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Abstract 

Background: Microbiome-Inspired Green Infrastructure (MIGI) was recently 

proposed as an integrative system to promote healthy urban ecosystems, through 

multidisciplinary design. Specifically, MIGI is defined as nature-centric infrastructure 

restored and/or designed and managed to enhance health-promoting interactions 

between humans and environmental microbiomes, whilst sustaining microbially-

mediated ecosystem functionality and resilience. MIGI also aims to stimulate a 

research agenda that focuses on considerations for the importance of urban 

environmental microbiomes.  

 

Objectives: In this paper we provide details of what MIGI entails from a bioscience 

and biodesign perspective, highlighting the potential dual benefits for human and 

ecosystem health. We present ‘what is known’ about the relationship between urban 

microbiomes, green infrastructure and environmental factors that may affect urban 

ecosystem health (ecosystem functionality and resilience as well as human health). 

We discuss how to start operationalising the MIGI concept based on current 

available knowledge, and present a horizon scan of emerging and future 

considerations in research and practice. We conclude by highlighting challenges to 
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the implementation of MIGI and propose a series of workshops to discuss multi-

stakeholder needs and opportunities.  

 

Discussion: This article will enable urban landscape managers to incorporate initial 

considerations for the microbiome in their development projects to promote human 

and ecosystem health. However, overcoming the challenges to operationalising MIGI 

will be essential to furthering its practical development. Although the research is in its 

infancy, there is considerable potential for MIGI to help deliver sustainable urban 

development driven by considerations for reciprocal relations between humans and 

the foundations of our ecosystems –– the microorganisms. 

 

Introduction 

Microbial communities play vital roles in ecosystem processes and provisions 

including carbon and nutrient cycling, climate regulation, animal and plant health, 

and global food security (Cavicchioli et al. 2019; Guerra et al. 2020). The ongoing 

degradation of, and climate-associated changes in microbial communities (structure, 

complexity and composition) pose a considerable threat to global macro-level 

biodiversity across the planet (Bach et al. 2020; Greenspan et al. 2020; Tibbett et al. 

2020). In parallel with these environmental concerns, noncommunicable diseases 

(chronic non-infectious diseases) are on the rise (Smith et al. 2014; Jairath et al. 

2020). For example, in recent decades the prevalence of asthma (El-Gamal et al. 

2017; Borna et al. 2019), diabetes (Holman et al. 2010), allergic rhinoconjunctivitis 

(Kainu et al. 2013), and autoimmune disorders (Dinse et al. 2020; Paramasivan et al. 

2020) has increased worldwide. Growing evidence suggests that the global trends of 
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ecosystem degradation, urbanisation, and noncommunicable diseases are deeply 

interconnected (Haahtela, 2019).  

 

Exposure to diverse environmental microbiomes––the complex network of 

microorganisms in a given environment––is thought to play an important role in 

human health (Rook, 2013; Roslund et al. 2020). Environmental microorganisms 

support the development and regulation of the human immune system (Renz and 

Skevani, 2020; Roslund et al. 2020). Evidence has shown that degraded habitats 

may harbour a greater relative abundance and diversity of opportunistic human 

pathogens, and ecological restoration may restore health-regulating assemblages 

(Liddicoat et al. 2019; Robinson et al. 2020a). Moreover, microbial exposure in urban 

green/blue spaces could improve our health but may depend heavily upon 

environmental and design factors including vertical stratification (layering of microbes 

in the near-surface atmosphere), vegetation presence, complexity and management 

(Robinson et al. 2020b; Roslund et al. 2020), airflow, and soil management. 

However, with appropriate restoration, design and management strategies, these 

factors could be optimised to create healthy urban ecosystems, to benefit both 

human and environmental health. 

 

Ensuring long-term urban ecosystem resilience to environmental challenges will 

depend on our ability to restore and manage the landscape with considerations for 

the unseen foundations of our ecosystems –– the microorganisms. Complex 

microbial interactions are involved in maintaining the health of urban plant and 

animal populations (Berg et al. 2017). Considering these microbial interactions as 

part of any long-term urban development vision will be essential to ensure urban 
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ecosystems can flourish and maintain resilience. However, there are currently few 

considerations for the role of microbial communities in urban development and 

landscape design, and multispecies frameworks are rarely used to inform the 

management of urban ecosystems. Indeed, recognising its importance in 

sustainability, the recently proposed ‘multispecies urbanism’ concept puts forward a 

framework for urban development, driven by considerations for reciprocal 

relationships between humans and non-humans (including microbes) (Rupprecht et 

al. 2020; Sharma et al. 2021). 

