
This is a repository copy of An Approach to Formally Specifying the Behaviour of Mixed-
Criticality Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186879/

Version: Published Version

Proceedings Paper:
Burns, Alan orcid.org/0000-0001-5621-8816 and Jones, Cliff (2022) An Approach to 
Formally Specifying the Behaviour of Mixed-Criticality Systems. In: Proceedings, 34th 
Euromicro Conference on Real-Time Systems (ECRTS 2022). Euromicro Conference on 
Real-Time Systems, 05-08 Jul 2022 ACM 

https://doi.org/10.4230/LIPIcs.ECRTS.2022.12

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



An Approach to Formally Specifying the1

Behaviour of Mixed-Criticality Systems2

A. Burns £3

University of York, York, UK4

Cliff B. Jones £5

Newcastle University, Newcastle upon Tyne, UK6

Abstract7

This paper proposes a formal framework for describing the relationship between a criticality-aware8

scheduler and a set of application tasks that are assigned different criticality levels. The exposition9

employs a series of examples starting with scheduling simple jobs and then moving on to mixed-10

criticality robust and resilient tasks. The proposed formalism extends the rely-guarantee approach,11

which facilitates formal reasoning about the functional behaviour of concurrent systems, to address12

real-time properties.13

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical14

systems; Software and its engineering → Real-time schedulability15

Keywords and phrases real-time, scheduling, mixed criticality, rely/guaranteed conditions16

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.1217

Funding This research has been supported in part by EPSRC (UK) grants, STRATA and MCCps18

and by Leverhulme Trust grant RPG-2019-02019

Acknowledgements The authors acknowledge useful suggestions made by Iain Bate, Sanjoy Baruah20

and Ian Hayes21

1 Introduction22

Since Vestal published his seminal paper in 2007 [61], there have been a wealth of models23

and protocols published [16, 17] on the topic of Mixed Criticality Systems (MCS). One of24

the aims of this wide ranging set of techniques is to improve the survivability of systems by25

providing a variety of degraded behaviours that can take effect if the system experiences26

overrunning execution times.27

Inevitably these techniques require significant support from the underlying operating28

system. Unfortunately commercially-available, general-purpose, RTOSs do not provide this29

support. Hence, in order to utilise many of the more advanced scheduling ideas that are to30

be found in the MCS literature, it is necessary to develop the code for a bespoke scheduler as31

part of the application. Programming languages such as Ada [11] do provide the primitives32

necessary for this software to be developed but to deliver a reliable MCS scheduler the33

MCS protocols and models must be precisely specified. Research papers that focus on the34

algorithmic properties of protocols tend to give, at best, informal descriptions of the actual35

required run-time behaviour of the required scheduler.36

The objective of the research described in this paper is to develop a framework for formally37

specifying and reasoning about timing correctness properties of mixed-criticality systems. The38

following paragraphs explain this objective in greater detail. In general, correctness in safety-39

critical systems can be considered from two perspectives: (i) (pre-run-time) verification, and40

(ii) (run-time) survivability.41

Pre-run-time verification of a safety-critical system involves verifying, prior to deployment,42

that the run-time behaviour of the system will be consistent with expectations. Verification43

© A. Burns and C.B. Jones;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 12; pp. 12:1–12:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



12:2 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

assumptions are made regarding the kinds of circumstances that will be encountered by the44

system during run-time and guarantees are used to specify the required runtime behaviour45

of the system (provided that the assumptions hold).46

In contrast, survivability addresses expectations of system behaviour in the event that the47

assumptions fail to hold fully (in which case a fault or error is said to have occurred during48

run-time). Survivability may further be considered to comprise two notions: robustness and49

resilience [14]. Informally, the robustness of a system is a measure of the degree of fault it50

can tolerate without compromising the quality of service it offers; resilience refers to the51

degree of fault for which it can provide a degraded, yet acceptable, criticality-aware quality52

of service.53

The contribution of this paper is to develop a framework for the formal specification of54

MCS; we define a formal approach that:55

Demonstrates that the Rely/Guarantee approach (see Section 2) can be extended to56

cover temporal properties (see Section 3) of concurrent systems (in addition to their57

functionality).58

Precisely specifies the required behaviour of a run-time scheduler (in normal and degraded59

modes of operation).60

Enables proofs to be developed and discharged that employ the contract(s) between the61

jobs and tasks comprising an application, and the scheduler.62

Enables, with additional specifications of the functional elements of the scheduler, the63

code of the scheduler to be produced as a refinement of these specifications.64

Enables the scheduler to be replaced or modified by verifying that a new version satisfies65

the original specification.66

Identifies the assumptions that the analysis (scheduling and execution time) makes such67

that the result of the analysis confirms that the system will meet its timing requirements.68

Enables the many approaches to resilience and robustness to be compared – this requires69

the formal framework to be sufficiently expressive to capture the semantics of the various70

schemes that have been proposed.71

This initial description of our approach focusses on the specification aspects; future work will72

address verification. We do however demonstrate where proof can be used to ensure that,73

whenever a degraded mode must be entered, its prerequisites are ensured by the guaranteed74

conditions of the mode that has just been abandoned. We also make explicit the proof75

obligations on the offline scheduling analysis that must be applied to the application prior to76

deployment.77

We explain the elements of the framework via a series of related, increasingly challenging,78

examples. The initial examples are sufficiently straightforward that, arguably, a full formal79

specification is not required; however the later examples do show the value of precise80

specifications. The examples illustrate the approach with at most two criticality levels, this81

helps to explain the framework, but again the full value of a formal approach comes when the82

system has increased complexity as happens when there are three or more criticality levels.83

In this paper an MCS is assumed to consist of a finite set of jobs/tasks and a single specific84

Scheduler. Rely and guarantee conditions capture the run-time relationship between the85

Scheduler and the jobs/tasks, yielding a specification of the necessary behaviours/properties86

of the Scheduler. Note that this process does not delve into the internal structure of the87

Scheduler: the scheduling-theoretic issues of how it meets its specification (if indeed it can)88

is not the focus of this work. Rather, in this paper we are only seeking to provide a clear and89

intuitive explanation of the formalism. The history of formal methods (such as Hoare Logic)90

leads us to believe that methods can be developed for showing that specific MC-scheduling91



A. Burns and C.B. Jones 12:3

algorithms can satisfy (or not) the proof obligations that arise from the Rely/Guarantee92

(R/G) specifications. Related work in this area includes PROSA which addresses mechanised93

verification of results from scheduling analysis [21, 10]. (Mechanisation of R/G reasoning is94

on-going [29, 22]).95

Organisation. The paper is organised as follows. After an introduction to R/G conditions96

(Section 2), the basic properties of the proposed framework are developed in Section 3 via a97

focus on jobs – this allows the approach to be motivated and explained. Mixed-criticality98

jobs are then covered in Section 4 including the introduction of fault-tolerance via modes of99

operation each with their own R/G conditions. Extensions of the same ideas to tasks are100

then given in Sections 5 and 6. Conclusions are in Section 7.101

2 Introduction to Rely/Guarantee conditions102

Hoare’s ‘Axiomatic Approach’ provides the basis of a development method for sequential103

programs. Although [32] employed post conditions of single states, subsequent development104

methods such as VDM [39], B [1] and Event-B [2] use relational post conditions that define105

acceptable final states with respect to their initial values. Crucially, there is a relatively106

obvious notion of compositionality for sequential programs where a specification can be107

replaced by anything that satisfies its pre/post condition specification.108

Finding compositional development methods for the development of concurrent programs109

proved to be difficult precisely because of the ‘interference’ that comes with (shared-variable)110

concurrency. One approach is to record and reason about interference using rely and guarantee111

conditions [37, 38] (a more algebraic presentation of the ideas is covered in [31]). The details112

and proof obligations of the R/G approach are not the main issue in the current paper. The113

basic idea is straightforward: just as pre conditions define a subset of possible starting states114

on which a component is expected to operate, rely conditions record interference that the115

specified component must tolerate; and, just as post conditions abstract from algorithms116

to achieve the transition from initial to final state, guarantee conditions are relations that117

define the maximum interference that the component may inflict on its environment. It is118

important to remember that pre and rely conditions are assumptions that a developer is119

invited to make; in contrast, guarantee and post conditions are obligations on the code to be120

created. A guarantee condition needs to be satisfied (only) as long as the corresponding rely121

condition is respected. Stating this negatively, if the environment makes a transition that122

does not satisfy the rely condition, the developed code is free from further obligations.123

The R/G idea targeted the design of concurrent programs where the R/G conditions124

provide a way of decomposing designs. Papers such as [30, 42, 19] show that the R/G idea125

can be used to tackle the design of fault-tolerant CPS by using rely conditions to describe126

assumptions about physical system components. Where the physical components exhibit127

continuous change, the rely conditions record assumptions about the rate of such changes.128

This work also showed how layered R/G conditions can assist in addressing fault tolerance;129

resilience is represented by hierarchically related R/Gs—strong rely conditions address130

full functionality, weaker rely conditions are matched with lesser guarantees (perhaps only131

the safety-critical aspects), even weaker rely conditions might only guarantee safe fail-stop132

behaviour. These properties of related R/G conditions are central to the framework developed133

in this paper.134

ECRTS 2022



12:4 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

3 Job-based system model135

This section focuses on a system comprising a set of jobs, J , that are managed by a Scheduler136

