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Energy-Efficient Opportunistic Multi-Carrier

NOMA-based Resource Allocation for Beyond

5G (B5G) Networks

Haitham Al-Obiedollah, Haythem Bany Salameh, Sharief Abdel-Razeq, Ali Hayajneh,

Kanapathippillai Cumanan, and Yaser Jararweh,

Abstract

The interplay between the non-orthogonal multiple access (NOMA) and the opportunistic cogni-

tive radio (CR)-based orthogonal frequency multiple access (OFDMA) has been recently realized as

a promising paradigm to support the unprecedented massive connectivity demands of future beyond

fifth-generation (B5G) wireless communication systems. In such systems, which are called multi-carrier

NOMA CR-based systems, each licensed band reserved for primary users can be opportunistically utilized

based on power-domain NOMA to serve a group of secondary users simultaneously. An important

challenge in this domain is how to provide energy-efficient resource allocation techniques that attempt

to strike a balance between the total throughput (i.e., the achieved sum-rate) and the power required to

achieve that rate while satisfying network QoS demands and being aware of the unique characteristics

of the CR operating environment. In this paper, we propose an energy-efficient resource allocation

technique for multi-carrier NOMA CR-based systems, which aims at maximizing the overall energy

efficiency (EE) of the system under a set of CR and NOMA constraints. The EE maximization problem

is shown to be a fractional non-convex optimization, which is, in general, hard to optimize. To deal with
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the fractional and the non-convexity nature of the formulated EE maximization problem, we exploit the

Dinkelbach’s algorithm to transfer the EE problem to a parameterized optimization problem. Then we use

an iterative optimization approach to obtain the solution for the EE maximization problem. Simulation

results reveal that this EE maximization-based resource allocation technique outperforms the existing

resource allocation techniques in terms of the overall EE of the system while striking a good balance

between the sum-rate and the transmit power consumption.

Index Terms

Beyond 5G (B5G) networks, energy efficiency (EE), Cognitive radio (CR), non-orthogonal multiple

access (NOMA), Multi-carrier.

I. INTRODUCTION

Due to the rapid development of future wireless communication systems such as beyond fifth-generation

(B5G) or 6G networks, explosive growth in the number of wireless devices is inevitable [1], [2]. This, as

a result, brings up huge challenges to tackle the issues associated with the massive number of connected

devices. In fact, the challenges include; developing smart communication technologies, aligning with

the smart nature of the B5G and 6G networks [1], [3], [4], proposing efficient multiple access (MA)

techniques to serve a large number of users [5], [6], and finally, addressing the issues associated with a

high rise in power consumption in such emerging wireless networks [7]. Significant research efforts have

been dedicated to deal with these challenges by proposing efficient communication technologies.

Among several proposed technologies, cognitive radio (CR) technology has been considered as a

potential candidate to enable massive connectivity in next-generation (e.g., B5G and 6G) communication

networks [8], [9]. In CR technology, the licensed bandwidth owned by the primary users (PUs), can

be utilized by next-generation wireless-unlicensed- devices smartly and opportunistically [10]. With this,

the wireless devices can be considered as secondary users (SUs), which seek opportunistic utilization

of the available PU’s bandwidth without interrupting the PUs’ communication activities [9]. In fact,

CR communication can be realized through four functional phases, namely spectrum sensing, decision,

sharing, and mobility [11]. It has been shown that the practical deployment of CR technology cannot be

achieved without developing efficient MA techniques [12]. Therefore, several MA techniques have been

proposed to handle the access issues of CR-based future wireless networks, such as orthogonal frequency

division multiple access (OFDMA) [13], space domain multiple access (SDMA) [14], non-orthogonal

multiple access (NOMA), and the hybrid MA techniques. Specifically, the combination of power-domain

