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Abstract Unsupervised image translation (UIT)
studies the mapping between two image domains.
Since such mappings are under-constrained, existing
research has pursued various desirable properties such
as distributional matching or two-way consistency. In
this paper, we re-examine UIT from a new perspective:
distributional semantics consistency, based on the
observation that data variations contain semantics,
e.g., shoes varying in colors. Further, the semantics
can be multi-dimensional, e.g., shoes also varying in
style, functionality, etc. Given two image domains,
matching these semantic dimensions during UIT will
produce mappings with explicable correspondences,
which has not been investigated previously. We
propose distributional semantics mapping (DSM), the
first UIT method which explicitly matches semantics
between two domains. We show that distributional
semantics has been rarely considered within and beyond
UIT, even though it is a common problem in deep
learning. We evaluate DSM on several benchmark
datasets, demonstrating its general ability to capture
distributional semantics. Extensive comparisons show
that DSM not only produces explicable mappings, but
also improves image quality in general.
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1 Introduction

Unsupervised image translation (UIT) has been
intensively studied in recent years. Many applications
have been inspired by its ability to create mappings
between two image domains. Since there can
be theoretically an infinite number of mappings
between two domains, UIT is by nature an under-
constrained problem. Naturally, different approaches
have been developed to ensure certain desirable
properties, such as shared latent spaces [1], two-way
consistency [2], pair-wise distance preservation [3],
and image semantics [4]. While existing researches
tend to focus on general distributional matching [3, 5],
we aim to investigate a rarely examined perspective:
the distributional semantics during UIT.

We define distributional semantics as the visually
understandable variations between samples (not
within a single sample). Shoes vary in color, style
(e.g., low/high collars), and functionality (e.g.,
sneakers/high heels). Similarly, bags also vary in color,
style (e.g., with/without handles), and functionality
(e.g., purses/backpacks). During UIT, we argue that
it is not enough to simply translate images. It is
desirable for such distributional semantics to be
maintained, e.g., red high-collar high heels map to
black purses with handles, while white low-collar
sneakers map to blue backpacks. This is exactly the
goal of this research.

To maintain distributional semantics during UIT, two
critical problems must be addressed. The first question
is what semantics should be maintained. As we are
considering unsupervised learning, no labeling should
be required, which means that the data variations
(the distributional semantics) should be characterized
without prior knowledge, yet be interpretable by
humans. Secondly, distributional semantics are rarely
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considered in general in deep learning, because data
are usually transformed numerous times in the model.
To maintain such semantics, we need a mechanism
to ensure that the data distribution remains as
undistorted as possible, especially in the dimensions
of the semantics of interest, during transformations
mapping between two domains.

In this paper, we propose a novel deep learning
method called distributional semantics mapping
(DSM). Given two image datasets A = {xi} and
B = {yj}, and a desire to characterize visual
semantics in an unsupervised manner, we find
that the covariance structure of the data naturally
reflects important visual semantics. We choose
principal component analysis (PCA) to characterize
the covariance structure: Härkönen et al. [6]
have already demonstrated that PCA applied in
feature space can produce interpretable controls
for image synthesis. Our approach is agnostic to
specific network architectures and consists of three
key modules. The first is a semantics-preserving
transformation e where the variations of xs in a
direction (e.g., the first principal component of A)
must be consistent with the variations of latent
vectors zx = e(x) in its corresponding direction (e.g.,
the first principal component of e(A)) in the latent
space. We use two such encoders eA and eB to
project A and B into a shared latent space. The
second module aligns the key dimensions of eA(A)
and eB(B). The last module is a decoder/generative
network g which decodes y by yrecon = g(eB(y)) and
translates x by ytrans = g(eA(x)).

As far as we know, this is the first approach for
UIT that preserves distributional semantics. We
identify the importance of preserving distributional
semantics, which has a wide range of implications for
image translation and beyond. We propose a new
approach that helps preserve distribution semantics
during image transformations.