(denoted by the symbol S). A representative job, j ∈ J , has a relative deadline of Dj ,137

arrives (and is released for execution) at time aj and thus has an absolute deadline at time138

dj = aj + Dj . Let fj denote the time at which it completes (finishes) its execution.1 The set139

act(J , t) is the subset of J containing the jobs that are active at time t, i.e.140

j ∈ act(J , t) ⇔ j ∈ J ∧ (aj ≤ t < fj)141

A job that is immediately terminated on arrival (as required in specific circumstances by142

some MCS protocols) has fj = aj ; it is deemed never to be active and to have missed its143

deadline.144

We assume a discrete time model in which all job parameters are given as non-negative145

rational numbers with arbitrary precision. Time is an external physical phenomenon: the146

Scheduler has no control over the passage of time.147

The specification of each job, j, consists of its pre-condition, Pj , post-condition Qj , rely148

condition Rj and guarantee condition Gj . In this paper each of these conditions is expressed149

as a predicate over the system state. For an actual system these conditions will capture150

both the functional and timing behaviour of the job; here we focus only on the temporal151

properties. This requires that system states are indexed by time2 and that the rely and152

guarantee conditions directly reference time. We write RS(t)/GS(t) for the Scheduler and153

Rj(t)/Gj(t) for jobs.154

Properties that should remain true as time progresses are normally classed as invariants155

but here are represented as rely or guarantee conditions. This is because the jobs (and156

Scheduler) must take action in order to maintain correct behaviour – a job will miss its157

deadline if it is not scheduled appropriately.158

The primary concern for each job is its execution time; and hence we define, for each job159

j, ej(t) which is the amount of execution time the job has consumed up to time t. There are160

obvious properties (axioms) for e:161

∀j ∈ J , t • ej(t) ≤ WCETj (1)162

where WCET is the worst-case execution time of the job;163

∀j ∈ J , t1, t2, t1 < t2 • ej(t2) − ej(t1) ≤ t2 − t1 (2)164

no job can execute faster than ‘real time’;165

∀j ∈ J , t1, t2, t1 < t2 • ej(t1) ≤ ej(t2) (3)166

a job cannot ‘lose’ execution time; and167

∀j ∈ J •
(

∀t ≤ aj • ej(t) = 0 ∧ ∀t ≥ fj • ej(t) = ej(f)
)

(4)168

a job cannot execute before it arrives or after it has finished.169

1 A job that is yet to finish has f=∞; a job that is permanently suspended but never terminated retains
this value.

2 A slightly different approach to handling the progress of time was taken in [40]. In that paper a
distinction is made between an abstract notion of T ime and the ClockV alues stored in a computer.



A. Burns and C.B. Jones 12:5

In this section the scheduler is deemed to exist for the entire life-time of the system, it is170

therefore specified by a single rely condition RS(t) and a single guarantee condition GS(t).171

The following derivations first illustrate the basic approach with a set of single criticality172

jobs. Note that the role of the formal framework is to represent precisely the relationship173

between the Scheduler and the client jobs in a range of degraded and partial behaviours. It174

is not a model of a particular scheduler’s run-time behaviour; rather it is a specification of175

the required properties of any scheduler (and its schedulability test) that is being proposed176

for the particular problem under investigation.177

A key feature of mixed-criticality models is that they allow a system to degrade gracefully178

when faults occur. This leads to the Scheduler’s run-time behaviour having different modes179

of operation. In each mode, different R and G conditions for the jobs and scheduler are180

defined, as is the transition between R/G contracts.181

We start by considering a finite set of jobs that each have the same criticality; there is no182

degraded behaviour and hence only a single mode of operation. A job j is characterised by its183

Worst-Case Execution Time, WCETj (this is a value that will not be known with certainty)184

and Cj an estimate of WCETj . The timely execution of a job relies on this estimate of185

WCET being valid, and the Scheduler can only meet its obligations with a reliance of each186

job executing for no more than Cj . If these rely conditions hold, a valid Scheduler guarantees187

to manage the processing capacity so as to ensure that all jobs complete by their deadlines188

regardless of when the jobs arrive; each job guarantees to execute, when active, for no more189

than Cj .190

Note that the value Cj plays a number of roles: the job relies on its environment behaving191

according to whatever model or measuring process was used to derive Cj , but the job also192

has a contract with the scheduler not to execute for more than Cj . The scheduler is assumed193

to have used some form of analysis to verify (offline usually) that, if all jobs respect their194

guarantee conditions, then it will be able to provide the necessary capacity to each job.195

Hence the job can rely upon being allowed to execute for up to Cj before its deadline.196

With all four axioms ((1)-(4) above) in force, the rely and guarantee conditions of any197

valid Scheduler are as follows:198

RS(t)
def
= ∀j ∈ act(J , t) • ej(t) ≤ Cj199

200

GS(t)
def
= ∀j ∈ act(J , t) • t + (Cj − ej(t)) ≤ dj201

The Scheduler relies on all jobs executing within their estimated WCET and guarantees202

to provide sufficient resource, following a defined policy, to ensure that each job always203

has sufficient space to complete before its deadline (i.e. that t + (Cj − ej(t)) ≤ dj). 3 The204

Scheduler’s guarantee is an obligation that must be achieved by its code – i.e. the Scheduler’s205

offline schedulability test must ensure this property. The conditions RS(t) and GS(t) are206

defined to refer only to jobs that are active at time t.207

In order to satisfy GS , the Scheduler must manage the dispatching of jobs in an appropriate208

manner. If necessary it will allocate to each job up to Cj execution time. It follows that if209

WCETj ≤ Cj then each job will terminate by its deadline (i.e. fj ≤ dj).210

The R and G conditions of each active job are therefore:211

Rj(t)
def
= WCETj ≤ Cj ∧ t + (Cj − ej(t)) ≤ dj212

3 An alternative formulation [12] to the one presented here is for the Scheduler to guarantee a budget (of
at least C for each job), and for each job to rely on this budget. Example specifications and further
investigations indicated that the method defined in the current paper is the more realistic and effective.

ECRTS 2022



12:6 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

213

Gj(t)
def
= ej(t) ≤ Cj214

At run-time, the job does not need to be aware of its deadline or current execution time;215

although more expressive and flexible behaviours may require this. Once a job (j) terminates216

the Rj and Gj conditions no longer apply.217

The constraints imposed upon execution time are represented as guarantees and not218

post-conditions for a number of reasons:219

1. post-conditions are, by definition, required to hold upon termination, but a failure may220

lead to the job not terminating;221

2. to add fault tolerance (i.e. to cope with jobs whose estimated execution times are not222

respected) we will need to know the point in time at which a rely condition fails to hold223

(and hence a guarantee condition no longer has to hold); and224

3. deadlines may change (or be removed) during the execution of the job (see later examples).225

The semantics of rely/guarantee conditions is that guarantees are required to be met226

as long as the rely conditions are satisfied. If a job overruns and breaks its guarantee that227

ej(t) ≤ Cj there must be a rely condition ‘at fault’. For this reason, we explicitly include228

WCETj ≤ Cj in the rely condition: in an environment where this assumption does not hold,229

a job is not obliged to guarantee its temporal properties.230

If the environment (hardware platform including the influence of concurrently executing231

jobs, preemption effects on cache etc.) behaves such that the WCET estimate of some job232

k is exceeded, then this job may execute for more than Ck, thus breaking its guarantee233

condition. As a consequence the rely condition for the Scheduler would not be satisfied and234

hence it would be under no obligation to provide the necessary capacity to every job — some235

jobs may still be active at their deadlines. This takes us to the topic of survivability and236

how MCS supports graceful degradation.237

4 Mixed-criticality jobs238

To illustrate how a level of resilience can be added, two criticality levels are considered: HI-239

crit and LO-crit; with JL a set of LO-crit jobs, JH a set of HI-crit jobs, and J = JL ∪ JH.240

Job h is a representative HI-crit job; l is a representative LO-crit job; j continues to represent241

any job. So, for example, Rh(t) is the rely condition for any HI-crit job, h ∈ JH. With Mixed-242

Criticality jobs there are two estimates of Cj : Cj(L) and Cj(H); with Cj(L) ≤ Cj(H) [61].243

It is initially assumed that the system is either in the Normal mode, in which case all244

jobs should meet their deadlines, or in the HI-crit mode in which only the HI-crit jobs are245

guaranteed to meet their deadlines. For the Normal (N) mode the (R, G) conditions are as246

above except that Cj(L) replaces Cj in Rj , Gj , RS and GS :247

RN
S (t)

def
= ∀j ∈ act(J , t) • ej(t) ≤ Cj(L)248

249

GN
S (t)

def
= ∀j ∈ act(J , t) • t + (Cj(L) − ej(t)) ≤ dj250

251

RN
j (t)

def
= WCETj ≤ Cj(L) ∧ t + (Cj(L) − ej(t)) ≤ dj252

253

GN
j (t)

def
= ej(t) ≤ Cj(L)254

The rely and guarantee conditions for the N mode are therefore:255

RN (t) = RN
S (t) ∧

∧

j∈J

RN
j (t)256



A. Burns and C.B. Jones 12:7

257

GN (t) = GN
S (t) ∧

∧

j∈J

GN
j (t)258

Most of these rely and guarantee conditions are mutually supportive in the sense that they259