NOMA and OFDMA, referred to as hybrid OFDMA-NOMA, has been recently considered as a promising
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technique to support the massive connectivity of the CR-based future networks [15], [16]. On one hand,

the integration between NOMA and OFDMA offers an additional degree of freedom as the power and

frequency domains are utilized to serve a larger number of users [15] [16]. On the other hand, due to

the computational complexity of employing SIC in dense networks, employing NOMA alone introduces

several practical challenges [16]. With the hybrid OFDMA-NOMA system, NOMA is only exploited

to serve a few users within each cluster (i.e., sub-band), which overcomes the practical challenges of

employing SIC. In particular, this can be achieved by dividing the available bandwidth into a set of sub-

channels, in which power-domain NOMA is utilized to serve a group of users within each sub-channel

through utilizing superposition coding (SC) [17]. This combination introduces an additional degree of

freedom and can efficiently utilize the available resources. The CR-based future wireless networks that

employ hybrid OFDMA-NOMA techniques are referred to as multi-carrier NOMA CR-based systems

throughout this paper.

It is known that the multi-carrier NOMA CR-based system can support a massive number of users.

However, this cannot be achieved without significant power consumption. The increase in power con-

sumption has several undesirable outcomes, including the economic and environmental concerns [18].

These concerns have attracted both academia and industry to explore further research directions to tackle

the considerable increase in the power consumption [19]. In fact, existing proposed solutions that deal

with the power consumption issue in wireless networks can be divided into two categories. The first

category focuses on the further deployment of green energy resources to feed wireless communication

infrastructure. The green resources include solar and wind resources along with existing conventional

power resources [20]. Furthermore, the simultaneous wireless power and information transfer (SWIPT)

has also been considered as an additional green power resource [21], [22]. The aforementioned solutions

require severe modification to the existing communication systems. Unlike the first category, the second

category proposes energy-efficient communication protocols and mechanisms without modifying existing

wireless systems. Such protocols and mechanisms intelligently allocate the available power resources in

the network such that the energy efficiency (EE) of the system is improved [18], [23]. In particular, EE

is defined as the ratio between the achieved sum-rate and the corresponding consumed power that is

required to achieve this sum-rate [24]. In addition, EE strikes a good balance between the two conflicting

metrics, namely the sum rate and the transmit power consumption [25] [26] [27]. The EE can be viewed

as the performance metric that aims to attain the best achievable rate with minimum power consumption.
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Motivations and Contributions

The multi-carrier NOMA CR-based systems have the potential capabilities to support a massive number

of users. Therefore, considering the EE-based resource allocation technique is of importance. To the best of

the authors’ knowledge, the EE-based resource allocation technique for multi-carrier NOMA CR-based

systems has not been considered in the literature. Therefore, this paper considers an energy-efficient

resource allocation technique for a downlink multi-carrier NOMA CR-based system. With this resource

allocation technique, an EE optimization framework is formulated to allocate the available power at the

base station, such that the overall EE of the system is maximized under a set of constraints. These

constraints include the QoS requirements for SUs in the system and relevant CR and NOMA constraints.

However, due to the non-convexity nature of the formulated EE optimization framework, the Dinkelbach’s

algorithm is utilized to obtain the solution of this fractional non-convex optimization framework. We

provide an efficient approach to examine the feasibility of the EE maximization framework prior to

solving it. Furthermore, extensive simulations are carried out to validate the effectiveness of the proposed

resource allocation technique, comparing their performance with that of the existing conventional resource

allocation techniques in terms of the achieved EE. In addition, the achieved EE trend against the change

in several parameters is also studied in the simulation results.

Related Work

Over the past few years, several works investigated the potential capabilities of single-carrier NOMA

CR-based systems. For example, a single-carrier NOMA CR-based system was studied in [28], in which

maximizing the number of served SUs while meeting a set of relevant constraints was considered.

Furthermore, the authors in [29] proposed an EE maximization design for a single-carrier NOMA CR-

based system. On the other hand, ongoing research studies have investigated the multi-carrier NOMA

CR-based systems and their potential to implement future wireless networks. For example, a power

minimization resource allocation technique for a multi-carrier NOMA CR-based system was considered

in [13]. This design aimed to minimize the power required for transmission while achieving a set of

quality-of-service (QoS) constraints.