2 Related work

2.1 Generative adversarial networks

Generative adversarial networks (GANs) [7] have
achieved great success for a fast-growing number of
computer vision tasks, including image generation [8,
9], image colorization [10], image inpainting [11], and
image super-resolution [12]. Conditional GANs [13]
can be used to perform image-to-image translation

[2, 14–16]. Recently, some interactive systems have
been proposed using GANs for real-time portrait
image editing [17, 18]. Our work also utilizes GANs
conditioned on an input image, but it does not rely
on any specific GAN model. To validate its generality,
we employ two widely used GAN models: LSGAN [19]
and NSGAN [7].

2.2 Image-to-image translation

To perform image-to-image translation, early
methods such as pix2pix [10, 20] often required
the networks to be trained with paired training
data. Recently, a variety of approaches [14, 15]
have been proposed to learn the image translation
from unpaired data. For example, CycleGAN [2]
leverages cycle consistency to constrain the mapping.
Lu et al. [21, 22] show that optimal transport
costs can improve the generative network. UNIT [1]
assumes that two image domains can share the same
latent space. By decomposing the image into the
style (domain-specific) code and content (domain-
invariant) code, MUNIT [23] and DRIT [24] can
synthesize diverse outputs from an input image.
Alami Mejjati et al. [25] and Kim et al. [26] improve
translation results using an attention mechanism.
Choi et al. [27] propose StarGAN which can perform
image translation for multiple domains using a single
GAN. More recently, DRIT++ [28] extends DRIT
to support multiple domains, while StarGAN v2 [29]
extends StarGAN to generate diverse images across
multiple domains. FUNIT [30] can work on previously
unseen target classes given only a few example images.
To enable unsupervised one-sided mapping, Benaim
and Wolf [3] present DistanceGAN that maintains
the distances between images, and Fu et al. [31]
employ other geometric constraints (e.g., orientation).
Our method differs from existing methods in that it
explicitly preserves and matches the distributional
semantics in domains during UIT, which generates
explicable mappings between images.

3 Methodology

3.1 Approach

Given two image datasets A = {xi} and B = {yj},
we aim to compute a mapping M : A→ B, so that
the distributional semantics of A are aligned with
those of B; we use principal components (PCs) to
describe the semantics. First, we project A using an
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encoder eA to zA = {zxi} where zxi = eA(xi) is a
latent vector. We keep the distributional semantics
of A and zA aligned during the encoding process. A
similar projection is applied to B using an encoder
eB to get zB = {zyi}. We denote the PCs of the two
latent distributions as VA ∈ RP×P and VB ∈ RP×P
where P is the dimensionality of the latent vectors.
Next we ensure the top k PCs of zA are aligned with
those of zB. Finally, we use a generative network g to
reconstruct B using yrecon = g(eB(y)) and translate
A by ytrans = g(eA(x)). The model is shown in Fig. 1.
Below, we give the details of the components.

3.2 Semantics-preserving transformation

The images need to go through a sequence of
transformations during translation, which in deep
learning are usually some encoding processes such
as convolutions. However, the shape of the latent
distribution seems to be rarely considered in terms
of its semantic consistency with the data distribution
itself. Existing efforts such as imposing a prior
distribution [32] or geometric constraints [3] are
mostly aimed at encouraging the latent distribution
to behave well, rather than to match the data
distribution. As a result, current encoders may not
be able to preserve the distributional semantics, as
we confirm in experiments. We, therefore, introduce
a new general autoencoding scheme to preserve the
distributional semantics:

zx = e(x), xrecon = d(zx)
subject to Ux = V zx, U, V have K rows (1)

where x is a data sample, and e and d are encoding
and decoding schemes respectively. U and V are the
first K PCs of A and zx. The autoencoder can be
trained by, e.g., minimizing

∑
||x−x′||22. Equation (1)

states the key difference between our autoencoder
and existing autoencoders: it requires the projections
of x on the data-space PCs U to be equal to the
projections of zx onto the latent-space PCs V . Note
that a standard dimensionality reduction using PCA

Fig. 1 DSM framework. Two image domains are aligned along their
data-space PCs via a shared latent space before translation.

is a special case of Eq. (1), when V = U and e(A) =
VA. Equation (1) is more general because it does
not dictate what V is, nor does it require the latent
space to have fewer dimensions than the data space.
Equation (1) only requires the covariance structure
to persist when encoding along the first K PCs in
both the data and latent space. One key question is
why we do not just set V = U . This is because we
need the flexibility of encoding data into an arbitrary
V during UIT while keeping the general shape of the
data distribution, as explained later.