 

Sharing similar principles to multispecies urbanism, Microbiome-Inspired Green 

Infrastructure, also known as ‘MIGI’, was recently proposed as an integrative system 

to promote healthy urban ecosystems (Robinson et al. 2018; Watkins et al. 2020). 

MIGI can be defined as nature-centric infrastructure that is restored and/or designed 

and managed to promote interactions between humans and environmental 

microbiomes, with explicit considerations for sustaining microbially-mediated 

ecosystem functionality and resilience. A considerable challenge to operationalising 

MIGI is a lack of awareness of the imperative for urban microbiome research, and 

the translation of existing research into intelligible and practicable outputs. Another 

challenge is addressing the complex needs and constraints of multiple stakeholders 

involved in urban landscape management (Marzano et al. 2021). 

 

In this paper, our primary objectives are to: (a) present what is known about the 

relationship between urban microbiomes, green infrastructure and environmental 

processes that affect urban ecosystem health (ecosystem functionality and 

resilience, and human health); (b) discuss how we can operationalise the MIGI 
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concept i.e. actionable insights; (c) present a horizon scan of developmental 

interdisciplinary considerations for MIGI; and, (d) highlight challenges to the 

implementation of MIGI, whilst proposing a series of multi-stakeholder engagement 

workshops.  

 

This article will help to encourage urban landscape managers to incorporate initial 

considerations for MIGI in their development projects to promote healthy urban 

ecosystems for humans and the wider biotic community. Although the research is in 

its infancy, there is considerable potential for MIGI to help deliver complex ecological 

and modern urban societal needs.   

 

Discussion 

MIGI: the relationship between environmental microbiomes, 

ecosystem functionality, and human health 

 

Ecosystem functionality and resilience context 

Microbial communities can be considered the foundations of our ecosystems 

(Cavicchioli et al. 2019) (Fig. 1). Soil-microbe-plant interaction studies have 

demonstrated that plants rely on microbial communities for favourable health (Nazli 

et al. 2020). Microbial communities are integral to nutrient and water absorption 

(Trivedi et al. 2020), and phytohormone production and regulation activities (ur 

Rehman et al. 2020). These microbial communities include arbuscular mycorrhizal 

fungi and algae, along with symbiotic, associative symbiotic and free-living plant 

growth promoting bacteria (Nazli et al. 2020). Endophytes (microbes living in plant 

tissues) also benefit plants by enhancing competitive abilities and increasing 
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resistance to pathogens and other abiotic stressors (Pavithra et al. 2020). Soil 

microbiomes are essential to long-term ecosystem resilience in the face of global 

challenges such as climate change and degradation (Dubey et al. 2019). In addition 

to plant health, microorganisms play roles in carbon sequestration and 

biogeochemical cycling (Dubey et al. 2019). It can be further argued that the health 

of all organisms is interrelated through the cycling of environmental microorganisms 

from soils, to plants, animals, and back into the environment (van Bruggen et al. 

2019) (Fig. 1).  

 

It has been demonstrated that microbiome diversity and network complexity drive 

multiple ecosystem functions related to nutrient cycling (Wagg et al. 2019). For 

instance, grasslands with poorly-developed microbial networks and reduced 

microbial richness have low multifunctionality due to fewer taxa that support 

functional redundancy and uniqueness (Wagg et al. 2019). With minimal 

considerations for microbiomes in urban landscape design and management 

projects, it is likely that poor ecosystem multifunctionality and stability will continue. 

To promote long-term urban ecosystem health, it is imperative that this trajectory 

changes. MIGI provides a framework to operationalise this change.   

 

Human health context 

Growing evidence suggests that exposure to naturally-diverse environmental 

microbiomes can improve human health. For example, studies highlight the 

importance of green space microbiomes to immunoregulation (Fig. 1). Lehtimäki et 

al. (2021) showed that risks of asthma and aeroallergen sensitisation are reduced in 

rural infants due to exposure to more biodiverse microbiomes (compared to urban), 
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and Riskumäki et al. (2021) identified several environmental taxa that are important 

in augmenting and/or suppressing systemic inflammatory immune responses. A loss 

of biodiversity in urban areas reduces exposure to diverse environmental 

microbiomes, whilst increasing exposure to pathogenic microbes (Parajuli et al. 

2018). This is corroborated by a review investigating rural vs. urban environmental 

aerobiomes (microbiome of a given airspace) that showed rural-mediated beneficial 

immune responses (Flies et al. 2020). Recently, a 28-day biodiversity intervention 

demonstrated that inoculating a schoolyard environment with biodiverse features 

(e.g., soil and plants from local forest habitats) significantly altered the microbiome of 

the children and enhanced important immunoregulatory pathways (Roslund et al. 

