quadratic integrate and fire neurons.

There are three currents in the model: an excitatory, an inhibitory and an adaptation current. The

subthreshold membrane potential for a single neuron i obeys the equation

tm

dVi

dt
¼�ðVi�ELÞðVi �VthÞ� gEi

ðVi �EEÞ� gIiðVi�EIÞ� gAi
ðVi �EAÞ:

When V>Vth, a spike is recorded in the neuron and the neuron’s voltage is reset to Vreset ¼ 0:9Vth.

For simplicity, we set Vth ¼ 1 and the leak voltage EL ¼ 0. The excitatory voltage EE ¼ 2Vth and EI ¼

EA ¼�0:5Vth: Each of the conductances has a representative differential equation. The excitatory

conductance obeys

tE

dgE

dt
¼�gE þ Jsþb:
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where J is the matrix of excitatory connectivity and b is the vector of tonic inputs to the neurons.

The matrix of connectivity is random with a probability of 5% for the network of 512 neurons and

their connectivities are randomly chosen from a uniform distribution between 0 and wE. The tonic

inputs b have a minimum value b0, which we call the tonic input baseline added to a random draw

from an exponential distribution with mean b1, which we call the tonic input spread, such that for

neuron i, bðiÞ ¼ b0þ exprndðb1Þ. The inhibitory conductance obeys

tI
dgI
dt
¼�gI þwIðexpðc

P
sÞ� 1Þ:

where c controls the gain of the inhibitory conductance. The inhibitory conductance is global, i.e.

each neuron receives the same inhibitory feedback, and it obeys an exponential supralinearity

(Rubin et al., 2015).

The adaptation conductance obeys

tA

dgA

dt
¼�gA þwAs:

The simulations are numerically computed using Euler’s method with a time-step of 0.75 ms (this

was the lock-out window used for spike-sorting the in vivo recordings and allowed for fast simula-

tions). To avoid numerical instabilities at low voltages, we rectified the voltages at the activation

potential of the inhibitory conductance. Each parameter set was simulated for 900 s. The timescales

are set to tm ¼ 20 ms, tE ¼ 5:10 ms, tI ¼ 3:75 ms, tA ¼ 375 ms, and the inhibitory non-linearity con-

trolled by c¼ 0:25. The remaining five parameters (wI , wA, wE, b1, and b0) were fit to the spontaneous

activity from multi-neuron recordings using the techniques described below. Their ranges were

(0.01–0.4), (0.4–1.45), (2.50–5.00), (0.005–0.10), and (0.0001–0.05) respectively.

To illustrate the ability of the network to generate activity patterns with macroscopic variability,

we simulated spontaneous activity with a parameter set that produces up and down state dynamics.

Figure 2a shows the membrane potential of a single neuron in this simulation and its conductances

at each time step. Figure 2b shows the model run twice with the same set of initial conditions and

parameters, but with an additional single spike inserted into the network on the second run (circled

in green).

This code will be made available for use after publication.

Parameter sweep analysis
Figure 2c and d summarize the effects of changing each parameter on the structure of the sponta-

neous activity patterns generated by the model. We held the values for all but one parameter fixed

and swept the other parameter across a wide range of values. The fixed parameter values were set

to approximately the median values obtained from fits to all in vivo recordings. Figure 5b,d and f

and Figure 4—figure supplement 1 show the results of similar parameter sweep analyses for stimu-

lus-driven activity with the external input to the network derived from IC activity as described below.

For these analyses, the values of the parameters that were not swept were fixed at those fit to each

individual recording.

GPU implementation
We accelerated the network simulations by programming them on graphics processing units (GPUs)

such that we were able to run them at 650x real time with 15 networks running concurrently on the

same GPU. We were thus able to simulate »10,000 s of simulation time in 1 s of real time. To

achieve this acceleration, we took advantage of the large memory bandwidth of the GPUs. For net-

works of 512 neurons, the state of the network (spikes, conductances and membrane potentials) can

be stored in the very fast shared memory available on each multiprocessor inside a GPU. A separate

network was simulated on each of the 8 or 15 multiprocesssors available (video cards were GTX 690

or Titan Black). Low-level CUDA code was interfaced with Matlab via mex routines.