Paper Organization

The remainder of the paper is organized as follows. In Section II, we present the multi-carrier NOMA

CR-based system model and formulate the EE maximization problem. In Section III, we provide a

feasibility check and the proposed methodology to solve the EE maximization problem. Section IV

provides the simulation setup, results, and discussions. Finally, Section V concludes the paper.



5

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink multi-carrier NOMA CR-based system, as shown in Fig. 1. In this system, a

single-antenna CR base-station (CR-BS) communicates with L single-antenna SUs. Hence, the available

PU bandwidth, B, which is divided into K sub-bands is opportunistically available for CR communication.

As such, B =
∑K

i=1Bi, where Bi represents the ith sub-band, ∀i ∈ K = {1, 2, · · · ,K}. To utilize the

available sub-bands efficiently, each of them is dedicated to serve a group of users (i.e., cluster) through

the power domain NOMA. The number of clusters is equal to the number of the available sub-bands, such

as Bi is dedicated to serve the ith cluster Ci. Furthermore, the number of users at each cluster is denoted as

Li, such that L =
∑K

i=1 Li, whereas ul,i denotes the lth user in the ith cluster, ∀l ∈ Li = {1, 2, · · · , Li}.

In this cluster-based scenario, selecting users inside each cluster (i.e., clustering) is a key element that

determines the overall system performance. Therefore, the details of clustering are discussed in the

following section.

.

𝑢1,1

𝐵𝐵2 …… . 𝐵𝑖 …… . 𝐵𝐾𝐵1
𝑢2,1𝑢1,1 𝑢2,𝐾𝑢1,𝐾𝑢1,𝑖𝑢2,𝑖𝑢2,2

𝑢1,2
𝒙1 𝒙2 𝒙𝑖 𝒙𝐾

Fig. 1: A multi-carrier NOMA in CR system, with two users at each cluster, i.e., Li = 2.

Considering the above, the CR-BS transmits the superimposed signal, xi, to the users in cluster Ci

over the sub-band Bi, namely {u1,i, · · · , uLi,i}. The superimposed signal, xi, can be written as:

xi =

Li
∑

l=1

√
pl,isl,i, ∀i ∈ K, (1)
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where sl,i and pl,i represent the symbol intended to ul,i and the corresponding power allocation, respec-

tively. The received signal at ul,i, ∀l ∈ Li, ∀i ∈ K, can be written as follows:

yl,i = hl,ixi + nl,i, (2)

where hl,i denotes the channel coefficients between the CR-BS and ul,i. It is assumed that the CR-BS

and ul,i have the perfect channel state information (CSI). Furthermore, nl,i is the additive white Gaussian

noise with zero mean and variance σ2. As the SUs in each cluster are served based on power-domain

NOMA, the ordering of users has a considerable impact on the power allocation at each cluster [30].

Therefore, the performance of the multi-carrier NOMA CR-based system depends on the user-ordering

within each cluster. Without loss of generality, the users in each cluster are ordered as follows:

|h1,i|2 ≥ |h2,i|2≥ . . . |hLi,i|2, ∀i ∈ K. (3)

Note that |hl,i|2 represents the channel gain of the channel coefficients hl,i. Given the ordering in (3),

the weaker users (i.e., users with lower channel gains) should be allocated higher power levels compared

to that of the stronger users (i.e., users with stronger channel gains) [30]. This can be achieved through

imposing the following constraint:

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (4)

Note that the stronger users within each cluster perform successive interference cancellation (SIC) to

decode and subtract the messages intended for weaker users prior to decoding their own messages [31].

The message intended to ul,i is decoded at the stronger users, namely {u1,i, · · · , ul−1,i}. Thus, the

achieved signal-to-interference-and-noise-ratio (SINR) can be defined as

SINR
j
l,i =

|hj,i|2pl,i
|hj,i|2

∑l−1
s=1 ps,i + n2

j,i

, ∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l − 1} , (5)

where SINR
j
l,i denotes the SINR of the message intended to ul,i at the stronger user uj,i, such that j ≤ l.