2020).  

 

Other studies indicate the importance of butyrate-producing bacteria which may be 

promoted in biodiverse plant-soil systems (Liddicoat et al. 2020; Brame et al. 2021), 

for example where organic-rich soils experience low redox conditions consistent with 

fermentative decomposition of organic matter. Butyrate is a short chain fatty acid 

associated with gut health, immunoregulation, and mental health, and exposure to 

trace level dust containing the putative spore-forming butyrate-producing bacteria 

Kineothrix alysoides is linked to reduced anxiety-like behaviour in mice (Liddicoat et 

al. 2020). Another recent study showed that spending a short period of time in green 

spaces can significantly change the human nasal and respiratory microbiome 

(Selway et al. 2020). Indeed, microbiota-mediated environmental health can be 

thought of as two layers of protective biodiversity (Ruokolainen et al 2017). The first 

layer, our personal microbiome, is key to health. The second layer, the 

environmental microbiome, represents an important source for replenishing the first; 
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therefore safeguarding it represents a critical health insurance policy. It is also 

important to note that a plethora of other potential health benefits are associated with 

engaging with urban nature, including reduced blood pressure (Ideno et al. 2017), 

lower levels of stress, anxiety (Birch et al. 2020; Robinson et al. 2021) and 

increasing positive affect (Cameron et al. 2020).  

 

 

Fig. 1. Urban multispecies health. Environmental microbiomes are the foundations of 

our ecosystems, and are essential to plant and animal health (including humans).  

 

MIGI: actionable insights for landscape managers 

Vegetation, microbiomes, and the built environment  

To operationalise the MIGI framework, we can draw upon several relevant studies. 

For example, one important factor is to ensure humans (and other species) are 
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exposed to high microbial alpha diversity associated with naturally-biodiverse 

environments from a young age, which is important for immunoregulation (Mulder et 

al. 2011; Zhang et al. 2020). It has been demonstrated that air samples downwind 

from biodiverse sources (e.g., species-rich plant communities) contain more diverse 

microbial communities compared to upwind, with ~50% of airborne bacteria in 

downwind samples deriving from local plant sources (Lymperopoulou et al. 2016). 

Therefore, a relatively simple intervention for urban designers could be to develop 

public spaces and buildings downwind from (macro)biodiverse sources, and to 

integrate local biodiverse sources within building structures and spaces (Fig. 2, a). 

Recently, it was shown that urban green space aerobiomes are vertically stratified, 

with an altitudinal decay in bacterial alpha diversity, and possibly a higher relative 

abundance of pathogenic taxa at higher altitudes (Robinson et al. 2020a). This 

reflects a transition from local plant and soil-related microbiomes at low heights into 

a broader urban (typically non-green space) airshed (Robinson et al. 2020b). A 

potential mitigation measure for this could be to augment vertical planting in urban 

areas, allowing exposure to higher natural microbial alpha diversity in the vertical 

dimension (Fig. 2, b). It would also be prudent to design urban areas with greater 

consideration for inclusive and direct ‘hands-on’ human engagement with natural 

features to promote interactions between humans and diverse environmental 

microbiomes, and to foster long-term pro-ecological behaviours (Fig 2. c).  

 

Mills et al. (2020) provided evidence that revegetation, particularly with native 

species, can improve urban soil microbiome functional diversity. Other studies show 

that diverse vegetation communities promote below-ground functional richness, 

diversity and resilience (Eisenhauer et al. 2018; Canals et al. 2019). Promoting 
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diversity of local vegetation communities is considered a robust strategy to maintain 

multifunctional processes under current and future environmental conditions 

(Eisenhauer et al. 2018). As such, MIGI strategies could include the planting of 

diverse, and where possible, native, vegetation communities to sustain urban 

ecosystem functionality and resilience (Fig. 2, e). However, it is not yet clear to what 

extent locally native plant populations will be able to tolerate future climate 

conditions. Studies on woody plants offer conflicting views, with some research 

suggesting that intra-population genetic variation may provide sufficient resilience 

(Borrell et al., 2018), whilst others argue that given the range in possible climate 

futures, including species beyond those that are locally native will be essential in 

urban environments (Sjöman et al., 2016; Cameron & Blanusa, 2016). As such, 

further research is required to understand the relationships between locally-native 

microbial populations and non-local/non-native plant species, including outcomes for 

stress tolerance, nutrient acquisition, and reproduction. 