Equation (1) is general but difficult to optimize
because it needs to be computed over the whole
dataset, with high memory requirements, and V

is unknown. Therefore, we propose a local scheme
which keeps the global alignment by enforcing local
alignments on samples:

LlocalAlign = 1
N

N−2∑
i=0

(Langle + Lnorm)

Langle =
∣∣cos(xi, xi+1)− cos(zxi , zxi+1)

∣∣
Lnorm = ||xi||2

||xi+1||2
− ||zxi ||2
||zxi+1 ||2

(2)

where cos() is the cosine distance and N is the
batch size. Langle and Lnorm are computed on
vectorized data samples and corresponding latent
vectors respectively. The goal of LlocalAlign is that,
given any two data samples, their length ratio and
angle should remain the same after projection into
the latent space. Langle aims to keep the overall
shape of the distribution when the data are projected
into the latent space, while Lnorm allows scaling but
prefers uniform scaling. LlocalAlign has the effect of
preserving the covariance structure of the data during
transformation. While we only apply local alignment
constraints between a certain number of pairs in
each batch, we randomly sample various batches
in each training epoch, constraining further distinct
pairs in the process. Furthermore, the locality of
this approach, only considering two samples a time,
essentially ensures that the covariance structure is
invariant under homogeneous transformations of the
basis in the latent space, which allows the autoencoder
to choose the optimal V that aids reconstruction while
preserving the covariance structure.

3.3 Semantics-based manifold alignment

Given zA and zB, we have two latent distributions
with their respective covariance structures chara-
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cterized by their latent space PCs VA ∈ RP×P and
VB ∈ RP×P . To ensure that the UIT maintains the
distributional semantics, we need to align zA and
zB, e.g., by aligning the direction in which zA shows
the biggest variation with that of zB by aligning
their first PCs. Further, to maintain visual semantics
in multiple dimensions, we should align the top K

PCs in VA and VB. Several alternative methods are
possible, such as aligning VA and VB directly, or
fixing one and aligning the other to it. Since both VA
and VB are unknown, directly aligning VA and VB
corresponds to minimizing

LlatentA + LlatentB + Lalign

where

LlatentA = 1
NA

NA−1∑
i=0
||zxi − VAV T

A zxi ||22

LlatentB = 1
NB

NB−1∑
j=0
||zyj − VBV T

B zyj ||22

Lalign = 1
K

K−1∑
k=0
||V kA − V kB ||22

(3)

NA and NB are the numbers of images in A and
B respectively. V kA and V kB are the kth PCs of VA
and VB, respectively. Experimentally, we have found
that allowing both VA and VB to change causes the
optimization to settle into local minima, so we fix
VA and align VB with it. This also means that eA

can be pre-trained and we can compute VA from zA

using PCA.
Aligning VB to VA still presents challenges because

directly learning VB requires to simultaneously
transform all zys which is again equivalent to
operating on the whole of B. This is a similar
difficulty to the one in Section 3.2. Again, we operate
only on a batch of N samples to ensure the global
alignment of VA and VB:

LmaniAlign

= 1
N

N−1∑
j=0
||zyj − VA[0:K−1]V

T
A[0:K−1]zyj ||22 +

ke−α||zyj
||22 (4)

where zyj ∈ zB and VA[0:K−1] ∈ RP×K contains the
first K PCs of interest of zA. LmaniAlign requires
zy to be reconstructable after projecting them into
the basis of zA, which essentially encourages the
covariance structure of zB to be similar to that of
zA, and the two bases to be aligned. The term

k exp(−α||zyi ||22) prevents zyi from shrinking, leading
to a trivial solution of Eq. (4). Since the covariance
structures of A and B are kept in zA and zB via
Eq. (2), LmaniAlign completes the semantics-based
alignment of two domains.