Furthermore, ul,i also decodes its own message with the following SINR:

SINRl
l,i =

|hl,i|2pl,i
|hl,i|2

∑l−1
s=1 ps,i + n2

l,i

, ∀i ∈ K, ∀L ∈ Li. (6)

Based on this definition, the SINR of the message intended to ul,i can be defined as [18], [32]:

SINRl,i = min
{

SINR1
l,i, · · · ,SINRl

l,i

}

, ∀i ∈ K, ∀L ∈ Li. (7)

Therefore, the achieved rate at uk,i can be written as

Rl,i = Bilog2 (1 + SINRl,i) , ∀i ∈ K, ∀L ∈ Li, (8)
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and thus, the overall achieved sum-rate is given by

Rsum =

Li
∑

l=1

C
∑

k=1

Rl,i. (9)

The overall EE of the system can be defined as follows [24]:

EE =
Rsum

1
ǫ
Pt + Pl

, (10)

where Pt and Pl represent the total required power for transmission, and the power losses at the CR-BS,

respectively, such that Pt =
∑K

i=1

∑Li

l=1 pl,i. Furthermore, ǫ is the efficiency of power amplifier at the

CR-BS, and has a maximum value of one, i.e., 0 ≤ ǫ ≤ 1 [25], [33].

B. Clustering Approach

It is crucial to determine which users are grouped into different clusters. Considering the practical

implementation of employing SIC in dense networks, two users per cluster is assumed throughout the

rest of this paper. However, the analysis provided throughout this paper is applicable for any number

of users per cluster. First, as the stronger users in each cluster need to perform SIC [17], having more

users (i.e., more than two users) per cluster will introduce significant computational complexity, which

is not desirable for practical implementation of NOMA and B5G wireless systems [31], [34]. Second,

as the decoding of the signals intended for the weaker users (i.e., SIC) is sequentially performed at

each stronger user, grouping more users into each cluster increases the latency, which will not meet the

requirements of the delay-sensitive applications in future wireless networks. Third, the clusters with more

users are more likely to suffer from error propagation due to successive decoding in SIC. Considering the

issues mentioned earlier, two users per cluster is recommended to realize the practical implementation of

NOMA. In addition, this is widely adopted in several previous works dealt with NOMA systems, e.g.,

[35]–[37].

While determining the clusters through the exhaustive search can offer the optimal clustering strategy,

it will raise practical concerns in terms of the implementation of SIC. Therefore, the grouping strategy

used in this paper considers the channel gain differences to enable the successful implementation of

SIC. This clustering strategy has been widely utilized in the literature [38], [39], and we denote this

grouping strategy as π throughout this paper. Similar to the most existing works in the literature, the

grouping strategy employed in this paper chooses users with a higher difference in their channel gains.

The analysis provided in the paper is still applicable for any grouping strategy. We have utilized the

same grouping strategy for the proposed EE maximization framework and the other benchmark resource

allocation techniques for a fair comparison.
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C. Problem Formulation and Design Constraints

We now formulate the EE maximization framework for the multi-carrier NOMA CR-based system.

However, we first shed some light on the relevant constraints for efficient utilization of this resource

allocation technique.

1) Design constraints: When considering the EE maximization of the multi-carrier NOMA CR-based

systems, a set of constraints should be satisfied to meet the SUs’ requirements and enable the successful

implementation of NOMA and CR transmission. We provide the details of these constraints in the

following:

• Requirements and design constraints of SUs:

While the objective of the EE based resource allocation technique is to maximize EE, this design has

to ensure a set of QoS requirements and design constraints for the SUs that take into consideration

the unique characteristics of the CR networks operating environment, which are

– Minimum rate requirement for each SU:

The rate requirement for each SU l in each cluster i (Rl,i) can be achieved through imposing

the following constraint:

Rl,i ≥ Rmin, ∀i ∈ K, ∀L ∈ Li, (11)

where Rmin is the minimum rate requirement of each SU, determined by the application layer.