 

MIGI strategies should also include the promotion of urban-rural habitat connectivity 

via contiguous vertical and horizontal natural corridors (Fig. 3, f). Many urban 

environments are ‘patchy’ in terms of quality and connected nature-centric features. 

To ensure long-term healthy urban ecosystems, we should aim to connect all natural 

habitats within towns/cities and provide essential biophysical corridors to the wider 

landscape. This action has high biodiversity conservation value by providing 

multispecies resources and improving species interactions and long-term resilience 

across the landscape, irrespective of species dispersal abilities or population sizes 

(Christie and Knowles, 2015). Enhancing networks of biologically and functionally 

diverse urban habitats with high vegetation complexity, also has the potential to 
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improve the distribution of quality aerobiomes, and augment diverse macroscopic 

species (animals and plants) that contribute to the collective urban environmental 

microbiome, and broader ecosystem complexity and resilience.  

 

Soil microbiomes 

Soil properties will have a key influence on environmental microbiomes associated 

with MIGI developments. Soil organic matter and clay-content (proportion of clay-

sized particles) are associated with structure, aggregation, nutrient and water-

holding properties, and therefore the habitat and diversity of microbes (Jastrow and 

Miller, 1998; Young and Crawford, 2004; Torsvik and Øvreås, 2002). A key decision 

during the establishment phase of MIGI will be whether to use in-situ or imported 

soils. Where feasible, using soils with a moderate amount of clay-content, e.g. sandy 

loams (10-20% clay content) to loams (around 25% clay content) would be expected 

to promote microbial diversity. By comparison, sandy soils provide suboptimal 

microbial habitat, while heavier texture clay soils (often capable of forming suitable 

aggregation and structure) may be more prone to poorer drainage in wet climates, or 

greater plant stress in dry climates or during dry periods due to higher wilting-point 

moisture content (where water is unavailable to plants). Whether using existing in-

situ soils, or importing new bulk soil, it may be necessary to examine constraints to 

plant growth. Sometimes these constraints will be naturally occurring (e.g. shallow 

depth, impermeable layers, presence of toxic or nutrient-limiting subsoil conditions), 

while other times they can result from management history (e.g. compaction, 

acidification).  
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Where appropriate, addressing soil constraints will help optimise the biological 

activity and microbial diversity of the plant-soil system. If organic matter is being 

applied, ideally this should be in a nutrient-balanced, or pre-composted form, so that 

microbial activity and available nutrients can be harnessed to support the growing 

vegetation. Ongoing management and human interaction should also be considered. 

For example, high levels of foot/vehicle traffic can lead to compaction and 

degradation, and may create zones of poor soil microbiome conditions with sub-

optimal health influence (e.g. along paths) within a natural space that is offering 

health-promoting microbial exposures. Exposure pathways to permit beneficial 

human-soil microbiome contact also remains an area for research. Based on 

available knowledge, low-level exposure to soil (e.g. dust) with biodiverse content to 

help contain potential pathogenic activity, would represent a reasonable starting 

point to supporting immune fitness. It is also expected that soils will gain maximum 

health-promoting potential by spending the majority of time covered with biodiverse 

vegetation, which is another consideration for designing MIGI exposure pathways. 

 

There is also growing evidence to show that plant communities require complex 

mycorrhizal networks, acting as conduits of inter-plant communication, and 

facilitating pathogen defence, adaptation, growth, and memory (Filotas et al. 2014; 

Birch et al. 2020). Indeed, healthy vegetation community phenotypes at higher levels 

emerge from a multitude of localised and often subterranean entities interacting at 

lower levels (Ibarra et al. 2020). For example, Birch et al. (2020) recently 

demonstrated that plant growth was significantly associated with the number of 

ectomycorrhizal connections to other plants, and the number of genetically distinct 

fungi that were present. Therefore, we must at least consider the condition and 
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ecology of the substrate and its role in sustaining ecosystem functionality and 

resilience. This will involve viewing habitat conservation and restoration through the 

lens of complex systems science. However, many experts in this field could provide 

appropriate consultation at each stage of a development project (Watkins et al. 

2020).  

 

Interestingly, a recent study showed that landscaping materials (e.g. compost and 

mulch) have a ‘microbial shelf life’, and long-term storage can significantly reduce 

the availability of bacterial taxa linked to human health and degradation of pollution 

(Soininen et al. 2021). This suggests that as part of a holistic MIGI strategy, short-

term storage times should be considered when planning the utilisation of 

landscaping materials (Fig. 2, d).  
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Fig. 2. Actionable insights for MIGI, including vegetation complexity, downwind 

development and local integration of biodiverse source (a); a solution to the concept 

of vertical stratification (b); hands-on engagement with natural features to promote 

immunoregulation (c); recommended soil types to promote diverse microbial habitat 

and short-term storage of landscaping materials (d); revegetation with diverse native 

plants to promote functional diversity (e); the concept of habitat connectivity via 

contiguous natural corridors to promote long-term multispecies health (f).  