Summary statistics
Several statistics of spikes were used to summarize the activity patterns observed in the in vivo

recordings and in the network simulations. Because there were on the order of 50 neurons in each

recording, all of the statistics below were influenced by small sample effects. To replicate this bias in
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the analysis of network simulations, we subsampled 50 neurons from the network randomly and

computed the same statistics we computed from the in vivo recordings.

The noise correlations between each pair of neurons in each recording were measured from

responses to speech. The response of each neuron to each trial was represented as a binary vector

with 15 ms time bins. The total correlation for each pair of neurons was obtained by computing the

correlation coefficient between the actual responses. The signal correlation was computed after

shuffling the order of repeated trials for each time bin. The noise correlation was obtained by sub-

tracting the signal correlation from the total correlation.

The multi-unit activity (MUA) was computed as the sum of spikes in all neurons in bins of 15 ms.

The autocorrelation function of the MUA at time-lag t was computed from the formula

ACFðtÞ ¼
1

Nsamples

X
MUAðtÞ �MUAðtþ tÞ

In the awake recordings (mouse V1 passive and running, rat A1) we observed slow-timescale fluc-

tuations on the order of tens of seconds, which significantly affected the autocorrelation function of

the MUA at lags <1 s. We chose to ignore these fluctuations during model fitting by high-pass filter-

ing the MUA at 1 Hz before computing the autocorrelation function.

To measure the autocorrelation timescale, we fit one side of the ACF with a parametric function

ACFðtÞ~aexpð�t=TÞ � cosðt=ð2ptperiodÞÞ

where a is an overall amplitude, T is a decay timescale and tperiod is the oscillation period of the

autocorrelation function. There was not always a significant oscillatory component in the ACF, but

the timescale of decay accurately captured the duration over which the MUA was significantly

correlated.

Parameter searches
To find the best fit parameters for each individual recording, we tried to find the set of model

parameters for which the in vivo activity and the network simulations had the same statistics. We

measured goodness of fit for each of the three statistics: pairwise correlations, the MUA distribution,

the MUA ACF. Each statistic was normalized appropriately to order 1, and the three numbers

obtained were averaged to obtain an overall goodness of fit.

The distance measure Dc between the mean correlations c� obtained from a set of parameters �

and the mean correlations cn in recording n was simply the squared error Dcðcn; c�Þ ¼ ðcn � c�Þ
2. This

was normalized by the variance of the mean correlations across recordings to obtain the normalized

correlation cost Costc, where hxnin is used to denote the average of a variable x over recordings

indexed by n.

Costc ¼
Dcðcn ;c�Þ

hDcðcn;hcniÞi

The distance measure Dm for the MUA distribution was the squared difference summed over the

order rank bins k of the distribution DmðMUAn;MUA�Þ ¼
X

k

ðMUAnðkÞ�MUA�ðkÞÞ
2. This was normal-

ized by the distance between the data MUA and the mean data MUA. In other words, the cost

measures how much closer the simulation is to the data distribution than the average of all data

distributions.

Costm ¼ DmðMUAn;MUA�Þ
DmðMUAn ;hMUAniÞ

Finally, the distance measure Da for the autocorrelation function of the MUA was the squared dif-

ference summed over time lag bins t of the distribution DaðACFn;ACF�Þ ¼
X

t

ðACFnðtÞ�ACF�ðtÞÞ
2.

This was normalized by the distance between the data ACF and the mean data ACF.

Costa ¼
DaðACFn ;ACF�Þ
DaðACFn;hACFniÞ

The total cost of parameters � on recording n is therefore Costðn; �Þ ¼Costc þCostmþCosta.
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Approximately one million networks were simulated on a grid of parameters for 900 s each of spon-

taneous activity, and their summary statistics (c�;MUA� and ACF�) were retained. The Cost was

smoothed for each recording by averaging with the nearest 10 other simulations on the grid. This

ensured that some of the sampling noise was removed and parameters were estimated more

robustly. The best fit set of parameters was chosen as the minimizer of this smoothed cost function,

on a recording by recording basis.