– Success probability requirement:

The success probability of each SU l in cluster i (Psuc;l,i) must be greater than or equal to a

given success probability threshold γ, where γ is application dependent. This can be maintained

by imposing the following constraint:

Psuc;l,i ≥ γ, ∀i ∈ K, ∀L ∈ Li. (12)

In particular, the probability of success for the SU l in cluster i can be computed as:

Psuc;l,i , exp

(

− S

Rl,iµi

)

≥γ, ∀i ∈ K, ∀L ∈ Li, (13)

where µi is the average idle period of the ith PU channel and S is the packet length. After

some algebraic manipulations and defining v = − ln(γ), (13) can be re-written as a function of

the achieved rate as

Rl,i ≥
S

vµi
, ∀i ∈ K, ∀L ∈ Li. (14)
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Accordingly, the minimum rate and the probability of success constraints (i.e., (11) and (12))

can be combined into a single constraint as follows:

Rl.i ≥ max

{

Rmin,
S

vµi

}

= rl,i, ∀i ∈ K, ∀L ∈ Li, (15)

where rj,i = max
{

Rmin,
S
vµi

}

= Rl,i is the required rate demand by the CR system that

ensures the satisfaction of the probability of success (γ) and the minimum rate demand (Rmin)

requirements.

– The power mask constraints on SU transmissions:

To maintain the PU activities with certain quality over the sub-channel Ci, each CR transmission

over Ci should utilize a controlled transmission power. This can be maintained through imposing

the following constraint:
∑Li

l=1
pl,i ≤ Pmask,i, ∀i ∈ K, (16)

where Pmask,i is the maximum transmit power that can be utilized over Ci.

• NOMA requirements and constraints:

– SIC requirement:

To implement SIC, it is required that the power levels of the received signals intended for the

weaker SUs should be higher than that of the signals associated with the stronger SUs. This

can be ensured through allocating higher power levels to SUs with weaker channel gains [31].

Accordingly, the following SIC constraint should be satisfied:

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (17)

– Maximum power budget at the CR-BS:

The transmit power at the CR-BS, Pt, should not exceed the maximum power budget at the

CR-BS, Pmax. This can be ensured with the following constraint:

Pt =

K
∑

i=1

∑Li

l=1
pl,i ≤ Pmax. (18)
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D. Problem Formulation

Given the aforementioned constraints, the EE optimization framework for the multi-carrier NOMA

CR-based system, can be formulated as follows:

P1: maximize
{pl,i}∀l,∀i

EE (19a)

subject to Rl,i ≥ rl,i, , ∀i ∈ K, ∀L ∈ Li, (19b)

∑Li

l=1
pl,i ≤ Pmask,i, ∀i ∈ K, ∀L ∈ Li, (19c)

K
∑

i=1

∑Li

l=1
pl,i ≤ Pmax, (19d)

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (19e)

An observation of the above formulation suggests that several challenges need to be addressed to

solve P1, and we summarize these challenges in the following discussion. Firstly, it is evident that

the EE optimization problem, P1, is non-convex in nature and thus cannot be solved directly using the

conventional optimization techniques. Secondly, the objective function of this problem, EE, is a fractional

function, which introduces additional complexity to solve it. Furthermore, due to the total power constraint

in (19d), the EE optimization problem might turn out to be infeasible when the available power budget,

Pmax, is not sufficient to support the minimum rate requirements, i.e., QoS constraints in (19b). These

challenges are discussed and simplified in the following section.

III. PROPOSED METHODOLOGY

A. Feasibility Check

The optimization problem P1 turns out to be infeasible when the available power budget, Pmax, cannot

support the minimum rate requirements constraints in (19b). Therefore, it is important to carry out a

feasibility check for P1 prior to solving it. In fact, this check can be performed by finding the minimum

transmit power (Pmin
t ) that is required to meet the minimum rate requirements of the system. This can

be determined by solving the following power minimization (P-Min) problem:

P2: Pmin
t = minimize

pl,i, ∀l,∀i

K
∑

i=1

∑Li

l=1
pl,i (20a)

subject to Rl,i ≥ rmin, ∀i ∈ K, ∀L ∈ Li, (20b)

∑Li

l=1
pl,i ≤ Pmask,i, ∀i ∈ K, ∀L ∈ Li, (20c)