 

MIGI: Horizon scan of emerging research and practice 

Bioreceptive materials and bio-integrated design 

Bio-Integrated Design refers to interdisciplinary methodologies that merge applied 

biotechnology, architecture and design, in order to create sustainable systems for 

the built environment. It encompasses a range of biologically-mediated processes, 

such as biosilification, biomineralization and bioremediation, as well as the 

development of material substrates for living systems. Guillitte defined the term 

‘bioreceptivity’ to describe the ability of a building material to be colonised by living 

organisms (Guillitte, 1995). In the context of bio-integrated design to enable MIGI, 

bioreceptivity has been explored through the design of architectural scaffolds with 

the goal of creating self-regulating systems which are host to cryptogrammic species 

as well as microbial biodiversity (Cruz & Beckett, 2016).  

 

Whilst horizontal surfaces including roofs, terraces or pavements offer scope for 

plant growth, vertical surfaces (e.g. building facades and infrastructural walls) offer 

far harsher environments due to excessive water run-off, strong exposure to winds 

and lack of nutrient rich substrates. But cities have vast areas of xeric surfaces that 
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offer opportunities to be photosynthetically active. For an accelerated creation of 

primary bioreceptivity on vertical surfaces, a number of design steps can accelerate 

this process. Porosity and surface roughness are two vital functions. Firstly, the 

calibration of pore size can enable water absorption and retention, reaching 

colonising organisms through capillary or surface-binding effects, and secondly as a 

means to exploit extrinsic factors for bioreceptivity through the collection of organic 

material and fixation of cryptogamic surface cover. Different compositions of 

bioreceptive cementitious materials have been explored based on Magnesium 

Phosphate Concrete (Manso et al., 2015) and other Ordinary Portland Concrete 

(OPC) mixes with the aim to create long-term carbon offset. Studies of OPC have 

shown that apart from altering the physico-chemical properties of materials, 

morphological variations explored via computational design strategies are a powerful 

means to reduce water run-off and increase moisture retention, extending the 

residence time to create zones for accelerated growth (Cruz, 2021). In future, 

quaternary bioreceptive strategies may be used (Sanmartín et al., 2021) whereby 

surface additives to a material scaffold such as hydrogels or humic material are 

applied to enhance colonisation. Further studies are needed to test the role of pH on 

material substrates in biofilm formation and the establishment of microbial 

communities which are vital to establish cryptogamic growth. 

 

Lichens and, primarily bryophytes play key roles in design of bioreceptive structures 

within architecture, provoking a biophilic response (Wilson, 1984) through their 

aesthetic appearance and tactility. However, they are also important components 

due to their capacity to regulate their photosynthetic activity depending on moisture 

availability while surviving for long periods without water - poikilohydry. In relation to 
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MIGI, bryophytes harbour ecologies with prokaryotic and eukaryotic algae, bacteria 

and fungi. Cyanobacteria are keystone species in other nutrient limited environments 

such as desert crusts (Yeager et al., 2007), where their ability to fix nitrogen and 

carbon enables succession by other organisms through exchange of metabolites. 

However, our understanding of the exact ecological roles of microorganisms 

associated with bryophyte hosts is nascent. For example, while the presence of 

certain bacteria varies according to the bryophyte species, in one study 

Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Armatimonadetes and 

Planctomycetes were detected in all moss microbiomes (Tang et al., 2016). 

Analogous to the urban environment, during early stages of habitat restoration it has 

been shown that bryophyte communities enrich populations of microbial life on 

calcareous rocks (Cao et al., 2020). It may be speculated that colonisation by 

bryophytes and their associated microbiota could have advantageous effects for 

growth promotion in other plants due to the presence of bacteria containing genes 

for production of indole acetic acid, siderophores or solubilisation of phosphate 

(Insuk et al., 2020). Through this application of bio-integrated design to produce 

poikilohydric living walls, it is possible to employ more of the surface area that is 

underutilised within our urban environments to deliver MIGI.  

 

Microbial inoculants 

Microbial inoculants have recently been used to shift microbiota in landscaping 

materials towards an immuno-protective assemblage (Hui et al. 2019). The authors 

developed a microbial inoculant from biodiverse sources (e.g., forest materials), 

resembling the microbiome of organic soils. After the study subjects made contact 

with these inoculated materials, the relative abundance of opportunist pathogens on 
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the skin significantly decreased. Furthermore, Roslund et al. (2020) demonstrated 

that a biodiversity intervention using microbial inoculants from forest floor materials 

changed the skin microbiome of children and enhanced immunoregulatory pathways. 