3.4 Simultaneous decoding and translation

After semantics-based manifold alignment, we
transform zA and zB into the space of B to finish the
UIT. Since zA and zB are aligned, we combine the
reconstruction and translation tasks using a single
network g which serves both as a decoder and a
translator: the general shapes of the two latent
distributions are similar after alignment. When the
decoder has been trained with the reconstruction
loss on zB, it has already to some extent learnt to
translate zA. We reconstruct B using yrecon = g(zy).
Meanwhile, we treat g as a generator in a generative
adversarial network using ytrans = g(zx) and use a
discriminator network h(ytrans, y) = [0, 1] to further
improve the translation.

Overall, given a pre-trained eA and zA, and hence
also VA, we minimize the objective function in Eq. (5):

L = ω1
1
NB

NB−1∑
i=1
||yi − yrecon||22 + ω2Lg + ω3Ld +

ω4L
B
localAlign +

(
1−

4∑
i=1

ωi

)
LmaniAlign (5)

where Lg and Ld are the GAN loss that depends on
the chosen GAN model. NB is the total number of
images in B and ωi are weights. In LBlocalAlign, we
apply Eq. (2) to both the y-to-zy, and zx-to-ytrans
mappings. Further details are in the Appendix.

4 Implementation details

We pre-train an autoencoder for dataset A with
LlocalAlign to get eA and calculate VA from zA

using PCA. For eB and g, we adopt the network
architectures from UNIT. In all experiments, we set
ω1 = 0.033, ω2 = ω3 = 0.333, and other weights
according to the experiment. See the Appendix
for details. eA is trained for 100 epochs and the
remainder are trained for 300 epochs on all datasets,
using Adam [33] with a batch size of 16, a learning
rate of 0.0001, and exponential decay rates (β1;β2) =
(0.5; 0.999). All experiments were conducted using
2 NVIDIA GTX 1080 Ti GPUs, and PyTorch. Training
took 6–18 hours.
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5 Experiments

5.1 Data

We employed several benchmark datasets to
validate our method, including SummerWinter [2],
CatDog [24], and ShoeHandbag [34, 35]. We also
built a very challenging dataset, MMISTHandbag,
using hand-drawn digits from MNIST [36], and
handbags randomly sampled from Ref. [35]; it has two
distinctive distributions and distributional semantics.
All comparative results in this section were computed
using LSGAN. See the Appendix for details and
further results.
5.2 Evaluation metrics

In addition to visual evaluation, we employ the
Frechet inception distance (FID) [37] as a quantitative
measure. However, there is no good metric to measure
the faithfulness of the preservation of distributional
semantics. We, therefore, propose a new evaluation
metric called the ordering-tolerance curve (OTC).
Given images x ∈ A and their translations ytrans ∈ B,
we define the OTC as
c = 1

NA
card({x|d(x, ytrans)/NA 6 β, x ∈ A}) (6)

where β ∈ [0, 1], card(·) is the cardinality of a set,
d(x, ytrans) = |rank(ytrans)− rank(x)|, rank(x) is the
rank of x in A along a chosen PC among all data
samples in A and NA is the total number of data
samples in A, and rank(ytrans) is the rank of ytrans
along a chosen PC in B. d(x, ytrans) is equal to
zero if the rank of x is retained during translation,
and non-zero otherwise (the larger the worse). c is
the percentage of correctly ordered x values whose
normalized rank errors are within β, the ordering
error tolerance.
5.3 Semantics-preserving transformation

A key contribution of our work is a straightforward
but extremely effective transformation scheme that
preserves distributional semantics. To show the
necessity of such transformations in UIT, we trained
an autoencoder on cat images in CatDog then
computed the 1st PCs of A and zA. The autoencoder
is based on the encoder and decoder of UNIT. Please
see the Appendix for further details. We then ranked
all images along the two PCs: see Fig. 2.

In the original data, the variation on the 1st PC
is mainly a color transition from light to dark (see
Fig. 2(top)). However, without semantics-preserving

Fig. 2 Top: original data. Middle: latent samples of DSM. Bottom:
latent samples of a standard autoencoder. Left to right: images ranked
4th, 19th, 24th, 37th, 44th, 52nd, 94th, and 97th on the first PCs of
the data (top) and latent space (middle, bottom).

transformations, the shape of the latent distribution is
changed, and unable to preserve the visual semantics
(Fig. 2(bottom)). In contrast, DSM preserves the
distributional semantics (Fig. 2(middle)). We also
show the OTCs in Fig. 3(left): DSM can contain the
rank error to under 3% while a standard autoencoder
fails systematically. Although we only show the
results from a specific autoencoder, our preliminary
experiments showed this to be a common problem of
autoencoders.