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (20d)
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Note that the solution of the P-min optimization framework can be found in [13], while also its solution

can be reached throughout this paper. In fact, when solving P2, the minimum required power to satisfy

the minimum rate constraints, Pmin
t , is evaluated. With this, the original EE optimization problem, P1, is

feasible and thus, worthy to solve if the available power budget at the CR-BS is greater than the minimum

transmit power required to achieve the QoS constraints, i.e., Pmax ≥ Pmin
t . Otherwise, the original

problem is infeasible and cannot be solved for the given constraints. To handle this infeasibility issue,

the CR-BS alternatively switches to the sum-rate maximization (SRM) design, which can be formulated

as follows:

P3: maximize
pl,i, ∀l,∀i

Rsum (21a)

subject to
∑Li

l=1
pl,i ≤ Pmask,i, ∀i ∈ K, ∀L ∈ Li, (21b)

K
∑

i=1

Li
∑

l=1

pl,i ≤ Pmax, (21c)

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (21d)

Note that the SRM optimization problem aims to maximize the achieved sum-rate for the given power

constraints, where the QoS constraints are dropped. The SRM optimization problem is always feasible

and can be solved for any power budget at the CR-BS. Without loss of generality, we provide an approach

to solve the EE optimization problem, given that it is feasible under the given constraints.

B. Proposed Solution

The EE maximization framework P1 is non-convex fractional problem, and thus, the existing softwares

cannot be used to solve it. Therefore, we utilize the Dinkelbach’s algorithm along with SCA approach to

solve P1. In the Dinkelbach’s algorithm [40], a non-negative variable, namely ξ is introduced to transform

the fractional objective function, EE, into a non-fractional, i.e., parameterized, one. For ease of reference,

we introduce the functions f1(pl,i) and f1(pl,i), such as f1(pl,i) = Rsum, and f1(pl,i) = (1
ǫ
Pt + Pl). With

this transformation, the parametrized non-fractional objective function can be written as follows:

EEP = f1(pl,i)− ξf2(pl,i), (22)

where EEP is the parameterized version of EE. The parametrized EE optimization problem can be written

as
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P4: maximize
{pl,i}∀l, ∀i, ξ

EEP = f1(pl,i)− ξf2(pl,i) (23a)

subject to Rl,i ≥ rl,i, ∀i ∈ K, ∀L ∈ Li, (23b)

∑Li

l=1
pl,i ≤ Pmask,i, ∀i ∈ K, ∀L ∈ Li, (23c)

K
∑

i=1

∑Li

l=1
pl,i ≤ Pmax, (23d)

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (23e)

Let us first point out that p∗l,i and p∗2,i, ∀i are the solutions of the non-parametrized optimization

framework, P1. Now, we invoke the relationship between the original non-parameterized problem P1 and

the parameterized one P4, through providing the following theorem [40]:

Theorem 1: The optimal value of the parameterized optimization problem P4 is zero, i.e.,

maximize
pl,i,ξ

f1(pl,i)− ξf2(pl,i) = f1(p
∗
l,i)− ξ∗f2(p

∗
l,i) = 0,

and this optimal value occurs only when ξ∗ =
f1(p∗

l,i)

f2(p∗

l,i)
.

It is worth mentioning that the proof of Theorem 1 can be found in [18], [40]. Based on Theorem 1,

determining the solution of the original non-parametrized optimization problem P1 can be alternatively

achieved through solving the parameterized optimization problem for the optimization parameters pl,i and

ξ. However, due to the joint nature of the optimization parameters pl,i and ξ, an alternating optimization

approach is utilized to handle this issue. With this approach, an initial value of ξ is assumed, i.e., ξ(0) = 0,

then P4 is solved for this initial value, and the optimization parameters pl,i are evaluated using the SCA

as it is introduced in the subsequent discussion. Then, the value of ξ is updated based on the solution

obtained in the previous iteration; the update role can be written as

ξ(n) =
f1

(

p
(n−1)
l,i

)

f2

(

p
(n−1)
l,i

) , (24)

where (·)(n) denotes the value of (·) at the nth iteration. This iterative process continues until the absolute

difference between two consecutive values is less than a pre-defined threshold.