Evaluation of the goodness-of-fit of the model
We computed the upper limit for the explained variance of the model based on the recordings. We

split each neural recording into two halves (interleaved segments of 4 s each) and computed the

amount of variance in statistics from one half of the recording that is explained by the other half of

the recording. We compared this to the amount of variance in the statistics of the full recording that

was explained by the model.

Alternative Gibbs sampling parameter optimization
We also demonstrate an alternative approach to finding the best fitting parameters through a sam-

pling-based optimization procedure (Figure 3—figure supplement 1). This reduces the necessary

number of simulations from 1 million to 100,000. Future work might in principle devise even faster

optimizations, thus allowing analysis on a bigger scale than presented here. Briefly, the sampling-

based optimization is based on defining the energy landscape as the negative of the cost function,

and thus defining a probability distribution over parameters Pð�Þ ¼ expð�Costð�Þ=TÞ, where T is the

temperature. We use a proposal distribution that always proposes neighbors of the current sample

on the grid on which we did the full parameter sweeps, and accept the proposals according to the

balance equations of Markov Chain Monte Carlo sampling (MCMC):

ProbðacceptÞ ¼
Pð�newÞ

Pð�newÞþPð�oldÞ

¼
1

1þ expð�ðCostð�newÞ�Costð�oldÞÞ=TÞ

To avoid the MCMC chains getting stuck into low probability parts of the energy landscape, we

restart the chain every 50 samples from the pool of already-sampled points, chosen with probability

proportional to its Pð�Þ. Furthermore, we allow the chain used to optimize the model parameters for

one recording to use information from the chains used for the other recordings by pooling together

the already-sampled points from all datasets and restarting chains based on all these points.

NMDA and GABAB conductance network
We added long timescale excitatory and inhibitory conductances to the model and simulated the

model at multiple levels of inhibitory feedback strength. The strength of the NMDA conductance

was 4% the strength of the AMPA conductance and tNMDA ¼ 100 ms (thus the integrated current was

approximately the same as the AMPA integrated current injection). The strength of the GABAB con-

ductance was 2% the strength of the GABA conductance and it had the same timescale as NMDA.

The parameter set used for Figure 2—figure supplement 1a was � = (0.51, wI , 2.6, 0.008, 0.037),

where wI ranged from 0.02 to 0.25.

Clustered neuronal network with intrinsic variability and spiking
inhibitory neurons
We also simulated a clustered architecture with variability and adaptation currents. This model con-

sisted of 144 clusters, each with 32 neurons, eight of which were inhibitory neurons and 24 of which

were excitatory neurons. The probability of within cluster excitatory-excitatory (E-E) connectivity was

0.3, and within cluster inhibitory-excitatory (I-E) and excitatory-inhibitory (E-I) were 0.15 and 0.1

respectively. The probability of out of cluster E-E, I-E, and E-I connectivity were 0.012, 0.03, and

0.01 respectively. The inhibitory-inhibitory connectivity was unclustered. The probability of connec-

tion was 0.01 and its strength was 0.17. The average connection strengths for E-E and I-E were

0.024 and 0.016 respectively. The E-I strength in Figure 2—figure supplement 1b ranged from
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0.025 to 0.057. The adaptation current had strength 0.45 and tA ¼ 220 ms. The membrane timescale

for excitatory and inhibitory neurons were 25 ms and 5 ms respectively, and tE ¼ 6 ms and tI ¼ 3

ms.