“cancel out” when looking at the whole system. The only rely condition that depends on260

external compliance is:261

∀j ∈ J • WCETj ≤ Cj(L)262

4.1 Adding resilience to HI-crit jobs263

Considering HI-crit jobs (h ∈ JH) and their rely condition:264

RN
h (t)

def
= WCETh ≤ Ch(L) ∧ t + (Ch(L) − eh(t)) ≤ dh265

We want to give a higher (safer) bound on WCET, so we consider a more conservative value266

(Ch(H)), where Ch(H) > Ch(L). Now for all HI-crit jobs (h) we have a new HI-crit mode267

(H) and:268

RH
h (t)

def
= WCETh ≤ Ch(H) ∧ t + (Ch(H) − eh(t)) ≤ dh269

270

GH
h (t)

def
= eh(t) ≤ Ch(H)271

The Scheduler’s definition for mode H is272

RH
S (t)

def
= ∀h ∈ act(JH, t) • eh(t) ≤ Ch(H) ∧ ∀l ∈ act(JL, t) • el(t) ≤ Cl(L)273

274

GH
S (t)

def
= ∀h ∈ act(JH, t) • t + (Ch(H) − eh(t)) ≤ dh275

In this HI-crit mode there is no obligation to provide any level of service to the lower276

criticality jobs or indeed to prevent these jobs from using resources (perhaps at a background277

priority in a priority-based scheduler). Hence:278

RH
l (t)

def
= WCETl ≤ Cl(L)279

280

GH
l (t)

def
= el(t) ≤ Cl(L)281

The above specification is, however, not sufficient for many of the protocols advocated282

for mixed-criticality scheduling. The standard ‘mixed-criticality’ mechanism for being able283

to add more capacity to the HI-crit jobs is to take computation time away from the LO-crit284

jobs. Or, more precisely, to no longer execute these jobs. This further adds to the guarantees285

of the Scheduler.286

To facilitate this functionality it is necessary to know the time at which RN
S became false287

(i.e. when an active HI-crit job has first executed for C(L) without terminating). We refer288

to this as mode N’s deviation time, ηN ; defined by the following property:289

∃ηN , h ∈ act(JH, ηN ) • eh(ηN ) ≥ Ch(L) ∧ ∀t, t < ηN , g ∈ act(JH, t) • eg(t) < Cg(L)290

At the deviation time RN
S becomes false, mode N is left and, simultaneously4, mode H291

is entered. The rely and guarantee conditions RH(t) and GH(t) apply for t ≥ ηN .292

4 The notion of simultaneous is taken from the Timebands [18] framework that allows instantaneous
actions to be defined at one time band (granularity) but implemented by an activity at a finer time
band.

ECRTS 2022



12:8 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

We assume here the extreme Vestal behaviour of not executing LO-crit jobs again after293

ηN . This leads to a full specification for the guarantee condition for the Scheduler:294

GH
S (t)

def
= ∀h ∈ act(JH, t) • t + (Ch(H) − eh(t)) ≤ dh ∧ ∀l ∈ act(JL, t) • el(t) = el(η

N )295

with a simplified rely condition as the Scheduler no longer relies on the behaviour of LO-crit296

jobs as it guarantees that they do not execute:297

RH
S (t)

def
= ∀h ∈ act(JH, t) • eh(t) ≤ Ch(H)298

and therefore:299

RH(t) = RH
S (t) ∧

∧

l∈JL

RH
l (t)

∧

h∈JH

RH
h (t)300

301

GH(t) = GH
S (t) ∧

∧

l∈JL

GH
l (t)

∧

h∈JH

GH
h (t)302

This strategy of pausing all LO-crit jobs is not an option that the Scheduler could choose,303

but a requirement that is part of the specification of the job’s behaviour — and hence must304

be explicitly contained in GH
S .305

With this specification the LO-crit jobs are suspended; but they may execute later in306

another mode (perhaps after their deadlines). To abort these and future LO-crit jobs, rather307

than preempt them indefinitely, the Scheduler could (if specified to do so) enforce termination:308

∀t, t > ηN • act(JL, t) = ∅309

4.2 Transitioning from mode N to mode H310

The specification above requires a movement from mode N to mode H. To provide useful311

fault tolerance, it must be true that, whenever the rely condition for N fails to be satisfied,312

the corresponding rely condition for H is satisfied (and remains so) i.e. at time ηN when313

RN (ηN ) no longer pertains: RH(ηN ) is satisfied. If RH(ηN ) is true then the guarantee314

condition, GH(t), is delivered for all t > ηN , and as a consequence RH(t) must hold.315

In general a mode change could involve modes with unrelated functionality and hence316

the truth of the rely condition in the new mode would need to be asserted independently of317

the rely condition in the old mode. This is identical to what is required at system startup318

where the rely condition of the initial mode must be established. In this work, however, we319

require a more constrained relationship between the modes:320

◮ Definition 1. Mode B is a weakened form of mode A if321

1. for all times (t) before ηA when RA(t) is true then RB(t) is true (i.e. RA(t) ⇒ RB(t));322

and323

2. at time ηA when some aspect of RA(ηA) is no longer true RB(ηA) remains true.324

As RB(ηA) is true, it followed that GB(t) is true for all t > ηA.325

Counter Example. We require that mode H is a weakening of mode N . Consider the326

first element of the definition of weakening: in two of the three rely conditions, this is indeed327

the case as:328

RN
S (t) ⇒ RH

S (t); RN
l (t) ⇒ RH

l (t)329

but RN
h (t) does not have a simple relationship to RH

h (t). The first conjunct is a weakening of330

the ‘external’ rely condition as WCETh ≤ Ch(L) ⇒ WCETh ≤ Ch(H). The second conjunct331



A. Burns and C.B. Jones 12:9

is, however, a strengthening; hence modes N and H do not have the required hierarchical332

relationship – H is not a weakened form of N .333

A Modified Definition of Mode N (N∗). In order to assert that mode H is a weakened334

form of the initial mode it is necessary to constrain the behaviour of the Scheduler further335

in the Normal mode. It must do more than simply guarantee to provide for all jobs C(L)336

before the deadline d, it must also reserve sufficient slack so that, at any time a switch can337

be made, it is possible to guarantee C(H) before d.338

It follows that, for a HI-crit jobs, h, to be schedulable in both N∗ and H modes, there339

exists a virtual deadline vh with340

vh ≤ dh − (Ch(H) − Ch(L))341

that is defined (and confirmed) by the applicable scheduling analysis, such that: if the342

Scheduler in mode N∗ guarantees C(L) by v, then the Scheduler in mode H will be able343

to guarantee C(H) by d.5 To accommodate this constraint the guarantee condition of the344

Scheduler in mode N∗ must be modified to:345

GN∗

S (t)
def
= ∀j ∈ act(J , t) • t + (Cj(L) − ej(t)) ≤ vj346

and the Rely conditions of HI-crit jobs becomes347

RN∗

h (t)
def
= WCETh ≤ Ch(L) ∧ t + (Ch(L) − eh(t)) ≤ vh348

For LO-crit jobs (l) vl = dl and hence GN
S has not changed for these jobs. For HI-crit jobs349

(h) there is a proof obligation on the scheduling analysis to demonstrate:350

∀t, h ∈ act(JH, t) • GN∗

S (t) ⇒ t + (Ch(H) − eh(t)) ≤ dh (5)351

Such an obligation could be verified using mechanised proof tools such as PROSA [21, 10].352

◮ Lemma 2. Mode H is a weakening of mode N∗.353

Proof. As noted above ∀t : RN
S (t) ⇒ RH

S (t) and RN
l (t) ⇒ RH

l (t). The modification to354

N∗ does not effect these rely conditions. Also WCETh ≤ Ch(L) ⇒ WCETh ≤ Ch(H)355

(as Ch(H) ≥ Ch(L)). Finally t + (Ch(L) − eh(t)) ≤ vh ⇒ t + (Ch(H) − eh(t)) ≤ dh as356

vh ≤ dh − (Ch(H) − Ch(L)).357

The second step is to show that, at time ηN∗

(when RN∗

(ηN∗

) fails), RH(ηN∗

) remains358

true. Condition RN∗

(ηN∗

) is false because the WCET , for some HI-crit job k, is not359

bounded by Ck(L). Moreover ηN∗

is the first time instant at which RN∗

is false. Hence at360

time ηN∗

, RN∗

k (ηN∗

) is false, but RH
k (ηN∗

) is true as Ck(H) > Ck(L).6 ◭361

This weakening property and the proof obligation represented by eqn (5) are therefore362

sufficient to ensure that, whenever the Normal mode must be abandoned, the HI-crit mode363

can be entered and will deliver its guaranteed behaviour. The final point to note about the364

transition from N∗ to H is that the Guarantee conditions are also weakened. The system365

moves from guaranteeing all job deadlines to just guaranteeing the HI-crit ones. Hence366

GN∗

(t) ⇒ GH(t).367

5 This virtual deadline is used directly in the EDF-based scheduling scheme EDF-VD [5] and in fixed-
priority scheduling is equivalent to the worst-case (maximum) computed response time of the HI-crit
job in the Normal mode [6]. Note whatever scheduling protocol is employed at run-time there is an
implicit (if not explicit) virtual deadline in the Normal mode. If this were not the case then there would
be insufficient spare capacity in the Normal mode to satisfy the extra demand of the HI-crit mode.