5.4 Architectural studies

Two main adjustable components of DSM are the
GAN architecture and the number of PCs, K. We
first evaluated DSM on the first K PCs on all datasets;
we present the FID scores in Table 1. While we
expected that a larger K would result in a harder
optimization problem and hence lower quality, the
results show that it depends on the dataset. After
considering the data, this is understandable because
different datasets have different variance distributions
over the PCs: some have large variance on the 1st PC
while others have variances spread over the first K
PCs, which affects the behavior of Eq. (4). Although
control can be added, e.g., by adding weights to
different PCs, we choose not to do so and let DSM
adapt to the data. We only tested DSM up to K = 3:
while DSM can work for K > 3, it is typically hard
for humans to visually understand the semantics in

Table 1 FID scores on four datasets with the first K PCs aligned.
When K = 0, DSM is trained without alignment loss

Dataset K = 0 K = 1 K = 2 K = 3

CatDog 64.5 58.0 96.2 84.5

SummerWinter 100.9 90.4 107.6 99.5

ShoeHandbag 123.6 129.7 155.5 128.9

MNISTHandbag 172.7 180.6 149.3 171.8
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Fig. 3 OTCs in various experiments. Left: OTC along PC0 with/without semantics-preserving transformation on CatDog. Middle: LSGAN
vs. NSGAN along PC0 on ShoeHandbags. Right: OTC along PC0 for four datasets.

PCs where K > 3. We also compared two GAN
architectures LSGAN and NSGAN on ShoeHandbags
and show the OTCs in Fig. 3(middle). Both keep
the rank error to within around 20%, showing that
alignment constraints can improve translation ability
visibly for differing GAN architectures. Further
results can be found in the Appendix.

5.5 Image quality in translation

Although normally the first K PCs bear visually
understandable semantics, the specific value of K
depends on the dataset. The first PC is almost always
visually interpretable across a dataset, and some
datasets have meaningful variations on other PCs.
We show the images from the four datasets ranked
along their respective meaningful PCs in Fig. 4. For
CatDog, SummerWinter, and ShoeHandbags, the first

Fig. 4 Images ranked according to PCs. Top to bottom: CatDog
(PC0), SummerWinter (PC0), ShoeHandbags (PC0), MNIST (PC0),
and ShoeHandbags (PC1).

PC (PC0) shows color variations from light to dark,
for MNIST, shape varies from slim to round, while
for ShoeHandbags, the second PC (PC1) shows shoe
collar height variation for shoes and handle length
variation for handbags.

In Fig. 5, we show our results for mappings
of cat-to-dog, summer-to-winter, shoes-to-handbags,
and digits-to-handbags. PC0s of CatDog and
SummerWinter are color variations (light to dark).
The major difference is that the color variations
in CatDog are clearly separated into foreground
(faces) and background while there is no such
separation in SummerWinter. In both cases, DSM
successfully translates the images with high quality
while simultaneously matching the semantics. In
cat-to-dog, DSM transforms the faces and maintains

Fig. 5 Mapping results. Top to bottom: CatDog, SummerWinter,
ShoeHandbag, and MNISTHandbag, ordered along PC0. In each pair
of rows, the upper row shows the input images and the lower row
shows the translated images.
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the separation of the foreground and background,
while in summer-to-winter, the changes are more
heterogeneous depending on the scenes; DSM
lays snow on different landscapes. In shoes-to-
handbags, unlike CatDog and SummerWinter, the
color variation is restricted to the object itself, and
DSM faithfully keeps the semantics. Finally, to
push DSM further, we tested a digit-to-handbag
translation. These two datasets have distinctive
distributions. The results show that long slim digits
are translated to handbags in light colors while fat
round digits are translated to handbags in dark colors,
which are consistent with their respective PC0s in
Fig. 4. We also show the OTCs in Fig. 3(right).