Stimulus-driven activity
Once the simulated networks were fit to the spontaneous neuronal activity, we drove them with an

external input to study their evoked responses. The stimulus was either human speech (as presented

during our gerbil A1 recordings) or pure tones. The external input to the network was constructed

using recordings from 563 neurons from the inferior colliculus (IC). For all recordings in the IC the

mean pairwise noise correlations were near-zero and the Fano Factors of individual neurons were

close to 1 (Garcia-Lazaro et al., 2013), suggesting that responses of IC neurons on a trial-by-trial

basis are fully determined by the stimulus alone, up to Poisson-like variability. Thus, we averaged the

responses of IC neurons over trials and drove the cortical network with this trial-averaged IC activity.

We binned IC neurons by their preferred frequency in response to pure tones, and drove each

model cortical neuron with a randomly chosen subset of 10 neurons from the same preferred-fre-

quency bin. We rescaled the IC activity so that the input to the network had a mean value of 0.06

and a maximum value of 0.32, which was three times greater than the average tonic input.

We kept the model parameters fixed at the values fit to spontaneous activity and drove the net-

work with 330 repeated presentations of the stimulus. We then calculated the statistics of the

evoked activity. Noise correlations were measured in 15 ms bins as the residual correlations left after

subtracting the mean response of each neuron to the stimulus across trials:

cij ¼
1

Nsamples

P
t

ðsiðtÞ�<siðtÞ>ÞðsjðtÞ�<sjðtÞ>Þ

where siðtÞ is the summed spikes of neuron i in a 15 ms bin and <siðtÞ> is the mean response of

neuron i to the stimulus. The noise correlation value given for each recording is the mean of cij.

Tuning width
To determine tuning width to sound frequency, we used responses of IC neurons to single tones as

inputs to the model network. The connections from IC to the network were the same as described in

the previous section. Because the connectivity was tonotopic and IC responses are strongly fre-

quency tuned, the neurons in the model network inherited the frequency tuning. We did not model

the degree of tonotopic fan-out of connections from IC to cortex and, as a result, the tuning curves

of the model neurons were narrow relative to those observed in cortical recordings

(Pachitariu et al., 2015). We chose the full width of the tuning curve at half-max as a standard mea-

sure of tuning width.

Decoding tasks
We computed decoding error for a classification task in which the single-trial activity of all model

neurons was used to infer which of seven different speech tokens was presented. The classifier was

built on training data using a linear discriminant formulation in which the Gaussian noise term was

replaced by Poisson likelihoods. Specifically, the activity of a neuron for each 15 ms bin during the

response to each token was fit as a Poisson distribution with the empirically-observed mean. To

decode the response to a test trial, the likelihood of each candidate token was computed and the

token with the highest likelihood was assigned as the decoded class. This classifier was chosen

because it is very fast and can be used to model Poisson-like variables, but we also verified that it

produced decoding performance as good as or better than classical high-performance classifiers like

support vector machines.

Classifying FS and RS neurons
We classified fast-spiking and regular-spiking neurons based on their raw, unfiltered, spike shape

(Okun et al., 2015). We determined the trough-to-peak time of the mean spike waveform after

smoothing with a gaussian kernel of s=0.5 samples. The distribution of the trough-to-peak time t

was clearly bimodal in all types of recordings. Following (Okun et al., 2015) we classified FS neurons

in the awake data with t<0.6 ms and RS neurons with t>0.8 ms. The distributions of t in the
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anesthetized data, although bimodal, did not have a clear separation point, so we conservatively

required t<0.4 ms to classify an FS cell in these recordings and t>0.65 ms to classify RS neurons (see

Figure 6—figure supplement 1). The rest of the neurons were not considered for the plots in Fig-

ures 6 and 7 and are shown in gray on the histogram in Figure 6—figure supplement 1.

Although one recent study has raised doubts on the accuracy of spike-width based classification

(Moore and Wehr, 2013), a large number of other studies have shown 90–100% classification accu-

racy of FS neurons as PV+ interneurons (Nowak et al., 2003; Kawaguchi and Kubota, 1997;

Barthó et al., 2004; Cho et al., 2010; Madisen et al., 2012; Stark et al., 2013; Cardin et al., 2009;

Cohen and Mizrahi, 2015). Even (Moore and Wehr, 2013) show that the classification is near-per-

fect using other features of the spike waveform; their finding that spike-width based classification

was not accurate may be due to the filtering that they performed during pre-processing. In our

recordings, the distributions of the trough-to-peak duration of the raw waveform are highly bimodal

in all cases (see Figure 6—figure supplement 1), unlike the distributions shown in (Moore and

Wehr, 2013).