6 Strictly, we require Ck(H) > Ck(L)+δ where δ is the minimum time step that the system can undertake
in its discrete model of time.

ECRTS 2022



12:10 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

4.3 Postponing the deviation time368

As noted in the introduction, the main focus of this paper is to motivate and define a formal369

framework for the specification of mixed criticality systems. In this section we are able to370

give an example of how this framework can be utilised.371

A system is considered to degrade at deviation time ηN∗

which is defined, above, as the372

first time that a HI-crit job executes beyond its C(L) constraint. But if this deviation time373

could be postponed then the dynamics of the system may alleviate the need to make the374

mode change – the LO-crit jobs could continue to meet their deadlines. Possible favourable375

dynamic behaviours include sporadic jobs not arriving at their maximum rate, and other jobs376

executing for less than their maximum C(L) bound. To explore the possibility of delaying377

the deviation time consider again the specification of the N∗ mode:378

RN∗

S (t)
def
= ∀j ∈ act(J , t) • ej(t) ≤ Cj(L)379

380

GN∗

S (t)
def
= ∀j ∈ act(J , t) • t + (Cj(L) − ej(t)) ≤ vj381

382

RN∗

j (t)
def
= WCETj ≤ Cj(L) ∧ t + (Cj(L) − ej(t)) ≤ vj383

384

GN∗

j (t)
def
= ej(t) ≤ Cj(L)385

where vj = dj for LO-crit jobs and vl ≤ dl − (Cl(H) − Cl(L)) for HI-crit jobs.386

If all jobs behave according to this R/G specification then all virtual deadlines will be387

met. This implies there is a weakened form of behaviour (which we denote as mode N̂∗):388

RN̂∗

S (t)
def
= ∀j ∈ act(J , t) • t ≤ vj389

390

GN̂∗

j (t)
def
= t ≤ vj391

with GN̂∗

S = GN∗

S and RN̂∗

j = RN∗

j .392

From the definition of the virtual deadline we have RN∗

S ⇒ R̂N∗

S and GN∗

j ⇒ ĜN∗

j .393

The deviation time (when R̂N∗

S becomes false for the first time) is now when a HI-crit394

job is still executing at its virtual deadline. And this time is likely to be significantly later395

than that provided by the earlier definition. Note also that this alternative definition of the396

deviation time for the normal mode changes what needs to be monitored – from execution397

time to elapsed time. This is likely to reduce the runtime overheads of the MCS scheduler.398

Again it is straightforward to prove that mode H is a weakening of (the modified) mode399

N̂∗, and the proof obligation on the offline scheduling analysis (eqn (5)) must again be used400

to validate the v values assigned to each HI-crit job. Recent scheduling results [8] have401

demonstrated that for fixed priority-based scheduling and AMC-rtb analysis the same v402

values are valid for the original definition of deviation time and the one derived in this section.403

That paper also demonstrated the benefits in terms of run-time performance that is gained404

from postponing the mode change.405

The proposed framework allowed this new protocol to be easily defined and verified.406

Further properties can be proven (such as the above definition of deviation time being the407

latest possible). In this introductory paper, however, priority is given to extending the408

framework to task-based systems.409



A. Burns and C.B. Jones 12:11

5 Task-based system model410

The above treatment of mixed-criticality jobs has demonstrated that the proposed specification411

framework has sufficient expressive power to capture the properties commonly required of412

job-based systems. The scheduling literature typically describes jobs as being organised413

within tasks — in this section we extend the study to cope with tasks.414

A real-time system is deemed to consist of a set of tasks. A single execution of the code415

of a task is a job. So a task gives rise to a sequence of jobs. The scheduler determines the416

order in which jobs from different tasks are executed. With a task-based model there is an417

assumption that the duration of the system is unbounded. This means that any specification418

framework must cater for the return of the system from any degraded mode back to the419

initial mode for the system (and to allow these mode changes to occur numerous times). We420

assume that each task k delivers a potentially unbounded sequence of jobs, k1, k2 etc, with421

job km having arrival time am
k and completion time fm

k . This sequence is not ‘reset’ as new422

modes are entered; it continues to extend indefinitely.423

This treatment focuses on issues related to execution time and mixed criticality. It does424

not directly address the rely and guarantee conditions related to when and how a task is425

released for execution. For example, time-triggered tasks require their job releases to be426

guaranteed by some Dispatcher; and event-triggered tasks rely on their releasing events427

obeying some minimum separation requirement. These issues are covered here by each task428

guaranteeing that its jobs do not arrive too early — a rely condition for the Scheduler.429

The system is again assumed to be defined over two criticality levels, LO-crit and HI-crit,430

and to have two modes of behaviour: N∗ and H. We however drop, for ease of presentation,431

the superscript from N in the following. To define a general model, each of the defining432

temporal parameters of each task (D, T, C, V ) has an L and a H value.433

We again make use of sets: T is the set of all tasks, TL the set of LO-crit tasks, and TH434

the set of HI-crit tasks, and T = TL ∪ TH. The axioms defined in Section 3 still apply.435

At any time t, each task k has a single current job. We let c(t) be the index of this job436

(for ease of presentation, we just use c for this index as the t value is always implied). Hence437

the current job of task k is denoted by kc. This job may have finished, but the next job438

of this task has not yet arrived (fc
k ≤ t < ac+1

k ). In task models that allow a job to arrive439

before the previous job of the same task has finished (i.e. tasks with D > T ), the ‘current’440

job is the one that arrived first.441

We modify the definition of ‘active’ to cater for tasks; a task is active if its current job442

has not yet terminated:443

k ∈ act(T , t) ⇔ k ∈ T ∧ (ac
k ≤ t < fc

k)444

In each of the criticality modes the relative parameters (Vk and Dk) are added to the arrival445

time ac
k to give the absolute values: vc

k, dc
k(L) and dc

k(H).446

5.1 Vestal-inspired example447

This section specifies the required behaviour of the system (Scheduler and tasks) for a typical448

model inspired by the Vestal approach [61]. The properties of this model are, briefly:449

System starts in the mode N in which all jobs of all tasks execute for no more than C(L)450

and all job deadlines are met.451

All LO-crit tasks are assumed (or constrained) to execute for no more than C(L).452

All HI-crit tasks are assumed (or constrained) to execute for no more than C(H).453

If any, or indeed all, HI-crit tasks execute for more than C(L) then:454

ECRTS 2022



12:12 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

all HI-crit tasks must still meet their deadlines;455

all LO-crit tasks have their periods and deadlines increased, but must still meet their456

deadlines.457

If there is an idle instant then the system must return to the Normal mode of operation.458

This extension of the Vestal model is often referred to as the elastic task model [20] in which459

the periods and deadlines of LO-crit tasks are extended from Tl(L) (and Dl(L)) to Tl(H)460

(and Dl(H)), but are still guaranteed.461

The major difference when moving from jobs to tasks is that each task, like the Scheduler,462

exists for the full duration of the time spent in each mode. Although individual jobs terminate,463

the task does not (in the model being utilised here). So Rk(t) and Gk(t) are the rely and464

guarantee conditions of task k, but they refer to the job that is current (and possibly active)465

at time t.466

For the Vestal-inspired model outlined above we have, for all LO-crit tasks, l ∈ TL, Cl(L) =467

Cl(H), Tl(H) > Tl(L), Dl(H) > Dl(L) and Vl = Dl(L) and for all HI-crit tasks, h ∈ TH,468

Ch(L) < Ch(H), Th(L) = Th(H), Dh(L) = Dh(H) and Vh < Dh(L) − (Ch(H) − CH(L)).469

The conditions for the normal mode N are:470

RN
S (t)

def
= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(L) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(L))471

472

GN
S (t)

def
= ∀k ∈ act(T , t) • t + (Ck(L) − ec

k(t)) ≤ vc
k473

474

RN
k (t)

def
= WCETk ≤ Ck(L) ∧ k ∈ act(T , t) ⇒ t + (Ck(L) − ec

k(t)) ≤ vc
k(L)475

476

GN
k (t)

def
= ec

k(t) ≤ Ck(L) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(L))477

RN
S contains the separation condition: if the current job is not the first instantiation of the478

task then it must arrive at least Tk(L) after the previous job.479

In the HI-crit mode, H, we have a similar formulation but with different parameters:480

RH
S (t)

def
= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(H))481

482

GH
S (t)

def
= ∀k ∈ act(T , t) • t + (Ck(H) − ec

k(t)) ≤ dc
k(H)483

484

RH
k (t)

def
= WCETk ≤ Ck(H) ∧ k ∈ act(T , t) ⇒ t + (Ck(H) − ec

k(t)) ≤ dc
k(H)485

486

GH
k (t)

def
= ec

k(t) ≤ Ck(H) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(H))487

These two formulations can easily be combined into a single specification that is a function488

of the mode (N or H) but are separated here to improve readability.489

5.2 Transitioning from N to H490

In this and the following section we consider the movement between modes; from Normal,491

N , to the HI-crit mode, H, and then the return to the Normal mode. In a long-lived492

task-based system there may be many such transitions between N and H. Each time a mode493

is entered, we consider this to be a new occurrence of the mode and therefore there is a new494

occurrence of the Scheduler for that mode. A move from N to H involves one occurrence of495

the N -mode Scheduler terminating and, instantaneously, a new occurrence of the H-mode496

Scheduler starting its execution7. A natural linkage between Scheduler occurrences is for the497

7 An implementation may utilise a single Scheduler that modifies its behaviour depending upon which
mode is current. Nevertheless, from a modelling point of view we consider each occurrence of the
Scheduler to be a distinct execution.