5.6 Comparisons

We compare our model to UNIT, CycleGAN,
DistanceGAN, and DRIT++ on the CatDog and
ShoeHandbag datasets, by using the public code
shared by the authors of these methods. We first give
FID scores for all methods in Table 2 and OTCs in
Fig. 6. By aligning two data manifolds based on their
semantics, DSM is able to improve the translation
quality for both datasets. The OTCs show clearly
that DSM can keep the semantics on PC0 better than
the other methods by containing the rank error to
within around 30% and 18% (see Fig. 6). The second
best methods contain it to roughly only 50% and
40%. On PC1 of ShoeHandbag (see Fig. 6(right)),

Table 2 FID scores on CatDog and ShoeHandbag datasets for
various methods

Method CatDog ShoeHandbag

Ours 58.00 128.93
CycleGAN 95.12 135.55
DistanceGAN 63.60 185.28
DRIT++ 61.95 185.01
UNIT 64.62 140.88

CycleGAN is close to DSM. However, we argue that
its behavior is inconsistent: see Figs. 6(left) and
6(middle) where the variance is large and contains
large amounts of semantic information.

Visual comparisons can be found in Fig. 7.
Overall, DSM generates images of higher visual
quality. Additionally, other methods are incapable of
preserving or matching the distributional semantics.
In Fig. 7(left), the major variation of the input
images from left-to-right is a color variation, light-to-
dark. While DSM obviously keeps the same variations
during UIT, it is hard to find similar effects in other
methods. Similar observations can also be made
in Fig. 7(middle). To further explore semantics in
other PCs, we show Fig. 7(right). While the input
varies from slippers to sneakers, our results generate
handbags varying from those without handles to those
with handles. In contrast, other methods struggle
to generate consistent semantic variation. Further
results can be found in the Appendix.

Fig. 6 OTC scores for various methods. Left: CatDog. Middle: Shoe-to-Handbags on PC0 of Handbags. Right: Shoe-to-Handbags on PC1 of
Handbags.

Fig. 7 Left, middle: ordering along PC0 of Dogs, Handbags, respectively. Right: ordering along PC1 of Handbags.
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6 Discussions and conclusions

While PCA is a straightforward way of characterizing
distributional semantics, our method can incorporate
alternative techniques such as kernel PCA,
multidimensional scaling, and others that can
define the covariance structure by “flattening” the
data manifold before performing DSM.

We have only evaluated DSM up to K = 3 because
the semantics start to lack visual meaning for K > 3.
However, we argue that DSM is effective and useful
for two reasons. Firstly, for almost all datasets, the
first PC bears the majority of the variance, and the
distributional semantics captured by the variance
are always visually interpretable. Secondly, aligning
the PCs of the two distributions during translation
increases image quality.

In summary, we have proposed DSM, the first
UIT method which preserves and matches the
distributional semantics of two image domains. It
is straightforward and effective, as demonstrated
on multiple datasets, and capable of improving
translation quality compared to the state-of-the-art.
DSM is also general in its capacity to incorporate
any GAN and autoencoder model. In future, we
will incorporate human-labelling in a semi-supervised
setting of DSM where humans can arbitrarily decide
the semantics by ranking images. This will enable
DSM to encode arbitrary semantics and open it up
to many other applications.

Appendix A Implementation details

A.1 Loss functions

Equation (5) contains a local alignment loss
LBlocalAlign, which applies Eq. (2) to both y-to-zy,
and zx-to-ytrans. Applying Eq. (2) to y-to-zy is
straightforward, and ensures semantics-preserving

transformation between B and zB, just as does
the encoder of A. Here we explain why applying
Eq. (2) to zx-to-ytrans is essential. As Section 3.4
explains, we align zA and zB, and use a single
network g to serve as both the decoder for zB and
the generator for zA. This mechanism provides an
implicit constraint on the translated images {ytrans}
from zA so that it has a similar distribution to the
reconstructed images {yrecon} from zB. However, as
there is an additional GAN loss which modifies the
distribution of the translated images, the alignment of
{ytrans} and {yrecon} may be affected, compromising
the distributional semantics matching. Thus, we
apply Eq. (2) to zx-to-{ytrans} to explicitly preserve
the semantics:

ω4L
B
localAlign = ωe

4L
e
localAlign + ωg

4L
g
localAlign (7)

where Le
localAlign and Lg

localAlign are the loss terms for
y-to-zy and zx-to-ytrans. All experiments set ω1 =
0.033, ω2 = ω3 = 0.333, ωg

4 = 0.167 in Eq. (5) of the
paper. We set ωe

4 = 0.066 in ShoeHandbag align 3PCs
experiments and ωe

4 = 0.05 in all other experiments.
We set k = 15, α = 10−6 for the regularization term
in Eq. (4).
A.2 Network architecture

Our image translation network architecture is based
on the one from UNIT [1]. For the encoder, to ensure
the latent vector size is smaller than the input image
size in the case of resolution 256× 256, we halve the
kernel numbers in the second and third convolutional
layers and add one further convolutional layer (see
Table 3 for details). Furthermore, instead of using
instance normalization (IN) [38], we utilize batch
normalization (BN) [39] in the encoder and generator.
For the discriminator network, we employ spectral
normalization [40], and multi-scale discriminators
at 3 scales. The network architecture is given in
Table 3. We use the following abbreviation for ease of

Table 3 Network architecture for the distributional semantics mapping experiments

Layer Encoder Generator Discriminator
1 CONV(N64,K3,S1),RELU CONV(N512,K3,S1),RELU CONV(N64,K4,S2),LeakyReLU
2 CONV(N64,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N128,K4,S2),LeakyReLU
3 CONV(N128,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N256,K4,S2),LeakyReLU
4 CONV(N128,K3,S2),RELU RESBLK(N512,K3,S1) CONV(N512,K4,S2),LeakyReLU
5 RESBLK(N128,K3,S1) RESBLK(N512,K3,S1) CONV(N512,K1,S1),LeakyReLU
6 RESBLK(N128,K3,S1) UP+CONV(N256,K3,S1),RELU
7 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU
8 RESBLK(N128,K3,S1) UP+CONV(N64,K3,S1),RELU
9 CONV(N3,K7,S1),TanH
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presentation: N: number of kernels number, K: kernel
size, S: stride. UP indicates a 2 nearest-neighbor
upsampling layer and RESBLK, a residual basic block.
The detailed network architecture of the pre-trained
autoencoder for A is given in Table 4.

Table 4 Network architecture for the autoencoder

Layer Encoder Decoder

1 CONV(N64,K3,S1),RELU RESBLK(N128,K3,S1)

2 CONV(N64,K3,S2),RELU RESBLK(N128,K3,S1)

3 CONV(N128,K3,S2),RELU RESBLK(N128,K3,S1)

4 CONV(N128,K3,K2),RELU RESBLK(N128,K3,S1)

5 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU

6 RESBLK(N128,K3,S1) UP+CONV(N128,K3,S1),RELU

7 RESBLK(N128,K3,S1) UP+CONV(N64,K3,S1),RELU

8 RESBLK(N128,K3,S1) CONV(N3,K7,S1),TanH

Appendix B Further experimental
results

B.1 Data details

For all datasets, images were resized to 256 × 256.
In CatDog, 871 cat (birman) and 1364 dog (husky,
samoyed) images were randomly divided into 771 (cat)
and 1264 (dog) for training and the remainder used
for testing. SummerWinter comprises 1540 summer
photos and 1200 winter photos, which were randomly
divided into 1231 (summer) and 962 (winter) for
training and the remainder used for testing. For
ShoeHandbag, we randomly sampled images from
edges2shoes and edges2handbags, using 3726 (shoe)
and 3822 (handbag) for training, and 101 (shoe)
and 178 (handbag) for testing. For MNISTHandbag,
1600 MNIST images and 1600 handbag images were
randomly selected from MNIST and edges2handbags,
with 1500 of each for training and 100 for testing. We
show images from the ShoeHandbag dataset along the
first 3 PCs in Fig. 8. This dataset is very challenging,
as the distributions of MNIST and handbags are very
different. The top five variances ratios along PCs in
MNIST are [0.095, 0.071, 0.066, 0.052, 0.047], while in
handbags these ratios are [0.274, 0.115, 0.065, 0.054,
0.026].