Several other studies show that microbial inoculants can be beneficial for plant 

health, for example, via Plant Growth Promoting Rhizobacteria (PGPR) (Sacristán-

Pérez-Minayo et al. 2020). PGPRs have the potential to protect plants from drought 

and metal stresses and play important roles in plant growth, which itself could 

minimise the use of harmful synthetically produced chemical fertilisers (Kumar et al. 

2019). Therefore, MIGI strategies could incorporate microbial inoculants to enhance 

ecosystem health (Fig. 3, b). 

 

Supportive tools 

Useful tools are being developed that could help with MIGI interventions in the near 

future. For example, Saleem et al. (2019) produced a framework to model the 

environmental microbiome's influence on plant traits and ecosystem functionality, 

highlighting the possibility of creating an index to monitor and enhance plant growth 

and soil/ecosystem health. Along similar lines, it could be valuable to develop a form 

of 'Health Promotion Potential Index’ for human health. This could be based on 

known combinations of environmental microbial factors that promote (or demote) 

immunoregulation and homeostasis, such as alpha and functional diversity and 

beneficial taxa that produce health-regulating compounds (Fig. 3, c).  

 

Bioremediation  

Emerging bioremediation research could also be considered in MIGI strategies. In-

situ bioremediation enables ongoing decontamination or degradation of pollutants 
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without complex excavation or transportation. This could play a role in sequestering 

metals such as lead and zinc––present in many cities as components of urban dusts 

(Alharbi et al., 2019). Bacteria, fungi and microalgae have evolved several 

mechanisms to adsorb or absorb heavy metals. In a study investigating river 

sediments contaminated with cadmium, copper, lead and zinc, it was hypothesised 

that species richness may be a function of “public goods” within the microbial 

community, such as metallophores, EPC, biogenic sulphides or calcite. Bacteria 

such as Pseudomonas and Bacillus may precipitate metal and thus benefit other 

organisms with spatial proximity by creating detoxified regions (Jacquiod et al. 2018).  

 

Kang et al. (2016) showed that the synergistic combination of bacterial strains 

including Viridibacillus arenosi B-21, Sporosarcina soli B-22, Enterobacter cloacae 

KJ-46 and E. cloacae KJ-47 was effective at sequestering Pb (98.3% effective) and 

Cd (85.4%) in soils. Biofilters are being developed that embed bacterial biofilms to 

absorb heavy metal ions (Priyadarshanee and Das, 2020). In terms of MIGI, this kind 

of strategy could be developed with Sustainable Drainage Systems in mind, e.g., a 

biofilter-embedded rain garden (Fig. 3, d). There are numerous organic compounds 

that pose a threat to human health, found in elevated concentrations. Microbial 

mechanisms that may be employed in MIGI are hydrolysis and oxidation, with the 

goal of producing benign compounds through metabolic activity. For instance, 

endocrine disruptors such as phthalates and alkylphenols are ubiquitous in water 

systems as a result of human activity (Bergé et al., 2014) but there are microbial 

mechanisms to break these down under certain conditions (Boll et al., 2020). Indeed, 

many bacterial taxa have been identified that have significant pollutant degradation 

properties (Ojuederie and Babalola, 2017). As an alternative to contained bioreactor 
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systems, creating stable synthetic ecologies and applying eco-evolutionary principles 

to enhance bioremediation is compatible with MIGI principles (Borchert et al., 2021).  

 

Plant nutrition, soil issues, and anti-microbial resistance 

It is suspected that high-dosage artificial agricultural fertilisers are detrimental to 

mycorrhizal networks, for example, by promoting taxa with pathogenic traits 

(Paungfoo-Lonhienne et al. 2015). Studies have suggested that organic or ‘natural’ 

fertilisers and plant conditioners outperform chemically synthetic N, P and K types in 

promoting plant health/quality (Hammad at el. 2020; Dahunsi et al. 2021). Additional 

research in this area could bring value to the MIGI concept, particularly research 

focusing on the application of fertilisers sympathetic to soil-plant microbial 

interactions. There are also physical soil issues to consider in urban landscape 

management. The loss of organic matter, compaction, excessive disturbance will 

likely damage microbial communities (Gregory et al. 2015). Research to fully 

understand the implications of these factors could enhance urban ecosystem 

management. The loss of soil microbial diversity has also been linked to the 

exacerbation of the spread of antimicrobial resistance (Chen et al. 2019). 