A. Burns and C.B. Jones 12:13

post-condition of one mode, say A (QA
S ), to ensure the pre-condition of the follow-on mode,498

B (P B
S ), with QA

S ⇒ P B
S .499

We note that the two mode changes contained within this task-based two-level mixed500

criticality system are of a quite different nature. The movement from N to H is forced, as501

N must be left. But the transition from H back to N is one of preference – both modes are502

acceptable, but the functional behaviour of the system is enhanced by being in the N mode.503

In Section 4.2 we noted that as mode N is left at time ηN , due to RN (ηN ) being false,504

we must prove that RH(ηN ) is true. This involves two steps. First, at any time t < ηN ,505

RN (t) ⇒ RH(t). Second, at time ηN , when RN (ηN ) is broken, RH(ηN ) remains true.506

Following the approach in Section 4.2, the task model has again made use of a virtual507

deadline for HI-crit jobs; from this we derive the proof obligation:508

∀t, h ∈ act(TH, t) • GN
S (t) ⇒ t + (Ch(H) − ec

h(t)) ≤ dc
h(H) (6)509

Counter Example. With this Vestal-inspired example, the periods of the LO-crit tasks are510

expanded when the H mode is entered. It is therefore not true that ac
l − ac−1

l ≥ Tl(L) ⇒511

ac
l − ac−1

l ≥ Tl(H) as Tl(H) > Tl(L). Hence RN
S does not imply RH

S .512

A Modified Definition of Mode H (H∗). We must again modify the specification. However513

on this occasion rather than strengthen the rely condition in mode N we weaken the definition514

of the rely condition for the Scheduler in the HI-crit mode:515

RH∗

S (t)
def
= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (c > 1 ∧ t > ηN ⇒ ac
k − ac−1

k ≥ Tk(H))516

Note the addition of t > ηN , the constraint on the arrival times of jobs in the new517

mode only applies strictly after ηN . The Guarantee condition of mode H∗ is unchanged518

(GH∗

(t) = GH(t)) and for the tasks: RH∗

k (t) = RH
k (t), and GH∗

k (t) = GH
k (t).519

◮ Lemma 3. Mode H∗ is a weakening of mode N .520

Proof. First, ∀t < ηN : For LO-crit tasks: Cl(H) = Cl(L) and vc
l = dc

l hence RN
l = RH

l (so521

RN
l ⇒ RH

l ). For HI-crit tasks: WCETh ≤ Ch(L) ⇒ WCETh ≤ Ch(H) (as Ch(H) ≥ Ch(L));522

and t+(Ch(L)−ec
h(t)) ≤ vc

h ⇒ t+(Ch(H)−ec
h(t)) ≤ dc

h as vc
h ≤ dc

h−(Ch(H)−Ch(L)). Hence523

RN
h ⇒ RH∗

h . For the Scheduler, the first conjunct is appropriate as ec
k(t) ≤ Ck(L) ⇒ ec

k(t) ≤524

Ck(H), the second conjunct does not apply as t < ηN .525

The second step (showing RH∗

is true at time ηN ) follows the proof of Lemma 2; noting526

again that the second conjunct of RH∗

S (t) does not apply when t = ηN . ◭527

As RH∗

(ηN ) is true, it follows that GH∗

(t) is true for all t > ηN and hence RH∗

(t) is528

true for all t ≥ ηN as long as all task execution times are bounded by Ck(H).529

The proof obligations on the necessary scheduling analysis must allow for all LO-crit530

generated jobs to arrive at the time of the mode change. One of the advantages of this531

more formal specification of the Scheduler’s behaviour is that it helps identify this constraint532

explicitly. We note that many examples of published scheduling algorithms for mixed-533

criticality systems (for example [15]) do allow LO-crit jobs to arrive (and subsequently534

execute) at the time of the mode change even if that would not be allowed in the new mode.535

However this property is often hidden within the analysis (by the use of a ‘floor plus one’536

rather than a ‘ceiling’ representation of job arrivals). Within our formal framework the537

property is explicit.538

To summarise, in order to prove that RH is true whenever a forced mode change can539

occur, we note three distinct situations:540

1. Conjuncts within RH are weakened forms of those in RN and remain true.541

ECRTS 2022



12:14 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

2. Conjuncts in RN must be strengthened so that they then imply the corresponding542

conjunctions in RH .543

3. Conjuncts in RH must be weakened so that they are implied by the corresponding544

conjunctions in RL.545

The above example makes use of all three strategies.546

5.3 Transitioning from H to N547

As long as the execution times of the HI-crit tasks are bounded by their C(H) estimates,548

the system will stay in the H mode. All the rely conditions will remain true. However it is549

desirable to return to the Normal mode if possible as this mode provides a better level of550

service – i.e. LO-crit tasks will be able to occur more often and have shorter deadlines.551

Once the over-running HI-crit job that caused the transition to mode H has terminated,552

there is the possibility that all new jobs can be released with their LO-crit parameters553

and, if they all execute for no more than C(L), all deadlines can be met. But we know554

that any scheduling scheme can only guarantee deadlines if there is bounded (indeed often555

zero) residual work in the system at the time the Normal mode is (re-)activated [7]. It is556

therefore scheduler specific as to when the system is ‘safe’ to return to the Normal N mode557

of operation.558

May/must constraints [19] are useful here. If the system is idle (there are no jobs to559

execute), it is usual to state that the scheduler must return the system to the Normal mode,560

but it may make this change earlier if a proof obligation has shown that such a transition is561

safe.562

In terms of the framework presented in this paper a switch back to N mode is allowed563

only when the scheduling obligations (as represented by GN
S ) of that mode can be satisfied564

by the current Scheduler. If these obligations are satisfied, the move from H to N can be565

sanctioned by an appropriate pre-condition on the Normal mode. An example of one such566

pre-condition is the commonly used protocol that the Normal mode can only be (re-)entered567

at time t if there are no active jobs at time t (other than ones that arrive at time t):568

P N
S (t)

def
= k ∈ act(T , t) ⇒ ac

k = t569

The Scheduler for the Normal mode can therefore assume this property and it is the570

responsibility of the Scheduler in the HI-crit mode to enforce it whenever it invokes a mode571

change back to Normal. In other words this is a post-condition for the Scheduler in mode H:572

QH
S (t)

def
= k ∈ act(T , t) ⇒ ac

k = t573

6 Robustness and resilience574

Here we extend the treatment for tasks to show how we can more systematically specify575

levels of robustness and resilience for mixed-criticality systems, the motivation here being to576

develop a means of quantifying robustness and resilience. The first step in this process is to577

specify the various schemes being proposed.578

Informal definitions of robustness and resilience are provided in [14] – i.e. the robustness579

of a system is a measure of the level of faults it can tolerate without compromising the580

quality of service it offers; resilience, by contrast, refers to the level of faults for which it can581

provide degraded yet acceptable (e.g. safe) quality of service. It is noted in [14] that there582

are a number of standard responses in the fault tolerance literature for systems that suffer583

transient faults (equating to one or more concurrent job failures in this work):584



A. Burns and C.B. Jones 12:15

1. Fail (Fully) Operational – all tasks/jobs execute correctly (i.e. meet their deadlines).585

2. Fail Robust – some tasks are allowed to skip a job but all non-skipped jobs execute586

correctly and complete by their deadlines; the quality of service at all criticality levels is587

unaffected by job skipping. Many periodic control tasks have this property [62]; there588

is sufficient inertia in the physical system to allow the occasional control signal to be589

missed.590

3. Fail Resilient – some lower criticality tasks are given reduced service such as having their591

periods/deadlines extended, priorities dropped and/or their execution budgets reduced; if592

the budget is reduced to zero then this is equivalent to subsequent jobs of the task being593

abandoned.594

4. Fail Safe/Restart – where the level of failure exceeds what Fail Resilient bounds can595

accommodate, more extreme responses are required including rebooting or system shut-596

down (if the application has a fail-safe state). If a fail-safe state cannot be achieved then597

the system may need to rely on best-effort tactics that have no guarantees. This is, of598

course, the last resort to achieving survivability.599

6.1 Failure modes600

The framework developed above has been extended to include a number of more complex601

behaviours that arise from supporting robust and resilient behaviour. In this section we602

briefly outline a set of possible failure modes.603

Fail operational – FO. A HI-crit job experiences a fault if it executes for more than604

C(L). One measure of Fail Operational is therefore the number of such job failures that can605

be accommodated while still meeting all task deadlines. However, if a job from a HI-crit606

task executes for more than C(L), we still assume that the C(H) bound remains operational.607

One criticism of those models derived from Vestal [61] is that they usually assume that608

any overrun of C(L) results in an execution time of C(H). In practice this is very unlikely609

to occur, a minor overrun is more likely. We therefore introduce a parameter, CO, that610

represents a unit of overrun (for all jobs). Fail Operational is a measure of how many such611

overruns can be accommodated. Let O denote this number over all the tasks. A HI-crit612

job that executes for more than Ch(L) but less than Ch(L) + CO has an O value of 1. In613

general, a task has an O value of n if its overrun is between (n − 1) ∗ CO and n ∗ CO.614