Local field potential
The low-frequency potential (LFP) was computed by low-pass filtering the raw signal with a cutoff of

300 Hz. Spectrograms with adaptive time-frequency resolution were obtained by filtering the LFP

with Hamming-windowed sine and cosine waves and the spectral power was estimated as the sum

of their squared amplitudes. The length of the Hamming window was designed to include two full

periods of the sine and cosine function at the respective frequency, except for frequencies of 1 Hz

and above 30 Hz, where the window length was clipped to a single period of the sine function at 1

Hz and two periods of the sine function at 30 Hz respectively. The synchrony level was measured as

the log of the ratio of the low to high frequency power (respective bands: 3–10 Hz and 11–96 Hz,

excluding 45–55 Hz to avoid the line noise). We did not observe significant gamma power peaks

except for the line noise, in either the awake or anesthetized recordings.

Dividing trials by synchrony
For the recordings from awake restrained mice, we computed a synchrony value for each trial in the

500 ms window following stimulus onset. The distribution of synchrony values was not clearly

bimodal, but varied across a continuum of relatively synchronized and desynchronized states. To

examine the effect of synchrony on noise correlations, we sorted all trials by their synchrony value,

classified the 50% of trials with the lowest values as desynchronized and the 50% of trials with the

highest values as synchronized, and computed the noise correlations for each set of trials for each

recording. To examine the effect of synchrony on FS and RS activity, we pooled all trials from all

recordings, divided them into quintiles by their synchrony value, and computed the average spike

rates of FS and RS neurons for each set of trials. For Figure 6, noise correlations were computed

aligned to the stimulus onsets in windows of 500 ms, to match the window used for measuring FS

and RS activity as well as LFP power.

For urethane recordings, we computed the level of synchrony of the LFP (ratio of low frequency

1–10 Hz activity to high frequency 11–100 Hz) in sliding 10 s windows. The recordings were split into

high and low synchrony based on the median level of synchrony, and 20 s around each transition

point were discarded. We treated urethane recordings in synchronized and desynchronized states as

separate recordings for the purposes of model fitting.

Dividing trials by behavioral state
We median-filtered the raw running speed of the treadmill with a window of 0.5 s. In order to dis-

card extremely small speeds that may be noise, we discarded all points less than one hundredth of

the standard deviation of the running speed. Using the processed running speed, we divided the

data into periods of stationary and running behavior. We found periods of at least five seconds in

which all bins were either zero or non-zero. We then excluded the first and last second of each of

these segments from our computations, considering them to be periods of transition between sta-

tionary and running. We took all of the spiking in these segments and binned it into 15 ms bins for

all further computations.
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Modeling the transition from stationary to running
In order to fit the intrinsic variability in the population responses in the recordings that were made

on the treadmill, we first removed the evoked responses from each recording. We computed the

mean evoked response to each stimulus (10 stimuli total) for each neuron by computing the mean

response across all trials and then subtracting the spontaneous spike rate. We then subtracted this

mean evoked response from each neurons response on each trial. Because the spike rates of neu-

rons varied from 0.1 Hz (our cutoff for inclusion) to 150 Hz, we divided each neuron’s binned spike

rate by its average spike rate and then multiplied by the overall mean spike rate of the population.

We then computed each of our statistics on these normalized population activity patterns. We fit the

models to the statistics of the stationary periods in each of the recordings, and then changed one or

two parameters of the stationary fits in order to best fit the running periods. We simulated evoked

activity by driving the model with the mean evoked responses described above, scaled so that the

overall spike rate of the model responses matched the overall spike rate in each recording.
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