Antimicrobial resistance has important implications for human health by making 

infections harder to treat and increasing risks of disease spread (WHO, 2020). MIGI 

researchers aiming to reduce the abundance and diversity of antimicrobial resistant 

genes in urban environments could explore the strategy of increasing soil microbial 

diversity.  

 

Emerging biosecurity considerations 
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Alongside the positive opportunities presented by a multispecies approach to green 

infrastructure, the threats need to be equally researched and mitigated against within 

the MIGI framework. Many of the most pressing biosecurity threats to ecosystems 

are microbial in nature (in the UK, for example, Hymenoscyphus fraxineus, 

Phytopthora ramorum and Candidatus liberibacter solanacearum), threatening urban 

green infrastructure as well as agricultural crops that urban populations depend 

upon. It is increasingly recognised, however, that most biosecurity research and 

regulations focus on impacts to agricultural and forestry sectors. Work is urgently 

required to understand the extent to which urban ecosystems are threatened and 

what tools are most effective at safeguarding them. Key questions exist at a societal 

level, concerning the mismatch between public perception of biosecurity risk and 

expert assessment, the capacity for codes of conduct to influence behaviour and the 

ability to communicate information between policy makers, researchers and the 

public. Industry-specific technical questions also exist concerning the risks 

associated with importing soil for planting, the materials used in packaging for 

construction projects (Kemp et al. 2021), or to what extent novel microbial pests and 

diseases might influence assisted colonisation programmes or substitutions for 

keystone species die-off. 

 

Regulation and guidance exists to combat and mitigate these threats have been 

developed at international (e.g. European and Mediterranean Plant Protection 

Organisation (EPPO, 2020), national (Defra Plant Health Risk Register (Defra, 

2014)) and regional levels (Public Health Agency of Canada, 2018), complemented 

by industry-specific guidance in many countries (Watkins & Arkell, 2019). 

Nevertheless, further work is required to address the open questions and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2021                   doi:10.20944/preprints202104.0560.v1



 

 

operationalise policy, and MIGI offers an opportunity to address these in a holistic 

manner. One of the core challenges presented by biosecurity threats is that the 

technical understanding of biosecurity in the construction and development 

industries is currently at an early stage, with many practitioners confusing biosecurity 

with concepts such as biodiversity, and seeing threats posed by biosecurity risks as 

someone else’s responsibility. Integrating existing schemes such as Plant Healthy 

(https://planthealthy.org.uk) within MIGI will be essential, not only to ensure that best 

practice is developed but also so that practitioners can clearly understand how their 

actions reinforce the biosecurity continuum (Sequeira and Griffin 2014). 

Biosecurity is one of many layers that prove challenging to translate between 

research and practice, and to this end, delivering the plant selection database 

proposed in the MIGI toolkit (Watkins et al., 2020) will provide not only a common 

understanding of the tools required to deliver MIGI but also a shared vocabulary for 

different sectors to draw upon when discussing projects. 

 

Social innovation: promoting stronger human-nature relationships 

Other important factors within the MIGI framework include social innovation, 

education and stimulating awe for nature, with emphasis on the foundations of our 

ecosystems––the diverse microbial communities. Strategies such as ‘learning about 

the land, on the land’ (Learning the Land, 2021) could help to inspire pro-ecological 

behaviours that reinforce a sense of stewardship for our diverse and complex 

ecosystems. To paraphrase Simard (2018) “viewing [ecosystems] through the lens of 

cognition, microbiome collaborations, and intelligence may contribute to a more 

holistic approach to studying ecosystems and a greater human empathy and caring 

for the health of our [landscapes]”. Various campaigns also promote the concept of 
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‘nature connectedness’ (emotional and cognitive connection with the natural world). 

Studies in this area show increases in wellbeing and pro-ecological behaviour as a 

result of enhanced nature connectedness (Capaldi et al. 2014; Capaldi et al. 2015).  

 

For the technologically-minded, virtual reality systems could be developed to 

facilitate urban habitat tours. These could include interactive macroscopic displays of 

microbial communities, whilst providing information on the composition and 

functional roles that microbes play in the local ecosystems (Fig. 3, f).  