The metric for Fail Operational is therefore the maximum O value allowed (FO) in a615

defined interval, IO. This interval could be of a fixed length (and would usually be much616

greater than the maximum task period). Alternatively it could be the interval from the617

current time back to when there was an idle moment, m, defined by:618

∃m, m < t •
(

∀k ∈ act(T , m) • ac
k = m) ∧619

620
∀n, m < n < t • (∃k • k ∈ act(T , n) ∧ ac

k < n)
)

621

so the only active tasks at time m are those that released a job at that time, and there are622

active tasks that have not just been released for all times between m and t. Note m must623

exist as system startup (time 0) matches the definition of m as the only active tasks are624

those released at time 0. We note that m is a function of t, hence m(t) in the following.625

To compute O at time t, we need to know how many overruns each job has experienced.626

This can be computed as follows:627

O =
∑

∀h∈TH,s • t>as
h

≥m(t)

⌈

es
h(t) − Ch(L)

CO

⌉

0

628

ECRTS 2022



12:16 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

where ⌈⌉0 constrains the ceiling function to return a value no less than 0.629

If this value is greater than 1 but no greater than FO then the system mode should be630

Fail Operational (FO) with all tasks meeting their deadlines. It follows that the rely and631

guarantee conditions for the Scheduler are as follows. Remember that for LO-crit tasks632

C(H) = C(L):633

RF O
S (t)

def
= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L) ∧634

635

∑

∀h∈TH,s • t>as
h

≥m(t)

⌈

ek
h(t) − Ch(L)

CO

⌉

0

≤ FO636

637

GF O
S (t)

def
= ∀k ∈ act(T , t) • t + Ck(L) − ec

k(t) ≤ vc
k ∧638

639

∀h ∈ TH • ac
h ≥ m(t) ∧ ec

h(t) > Ch(L) ⇒ t + Ck(H) − ec
k(t) ≤ dc

k(H)640

As there are no overruns in the normal mode we can deduce that RN
S ⇒ RF O

S .641

Note this formulation is structurally different from that given earlier for a pure Vestal-like642

model. What the Scheduler must rely on is a property of the whole set of HI-crit tasks, not643

a specific property of each individual task. The Scheduler can therefore guarantee Ch(H)644

(by the task’s deadline) to any HI-crit tasks that overrun. But this guarantee is subject to645

the rely condition remaining true (i.e. there is a bound on the number and extent of these646

overruns).647

The specification of the HI- and LO-crit tasks in the normal mode, and for most tasks648

in the FO mode, is simply649

RF O
k (t)

def
= WCETk ≤ Ck(L) ∧ k ∈ act(T , t) ⇒ t + Ck(L) − ec

k(t) ≤ vc
k650

651

GF O
k (t)

def
= ec

k(t) ≤ Ck(L) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L)652

But for the tasks that overrun, they experience a mode change that moves the system to a653

variant of FO:654

RF O∗

h (t)
def
= WCETh ≤ Ch(H) ∧ h ∈ act(TH, t) ⇒ t + Ch(H) − ec

h(t) ≤ dc
h(H)655

656

GF O∗

h (t)
def
= ec

h(t) ≤ Ch(H) ∧ (ac
h = t ∧ c > 1) ⇒ ac

h − ac−1
h ≥ Th(H)657

For the non overrunning tasks and the Scheduler RF O∗

= RF O, and GF O∗

= GF O.658

A small number of tasks experiencing this change will not cause the Scheduler to change659

mode, unless its rely condition is invalidated. The proof obligation (6) will again ensure that660

RF O∗

h is a weakening of RN
h and RF O

h .661

In summary, a system stays in the normal mode until a single HI-crit task executes for662

more than C(L). The system then moves to mode FO with the overrunning task behaving663

according to mode FO∗. Further HI-crit tasks may overrun and move to mode FO∗.664

Eventually either an idle instant occurs and the system will return to the normal mode N ,665

or the FO count is breached and RF O
S is invalidated. The system will now fail unless there is666

a further degraded mode it can transition to; such a mode is considered next.667

Fail robust – FR. A robust task is one that can safely drop one non-started job in a668

defined time interval. Each task (be it HI-crit or LO-crit), as part of its definition, has a669

robustness parameter, w. If a task has successfully completed the execution of w consecutive670

jobs then the Scheduler can drop the next job (before it has been given any execution time).671

As such jobs should only be dropped if they have to be, this requires a new mode: FR (Fail672

Robust). This mode will only be entered if the rely condition of the Scheduler in mode673



A. Burns and C.B. Jones 12:17

FO becomes false (i.e there are more than FO overruns). Within FR FR overruns will be674

tolerated (with FR > FO); i.e.675

∑

∀h∈TH,s • t>as
h

≥m(t)

⌈

es
h(t) − Ch(L)

CO

⌉

0

≤ FR676

We introduce a predicate, reqk(t) (short for required) that returns true if the current677

job of task k at time t must be executed. Tasks that require all their jobs to execute are678

assigned, for ease of presentation, w = 0. The conditions for the current job (kc) of task k to679

be required are: (1) wk = 0, or (2) the task has not yet executed wk jobs, i.e. c ≤ w, or (3)680

one of the previous wk jobs (before c) had a zero execution time — this is an indication that681

the job was dropped. This leads to the following definition:682

reqk(t)
def
= wk = 0 ∨ c ≤ wk ∨ ∃s, s ∈ c − wk..c − 1 • es

k(fs
k) = 0683

In other words, reqj(t) is false only when the last wj jobs of τj (i.e. jc−1
j , jc−2

j , . . . j
c−wj

j )684

have completed successfully. A non robust task is always ‘required’ (in that its current job685

must always complete). The R/G conditions can again be easily derived for the Fail Robust686

mode:687

RF R
S (t)

def
= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L) ∧688

689

∑

∀h∈TH,s • t>as
h

≥m(t)

⌈

es
h(t) − Ch(L)

CO

⌉

0

≤ FR690

Note this is a weakening of the rely condition as RF O
S ⇒ RF R

S which follows from FR > FO691

i.e. more overruns can be tolerated in the Fail Robust mode.692

We can now complete the full specification. The Scheduler only guarantees execution693

time to those jobs that are required; moreover, if a job is not required the Scheduler ensures694

it does not execute.695

GF R
S (t)

def
= ∀k ∈ act(T , t) • reqk(t) ⇒ t + Ck(L) − ec

k(t) ≤ vc
k ∧696

697

∀k ∈ T • ac
k = t ∧ ¬reqk(t) ⇒ fc

k = t ∧698

699

∀h ∈ TH • ac
h ≥ m(t) ∧ ek

h(t) > Ch(L) ⇒ t + Ck(H) − ec
k(t) ≤ dc

k(H)700

The tasks only need execution time if they are required; their guarantee conditions remain701

true even if the current job does not execute.702

RF R
k (t)

def
= WCETk ≤ Ck(L) ∧ k ∈ act(T , t) ∧ reqk(t) ⇒ t + Ck(L) − ec

k(t) ≤ vc
k703

704

GF R
k (t)

def
= ec

k(t) ≤ Ck(L) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L)705

As with mode FO, an individual HI-crit task can fail (rely condition becomes invalid, false)706

leading to a weakened specification:707

RF R∗

h (t)
def
= WCETh ≤ Ch(H) ∧ h ∈ act(TH, t) ⇒ t + Ch(H) − ec

h(t) ≤ dc
h(H)708

709

GF R∗

h (t)
def
= ec

h(t) ≤ Ch(H) ∧ (ac
h = t ∧ c > 1) ⇒ ac

h − ac−1
h ≥ Th(H)710

Note the reqk condition has been removed from the rely condition as the current job must711

be required to execute as it has a non-zero execution time (i.e. a value that exceeded C(L));712

also this is another weakening of the rely condition.713

ECRTS 2022



12:18 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

Again with this specification the Scheduler must rely on a property of the whole set of714

HI-crit tasks, not a specific property of each individual task.715

Fail resilient (graceful degradation) – GD. Once the count of job failures becomes716

greater than FR, the FR mode must be abandoned as the rely condition of the Scheduler717

becomes false. To add resilience, a number of different general strategies for graceful718

degradation have been discussed in the literature [55, 45, 54]. Some strategies are hierarchical,719

in that they form a natural progression of increasingly severe forms of degradation that720

are invoked by increasingly severe forms of failure. Others take the form of alternative721

approaches.722

All strategies are defined by their level of fault tolerance (the maximum O count they723

can deal with) and their impact on LO-crit tasks. Example strategies include:724

1. Increasing the periods and deadlines of LO-crit tasks [60, 59, 36, 58, 57, 53, 25], called725

task stretching, the elastic task model or multi-rate (also see Section 5.1)726

2. Imposing only a weakly-hard constraint on the LO-crit tasks [24, 51]727

3. Decreasing the computation times of the LO-crit tasks [13, 4], perhaps by utilising an728

imprecise mixed-criticality (IMC) model [50, 52, 49, 33] or budget control [26, 27]729