In particular, the parameterized optimization framework for a given ξ is still non-convex. Therefore,

the SCA approach is utilized here to deal with this non-convexity issue. In SCA approach [41], the

original non-convex optimization problem is approximated with a lower-bound convex problem through

approximating each non-convex term with a linear (i.e., convex-concave) one [42]. The approximated
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problem is solved for a set of iterations until the required accuracy is achieved. This SCA approach has

been utilized to solve a different set of optimization frameworks in wireless communications, such as

[32], [43], [44]. The non-convexity of the parameterized optimization framework is due to the non-convex

term Ri,j , which appears in the objective function and some of the constraints. Therefore, we tackle this

non-convexity issue by introducing a linear slack variable ηj,i to approximate Ri,j , such that

Ri,j ≥ ηi,j , ∀i ∈ K, ∀L ∈ Li. (25)

With this slack variable, the non-convex part of objective function in the parameterized optimization

problem P4, turns out to be convex. However, a new non-convex constraint is introduced to the problem.

To handle this non-convexity issue, a set of additional slack variables is incorporated, as follows:

(1 + SINRi,j) ≥ ai,j , ∀i ∈ K, ∀L ∈ Li, (26a)

ai,j ≥ 2ηi,j , ∀i ∈ K, ∀L ∈ Li, (26b)

while the constraint in (26b) is convex [32], the constraint in (26a) is not convex. To handle the non-

convexity issue of this constraint, we first rewrite it as

(

1 + min
{

SINR1
l,i, · · · ,SINRl

l,i

})

≥ al,i, ∀i ∈ K, ∀l ∈ Li. (27)

Thus, the constraint in (27) can be expressed as

SINR
j
l,i ≥ (al,j − 1), ∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l − 1} . (28)

With this, the new slack variable θi,j is introduced, such that

|hj,i|2pl,i
|hj,i|2

∑l−1
s=1 ps,i + σ2

j,i

≥
(

al,i − 1
)√

θl,i
√

θl,i
, ∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l} . (29)

Note that the constraint in (29) can be further decomposed into two parts, as follows:

|hj,i|2pl,i ≥
(

al,i − 1
)√

θl,i, ∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l} , (30)

|hj,i|2
l−1
∑

s=1

ps,i + σ2
j,i ≤

√

θl,i, ∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l} . (31)

To deal with the non-convexity issues of the constraints in (30) and (31), the left-hand sides of them are

replaced with their corresponding lower-bound approximations through using the first-order Taylor series

expansions. With this approximation, these constraints can be rewritten as

|hj,i|2pl,i ≥
(

a
(n)
l,i − 1

)

√

θ
(n)
l,i +

√

θ
(n)
l,i

(

al,i − a
(n)
l,i

)

+
1

2
√

θ
(n)
l,i

(

a
(n)
l,i − 1

)

(

θl,i − θ
(n)
l,i

)

,

∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l} , (32)
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|hj,i|2
l−1
∑

s=1

ps,i + σ2
j,i ≤

√

θ
(n)
l,i +

1

2
√

θ
(n)
l,i

(

θl,i − θ
(n)
l,i

)

, ∀i ∈ K, ∀L ∈ Li, ∀j ∈ {1, 2, . . . , l} . (33)

Incorporating these multiple slack variables, the non-convex term Rl,i which appears in the in parameter-

ized optimization problem P4 has been replaced with a convex term ηj,i subject to the convex constraints

in (26b), (32), and (33). The non-convex optimization problem P4 can be approximated with the following

convex optimization problem:

P5: maximize
pl,i, ∀l,∀i

Li
∑

l=1

C
∑

k=1

ηl,i − ξ

(

1

ǫ

(

K
∑

i=1

Li
∑

l=1

pl,i
)

+ Pl

)

(34a)

subject to Rl,i ≥ rl,i, , ∀i ∈ K, ∀L ∈ Li, (34b)

∑Li

l=1
pl,i ≤ Pmask,i, ∀i ∈ K, ∀L ∈ Li, (34c)

K
∑

i=1

∑Li

l=1
pl,i ≤ Pmax, (34d)

pLi,i ≥ · · · ≥ p2,i ≥ p1,i, ∀i ∈ K. (34e)

We can confirm that the approximated optimization problem P5 is convex and thus can be solved

using the convex software, such as CVX [45]. The proposed iterative algorithm to solve the original

non-convex optimization problem P1 is summarized in Algorithm 1.