B.2 Our OTCs

Figure 10 shows OTCs for our method on the CatDog,
MNISTHandbag, and SummerWinter datasets, with
up to 3 PCs aligned. We can see that our method

Fig. 8 Top: Shoe dataset. Bottom: Handbag dataset. Left to right:
the images ordered along the corresponding PC.

always keeps semantics best for PC0, and the rank
errors become larger on PC1 and PC2. This is
mainly because the variance ratio along PC0 is always
much larger than along other PCs. For example, in
the Handbag dataset, the ratios of variances along
the first 3 PCs are about 4:2:1. As a result, the
network prefers to perform alignment along PC0
in preference to minimize the total loss. We also
note that semantics preservation varies largely across
different datasets. In the challenging MNISTHandbag
dataset which has two distinctive distributions, our
method preserves semantics well along PC0, while in
the SummerWinter dataset, our method is capable
of preserving semantics on the first 3 PCs. Although
control could be used, e.g., via weights to enforce the
alignment of multiple PCs, we choose not to do so
and make DSM adapt to data, as the distribution
of variances on different PCs is an intrinsic property
of the data itself which should be respected during
translation.

We evaluate semantics preservation only for the first
3 PCs for two main reasons. Firstly, in most image
datasets, compared to the variances on the first 3 PCs,
the variances on the remaining PCs are very small.
For example, in the Summer dataset, even the sum
of variances on the 4th–20th PCs is smaller that the
variance of PC0. Enforcing alignment along directions
with very small variations adds complexity to the
optimization while decreasing the explicability of the
mapping. Secondly, by investigating various popular
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datasets (e.g., Shoes, Handbags, Cars, Animals, Faces,
Art works), we discovered that while people can easily
perceive semantics on the first PC in all datasets,
they can only do so on the second PC in the Shoe,
Handbags, and MNIST datasets. People cannot
perceive any semantics on the 4th and subsequent
PCs. Hence we focus on the first 3 PCs.

B.3 Comparison of LSGAN and NSGAN

Figure 9 and Table 5 compare using LSGAN and
NSGAN for image translation on the ShoeHandbag
dataset when aligning the first 1–3 PCs. The OTCs
show that the two GAN models result in very similar
semantics preservation in all cases, demonstrating
that our method does not rely on a specific GAN

Table 5 FID scores on ShoeHandbag with the first K PCs aligned

K = 1 K = 2 K = 3

LSGAN 129.7 155.6 128.9
NSGAN 172.8 187.0 154.9

model and can preserve semantics using different GAN
models. We also note that the FIDs of NSGAN are
higher than that for LSGAN. This is mainly because
the image generation capability of NSGAN is weaker
than that of LSGAN. Employing other GAN models
such as StyleGAN [9] can improve the FID scores.

B.4 Alignment of PCs

Equation (4) in the paper requires the first K PCs
of two domains to be aligned. However, it does not
specify the order of alignment. In other words, it
does not specify if PC1 of the first domain should be
aligned with PC1 of the second domain, etc. We have
two choices. The first is to enforce order, PC0-to-
PC0, PC1-to-PC1, and so on. However, we find this
to be sub-optimal in the sense that Eq. (4) is affected
by distribution of variances across PCs. For a dataset
with a majority of variance on PC0, the alignment
forces due to Eq. (4) have little effect on PC1 and
subsequent PCs. We argue that they should be small

Fig. 9 LSGAN/NSGAN.

Fig. 10 Above: Aligning PC0 and PC1. Below: Aligning PC0–2. Left to right: CatDog, MNISTHandbag, and SummerWinter.
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because the dataset’s variance on PC1 and higher
PCs is less explicable. Hence, the force provided by
Eq. (4) should naturally follow variance distribution.
We therefore do not enforce order of alignment of PCs
for two datasets. As a result, while PC0 is always
mapped to PC0 in all experiments, sometimes PC1
of one dataset can be mapped to PC2 of another. We
argue that such a mapping is still valid because it is
explicable and reflects the distributional semantics.
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