4. Moving some LO-crit tasks to a different processor that has not experienced a criticality730

mode change [63, 64, 35, 3].731

5. Abandoning LO-crit work in a disciplined sequence [23, 34, 28, 56, 46, 47].732

Some example strategies have already been described in the paper. Of course the specific733

set of schemes that may be applicable will depend on the details of the application. Never-734

theless, any collection of approaches can be (partially) ordered using preferences and the735

strengths/weaknesses of the rely conditions of the Scheduler.736

In general, the full set of modes forms a lattice with the Normal N mode at the top, and737

the Fail Safe (FS) mode at the bottom (see below). Preferences are assigned to reflect the738

structure of this lattice (N is the most preferred mode, FS the least). The least preferred739

resilient mode is the one that represents the total abandonment of all LO-crit jobs. We define740

this to be the backstop mode (BM). In the following BM is entered after the failure of GD:741

RBM
S (t)

def
= ∀h ∈ act(TH, t) • ec

h(t) ≤ Ch(H) ∧ (ac
h = t ∧ c > 1) ⇒ ac

h − ac−1
h ≥ Th(H)742

743

GBM
S (t)

def
= ∀h ∈ act(TH, t) • t + Ch(H) − ec

h(t) ≤ dc
h ∧ ∀l ∈ act(TL, t) • ec

h(t) = ec
h(ηGD)744

where again ηGD is the time this mode is entered (i.e. when some graceful degradation mode,745

GD must be abandoned). Now no active LO-crit jobs execute.746

RBM
h (t)

def
= WCETh ≤ Ch(H) ∧ h ∈ act(TH, t) ⇒ t + Ch(H) − ec

h(t) ≤ dc
h(H)747

748

GBM
h (t)

def
= eh

j (t) ≤ Ch(H) ∧ (ac
h = t ∧ c > 1) ⇒ ac

h − ac−1
h ≥ Th(H)749

750

RBM
l (t)

def
= true751

752

GBM
l (t)

def
= (ac

l = t) ⇒ (fc
l = t)753

hence any newly arrived LO-crit job is immediately finished (aborted).754

Fail safe/restarts – FS. The final ‘strategy’ is fail safe, perhaps via fail stop, followed755

by a subsequent restart (which may use a cold, warm or hot standby). It is not the purpose756

of this paper to review these approaches to fault tolerance. But for completeness we note757

that wherever possible there should be a mode (FS) which guarantees a fail safe outcome.758

P F S
S

def
= true759



A. Burns and C.B. Jones 12:19

760

RF S
S (t)

def
= true761

762

GF S
S (t)

def
= t ≤ (ηBM + DF S

S )763

764

QF S
S

def
= safe_shut_down765

where DF S
S is the (relative) deadline of the scheduler in this mode – there is a bound on how766

far t can reach.767

This mode must be the lowest preference mode (i.e. be at the base of the lattice). It can768

always be entered, but must only be entered when all Schedulers in other modes have rely769

conditions that are false. Note we give the Scheduler a deadline in this mode to instigate the770

shut-down activity, but no further functional information can be given as the Scheduler is no771

longer operational.772

6.2 Robust and resilient mode changes773

In the above discussion a number of Scheduler modes have been introduced. They naturally774

form a sequence based on preference; the inverse of this sequence describes the behaviour of775

the system as it experiences graceful degradation:776

N → FO → FR → GD → BM → FS777

An application could have a number of intermediate modes between FR and BM . In addition778

there could be a number of ‘best-effort’ (not guaranteed) behaviours/modes between BM779

and FS.780

For the set of operational modes it will be necessary to show they form a hierarchy:781

RN ⇒ RF O ⇒ RF R ⇒ RGD ⇒ RBM ⇒ RF S
782

Moreover, at the time a rely condition becomes invalid and the next mode is entered (at times783

ηN , ηF O, ηF R,ηBM ), it can be proven (see Lemmas 2 and 3) that the new rely condition is784

true and henceforth the guarantee condition holds.785

In contrast to this gradual decline in functionality, a system that is programmed to786

recover will move directly from any of the degraded modes back to mode N . This move is787

driven by preference; but to reenter the Normal mode there will be some prerequisites. As788

noted in Section 5.3 this could be simply that at the time the Normal mode is re-entered789

there are no active tasks that had been released prior to this time.790

7 Conclusions and Future Work791

There is extensive published work on Mixed-Criticality scheduling and implementation, but792

not on their formal specification. We believe formalisation is essential since the notion of793

mixed criticality has subtle semantics: often concepts such as correctness, resilience and794

robustness are neither straightforward nor intuitive for such systems. The R/G approach795

has proved a successful formalism for specifying non-real-time safety-critical systems and our796

main contribution in this paper is to extend R/G to (i) time, and (ii) multiple criticalities.797

The proposed framework is based on an ordering of modes (in general, this would form798

a lattice) with the normal mode (N) being at the top and a Fail Stop (FS) mode at the799

base. Each mode has an R/G coupling with a move down the ordering accompanied by a800

weakening of the rely and guarantee conditions. Examples were used to show that to obtain801

ECRTS 2022



12:20 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

a true hierarchical relationship between the rely conditions (e.g. RA ⇒ RB, for modes A802

and B), it is often necessary to strengthen the RA and/or weaken the RB conditions. A803

movement of the system down the ordering (from mode A to B) occurs only when forced by804

RA no longer being true. At this time it is necessary to prove that RB remains true. The805

return of the system back to mode N is sanctioned by the rely and pre conditions of N being806

reestablished.807

The examples presented in this paper have demonstrated that the developed approach808

has the expressive power necessary to enable a wide range of possible runtime strategies to be809

precisely specified and evaluated (in terms of their internal consistency). Further work will810

address the application of the R/G specifications in the development of the necessary run-time811

code that will be needed to support these mixed-criticality protocols. This would benefit812

from mechanical proof support as undertaken by the PROSA team [21, 10]. Although this813

work is not covered in the current paper there is ample evidence that R/G specifications can814

form the basis for the formal development of implementations. A useful example is tackled815

in [43, 41]: although not scheduling per se, Simpson’s 4-slot algorithm is a delicate piece of816

intricate code for asynchronous communication mechanisms. A number of other examples of817

developments based on R/G specifications are listed and/or tackled in [48, 31, 44, 9].818

References819

1 J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press,820

1996.821

2 J.-R. Abrial. The Event-B Book. Cambridge University Press, Cambridge, UK, 2010.822

3 J. Baik and K. Kang. Schedulability analysis for task migration under multiple mixed-criticality823

systems. In Proc Korean Society of Computer Science, page X, 2019.824

4 S. K. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some825

service under all non-erroneous behaviours. In Proc. ECRTS, pages 131–140, 2016.826

5 S.K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and827

L. Stougie. Mixed-criticality scheduling of sporadic task systems. In Proc. of the 19th Annual828

European Symposium on Algorithms (ESA 2011) LNCS 6942, Saarbruecken, Germany, pages829

555–566, 2011.830

6 S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.831

In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 34–43, 2011.832

7 I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality embedded833

software. IEEE Transactions on Software Engineering, 43(4):298–320, 2016.834

8 I. Bate, A. Burns, and R.I. Davis. Analysis-runtime co-design for adaptive mixed critic-835

ality scheduling. In Proc. of forthcoming IEEE RTAS, Pre publication version privately836

communicated., 2022.837

9 R. Bornat and H. Amjad. Explanation of two non-blocking shared-variable communication838

algorithms. Formal Aspects of Computing, 25(6):893–931, 2013.839

10 S. Bozhko and B.B. Brandenburg. Abstract response-time analysis: A formal foundation for840

the busy-window principle. In Marcus Völp, editor, 32nd Euromicro Conference on Real-841

Time Systems (ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics842

(LIPIcs), pages 22:1–22:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für843

Informatik.844

11 A. Burns. Why the expressive power of programming languages such as Ada is needed for845

future cyber physical systems. In Ada-Europe International Conference on Reliable Software846

Technologies, pages 3–11. Springer, 2016.847

12 A. Burns, S. Baruah, C.B. Jones, and I. Bate. Reasoning about the relationship between the848

scheduler and mixed-criticality jobs. In Proc. 7th Int. RTSS Workshop On Mixed Criticality849

Systems (WMC), pages 17–22, 2019.850



A. Burns and C.B. Jones 12:21

13 A. Burns and S.K. Baruah. Towards a more practical model for mixed criticality systems. In851

Proc. 1st Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2013.852

14 A. Burns, R. Davis, S. K. Baruah, and I. Bate. Robust mixed-criticality systems. IEEE853

Transactions on Computers, 67(10):1478–1491, 2018.854

15 A. Burns and R.I. Davis. Response-time analysis for mixed-criticality systems with arbitrary855

deadlines. In Proc. Workshop on Mixed Criticality Systems (WMC), pages 13–18, 2017.856

16 A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer857

Surveys, 50(6):1–37, 2017.858

17 A. Burns and R.I. Davis. Mixed criticality systems: A review (13th edition). Technical Report859

MCC-1(13), available at https://www-users.cs.york.ac.uk/b̃urns/review.pdf and the White860

Rose Repository, Department of Computer Science, University of York, 2022.861

18 A. Burns and I.J. Hayes. A timeband framework for modelling real-time systems. Real-Time862

Systems Journal, 45(1–2):106–142, June 2010.863

19 A. Burns, I.J. Hayes, and C.B. Jones. Deriving specifications of control programs for cyber864

physical systems. Computer Journal, 63(5):774–790, 2020.865

20 G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In IEEE866

Real-Time Systems Symposium, pages 286–295, 1998.867

21 F. Cerqueira, F. Stutz, and B.B. Brandenburg. PROSA: A case for readable mechanized868

schedulability analysis. In Proc. 28th Euromicro Conference on Real-Time Systems (ECRTS),869