 

Fig. 3. Horizon scan of developmental considerations for MIGI, including 

interventions (b and d), design and supportive features (a and e), and applications 

for engagement and to acquire useful urban ecosystem health information (c and f). 
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MIGI: Challenges to operationalisation 

Watkins et al. (2020) identify barriers to operationalising MIGI, relating to the 

complexity of urban development projects, and communicating the benefits of MIGI 

interventions to stakeholders involved in urban planning. To ensure the 

implementation of green infrastructure strategies, stakeholder buy-in is required 

throughout green infrastructure planning, design, operation and management (Smith, 

2020; UK-BCG, 2020). The range of stakeholders include: local authorities, 

developers and private clients, planning professionals, landowners, landscape 

specialists, architects, ecologists, statutory agencies, contractors, local businesses 

and community groups. In the UK, there are a number of government-funded 

research projects into green infrastructure, biosecurity, climate change-readiness, 

and supply chains (e.g. BRIGIT, Future Oak, Plant Health Centre). Learning from 

these projects is prudent as there is already evidence of stakeholder fatigue and pre-

existing challenges of engaging with industry sectors that see these aspects as 

someone else’s problem or not aligned with commercial goals. This suggests new 

approaches are needed and highlights the importance of internationalising research 

projects so that robust data can be gathered from diverse stakeholders. 

 

Although fundamental, adding the lens of microbial ecology to an already expansive 

multi-stakeholder initiative, MIGI has to reckon with the “perception that multi-

stakeholder initiatives slow down urban planning and policy development processes 

due to a lack of consensus and different sectoral interests” (Ferreira et al. 2020). 

Further development should align with the priorities of the stakeholder groups and 

generate clear, actionable points overlayed onto existing frameworks, rather than 

increasing complexity. For instance, in the UK, some MIGI considerations overlap 
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with the policies laid out in the London Plan 2021. The focus on connected 

landscapes and biodiversity corridors supports the value of connected nature-centric 

features. Policy G5 Urban Greening asks that new developments incorporate high 

quality landscaping, green roofs, green walls and nature-based sustainable drainage 

and introduces an Urban Greening Factor to evaluate the quality and quantity of 

green space design and delivery (Greater London Authority, 2021). This guidance is 

currently under consultation and could benefit from MIGI-related input to aid with the 

ambition of delivering biodiversity net gain. Overlaps could be identified through 

direct communication with existing built environment biodiversity-centric networks. 

 

MIGI: Workshop series proposal 

To determine clear action points for future research and address the challenges 

related to divergence of interests among stakeholders, it is vital to ascertain diverse 

priorities and concerns through early consultation (Khoshkar et al. 2017). This could 

also aid the development of a “common language” (Ugolini et al. 2018) that 

translates researchers’ findings into verbal and graphic outputs relevant to non-

expert audiences. We are currently developing a series of workshops to discuss 

what is known about the microbiome in a health and ecosystem functionality context, 

and reveal tangible opportunities to include MIGI in urban planning. These 

workshops provide an opportunity to engage with reflective stakeholders in 

identifying not only challenges but also specific factors (e.g. MIGI toolkits, portfolio of 

illustrative examples) and alignments between current requirements/protocols, and 

how MIGI could be integrated. During the workshops we will discuss ‘what 

researchers should be working on’, and opportunities and constraints by drawing 

together the perspectives and needs of different stakeholders. These workshops will 
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form part of a process of long-term engagement and partnership to enhance urban 

ecosystem health via MIGI strategies.  

 

Developing the MIGI concept has the potential to enhance urban ecosystem 

functionality and resilience as well as human health. In this paper, we have provided 

several examples of MIGI actionable insights in addition to a horizon scan of 

emerging MIGI-related research and practice. A greater emphasis on the roles of 

microbial communities (from below-ground and up) in our urban ecosystems is 

needed. Understanding microbial dynamics will likely have an important role to play 

in the efficacy of our adaptability and long-term resilience to ongoing global 

environmental change. MIGI research agendas aim to promote this realm of thinking 

with considerations for multispecies health. However, overcoming the challenges to 

operationalising MIGI will be essential to furthering its practical development. 
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Figure captions 

 

Fig. 1. Urban multispecies health. Environmental microbiomes are the foundations of 

our ecosystems, and are essential to plant and animal health (including humans).  

 

Fig. 2. Actionable insights for MIGI, including vegetation complexity, downwind 

development and local integration of biodiverse source (a); a solution to the concept 

of vertical stratification (b); hands-on engagement with natural features to promote 

immunoregulation (c); recommended soil types to promote diverse microbial habitat 

and short-term storage of landscaping materials (d); revegetation with diverse native 

plants to promote functional diversity (e); the concept of habitat connectivity via 

contiguous natural corridors to promote long-term multispecies health (f).  

 

Fig. 3. Horizon scan of developmental considerations for MIGI, including 

interventions (b and d), design and supportive features (a and e), and applications 

for engagement and to acquire useful urban ecosystem health information (c and f). 
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