Leibniz International Proceedings in Informatics (LIPIcs), pages 273–284, Dagstuhl, Germany,870

2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.871

22 Diego Machado Dias. Mechanising an algebraic rely-guarantee refinement calculus. PhD thesis,872

School of Computing, Newcastle University, 2017.873

23 T. Fleming and A. Burns. Incorporating the notion of importance into mixed criticality874

systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality875

Systems (WMC), RTSS, pages 33–38, 2014.876

24 O. Gettings, S. Quinton, and R.I. Davis. Mixed criticality systems with weakly-hard constraints.877

In Proc. International Conference on Real-Time Networks and Systems (RTNS)), pages 237–878

246, 2015.879

25 C. Gill, J. Orr, and S. Harris. Supporting graceful degradation through elasticity in mixed-880

criticality federated scheduling. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on881

Mixed Criticality Systems (WMC), RTSS, pages 19–24, 2018.882

26 X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-883

criticality systems. In Proc. Real-Time Systems Symposium (RTSS), pages 47–56. IEEE,884

2016.885

27 X. Gu and A. Easwaran. Dynamic budget management and budget reclamation for mixed-886

criticality systems. Real-Time Systems, 55:552–597, 2019.887

28 X. Gu, K.-M. Phan, A. Easwaran, and I. Shin. Resource efficient isolation mechanisms in888

mixed-criticality scheduling. In Proc. 27th ECRTS, pages 13–24. IEEE, 2015.889

29 I. J. Hayes. Generalised rely-guarantee concurrency: An algebraic foundation. Formal Aspects890

of Computing, 28(6):1057–1078, 11 2016.891

30 I.J. Hayes, M. Jackson, and C.B. Jones. Determining the specification of a control system892

from that of its environment. In Keijiro Araki, Stefani Gnesi, and Dino Mandrioli, editors,893

FME 2003: Formal Methods, volume 2805 of LNCS, pages 154–169. Springer Verlag, 2003.894

31 I.J. Hayes and C.B. Jones. A guide to rely/guarantee thinking. In Jonathan Bowen, Zhiming895

Liu, and Zili Zhan, editors, Engineering Trustworthy Software Systems – Third International896

School, SETSS 2017, volume 11174 of LNCS, pages 1–38. Springer, 2018.897

32 C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,898

12(10):576–580, 1969.899

33 L. Huang, I-H. Hou, S.S. Sapatnekar, and J. Hu. Graceful degradation of low-criticality tasks900

in multiprocessor dual-criticality systems. In Proc. of the 26th International Conference on901

Real-Time Networks and Systems, RTNS, pages 159–169. ACM, 2018.902

ECRTS 2022



12:22 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

34 P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. Interference constraint graph: A new903

specification for mixed-criticality systems. In Proc. 18th Emerging Technologies and Factory904

Automation (ETFA), pages 1–8. IEEE, 2013.905

35 S. Iacovelli, R. Kirner, and C. Menon. ATMP: An adaptive tolerance-based mixed-criticality906

protocol for multi-core systems. In Proc. IEEE 13th International Symposium on Industrial907

Embedded Systems (SIES), pages 1–9, 2018.908

36 M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low criticality tasks in909

mixed criticality system. In Proc. 1st WMC, RTSS, pages 43–48, 2013.910

37 C.B. Jones. Development Methods for Computer Programs including a Notion of Interference.911

PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group, Technical912

Monograph 25.913

38 C.B. Jones. Specification and design of (parallel) programs. In Proc. of IFIP, pages 321–332.914

North-Holland, 1983.915

39 C.B. Jones. Systematic Software Development using VDM. Prentice Hall International, second916

edition, 1990. URL: http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.917

pdf.918

40 C.B. Jones and A. Burns. A rely-guarantee specification of mixed-criticality scheduling.919

In Valentin Cassano and Nazareno Aguirre, editors, Mathematical Foundations of Software920

Engineering: Essays in Honor of Tom Maibaum on the Occasion of his Retirement, Tribute921

Series. College Publications, 2022.922

41 C.B. Jones and I.J. Hayes. Possible values: Exploring a concept for concurrency. Journal of923

Logical and Algebraic Methods in Programming, 85(5):972–984, 2016.924

42 C.B. Jones, I.J. Hayes, and M.A. Jackson. Deriving specifications for systems that are925

connected to the physical world. In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors,926

Formal Methods and Hybrid Real-Time Systems, volume 4700 of Lecture Notes in Computer927

Science, pages 364–390. Springer Verlag, 2007.928

43 C.B. Jones and K.G. Pierce. Elucidating concurrent algorithms via layers of abstraction and929

reification. Formal Aspects of Computing, 23(3):289–306, 2011.930

44 C.B. Jones and N. Yatapanage. Investigating the limits of rely/guarantee relations based on931

a concurrent garbage collector example. Formal Aspects of Computing, 31(3):353–374, 2019.932

on-line April 2018.933

45 J.C. Laprie. Dependable computing and fault tolerance: Concepts and terminology. In Digest934

of Papers, The Fifteenth Annual International Symposium on Fault-Tolerant Computing, pages935

2–11, Michigan, USA, 1985.936

46 J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, and I. Lee. MC-ADAPT: Adaptive task dropping in937

mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst., 16:163:1–163:21, 2017.938

47 J. Lee and J. Lee. Mc-flex: Flexible mixed-criticality real-time scheduling by task-level mode939

switch. IEEE Transactions on Computers, page online, 2021. doi:10.1109/TC.2021.3111743.940

48 Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for verifying941

concurrent program transformations. In Proc. 39th annual ACM SIGPLAN-SIGACT Sym-942

posium on Principles of Programming Languages, POPL ’12, pages 455–468, New York, NY,943

USA, 2012.944

49 D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. Scheduling analysis of945

imprecise mixed-criticality real-time tasks. IEEE Transactions on Computers, 67(7):975–991,946

July 2018.947

50 D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD scheduling948

of mixed-criticality systems with degraded quality guarantees. In Proc. IEEE RTSS, pages949

35–46, 2016.950

51 R. Medina, E. Borde, and L. Pautet. Directed acyclic graph scheduling for mixed-criticality951

systems. In Johann Blieberger and Markus Bader, editors, Reliable Software Technologies –952

Ada-Europe, pages 217–232. Springer International Publishing, 2017.953



A. Burns and C.B. Jones 12:23

52 R.M. Pathan. Improving the quality-of-service for scheduling mixed-criticality systems on954

multiprocessors. In Marko Bertogna, editor, Proc. Euromicro Conference on Real-Time955

Systems (ECRTS), volume 76 of Leibniz International Proc. in Informatics (LIPIcs), pages956

19:1–19:22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.957

53 S. Ramanathan, A. Easwaran, and H. Cho. Multi-rate fluid scheduling of mixed-criticality958

systems on multiprocessors. Real-Time Systems, 54:247–277, 2018.959

54 B. Randell, J-C. Laprie, H. Kopetz, and B. Littlewood(Eds.). Predictably Dependable Comput-960

ing Systems. Springer, 1995.961

55 B. Randell, P.A. Lee, and P.C. Treleaven. Reliability issues in computing system design. ACM962

Computing Surveys, 10(2):123–165, 1978.963

56 J. Ren and L.T.X. Phan. Mixed-criticality scheduling on multiprocessors using task grouping.964

In Proc. 27th ECRTS, pages 25–36. IEEE, 2015.965

57 H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:966

Schedulability analysis and performance optimization. In Proc. Embedded and Real-Time967

Computing Systems and Applications (RTCSA), pages 59–68. IEEE, 2016.968

58 H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems. In969

Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.970

IEEE, 2014.971

59 H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In972

Proc. of the Conference on Design, Automation and Test in Europe, DATE, pages 147–152,973

2013.974

60 H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-criticality tasks in975

multicore systems. In Proc. RTCSA, 2013.976

61 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution977

time assurance. In Proc. Real-Time Systems Symposium (RTSS), pages 239–243, 2007.978

62 N. Vreman, A. Cervin, and M. Maggio. Stability and Performance Analysis of Control Systems979

Subject to Bursts of Deadline Misses. In Björn B. Brandenburg, editor, Proc. Euromicro980

Conference on Real-Time Systems (ECRTS), volume 196 of Leibniz International Proceedings981

in Informatics (LIPIcs), pages 15:1–15:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl –982

Leibniz-Zentrum für Informatik.983

63 H. Xu and A. Burns. Semi-partitioned model for dual-core mixed criticality system. In 23rd984

International Conference on Real-Time Networks and Systems (RTNS 2015), pages 257–266,985

2015.986

64 H. Xu and A. Burns. A semi-partitioned model for mixed criticality systems. Journal of987

Systems and Software, 150:51 – 63, 2019.988

ECRTS 2022


	1 Introduction
	2 Introduction to Rely/Guarantee conditions
	3 Job-based system model
	4 Mixed-criticality jobs
	4.1 Adding resilience to HI-crit jobs
	4.2 Transitioning from mode N to mode H
	4.3 Postponing the deviation time

	5 Task-based system model
	5.1 Vestal-inspired example
	5.2 Transitioning from N to H
	5.3 Transitioning from H to N

	6 Robustness and resilience
	6.1 Failure modes
	6.2 Robust and resilient mode changes

	7 Conclusions and Future Work