Algorithm 1: Solving EE maximization problem for multi-carrier NOMA CR-based system using the

Dinkelbach’s algorithm and SCA approach

Step 1: For each busy channel i, set the pl,i = 0 and the required rate demand for the users served by

channel i to 0

Step 2: Group the SUs based on the proposed clustering strategy π

Step 3: Check the feasibility of the EE maximization framework

Step 4: Initialization of Dinkelbach’s algorithm, i.e., ξ(0) = 0

Step 5: Repeat

1) Solve the approximated optimization problem P5 iteratively

2) Repeat the previous step until the required accuracy is achieved

Step 6: Update ξ following the rule in (24)

Step 7: Go to Step 3 until the required accuracy is achieved.
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The Complexity Analysis: The solution of the original fractional optimization problem P1 is determined

through firstly employing the Dinkelbach’s algorithm to transform it to the non-fractional (i.e., parame-

terized) optimization problem P4. Next, with the proposed SCA approach, the first-order Taylor series

expansion is exploited to transform the non-convex optimization problem P4 to a convex one, namely

P5. Accordingly, the complexity of obtaining the solution of the original problem is determined based on

the complexity of solving the approximated optimization problem P5. In fact, the optimization problem

P5 is a linear program. Thus, CVX solves this linear program using the the Dantzig’s simplex method

[41] for several iterations. In particular, at each iteration, the complexity of solving P5 is upper-bounded

by O(A2B) [32], where A and B represent the numbers of constraints and the optimization parameters,

respectively. The solution of the original problem is attained with two iterative algorithms, which are,

1) an iterative algorithm to obtain the solution P5 for given ξ, and 2) an iterative algorithm to obtain

the value of the non-negative slack variable ξ. Therefore, the overall complexity of solving the original

problem can be defined as O
(

A2B log( 1
v
) log(1

z
)

)

, where v and z denote the required accuracy of the

iterative algorithms.

IV. SIMULATION RESULTS

A. Simulation Setup

In this section, we examine the performance of the proposed EE maximization resource allocation

technique for the considered multi-carrier NOMA CR-based system, comparing the performance with

two benchmark conventional resource allocation techniques. These benchmark schemes are the P-min

and the SRM resource allocation techniques, which are demonstrated in P2 and P3, respectively. In these

simulations, a set of ten SUs, i.e., L = 10, is considered, assuming that these SUs are uniformly distributed

in a circle with a 20-meter-radius around the CR-BS. Furthermore, the SUs are divided into five clusters,

with each cluster containing two users, i.e., Li = 2. The simulation parameters are summarized in Table I.

Note that the CVX toolbox from MATLAB is utilized to generate all simulation results, where the results

are averaged over 1000 iterations.

B. Simulation Results

We provide numerical simulations to evaluate the performance of the proposed EE maximization

resource allocation technique against several design parameters, such as the maximum power at the

CR-BS Pmax, the probability of success γ, and the idle probability Pidle. In particular, the performance

metrics, namely the overall energy efficiency of the system EE, the overall sum-rate of the system Rsum,

and the total required power for transmission Pt are evaluated for the proposed EE resource allocation
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TABLE I: Simulation Parameters.

Parameter Value

Number of users (L) 10

Number of clusters (C) 5

Number of users in each cluster (Li) 2

Maximum power (Pmax) [Watt] 5

Power mask
(

Pmask,i, ∀i
)

, [Watt] 1

Path loss exponent (n) 3

Noise Variance (σ2) [dBm/Hz] -107

Probability of success threshold (γ) 0.85, 0.9

Packet length (S) [Bits] 2

Rmin [Mbps] 2.5

Bandwidth (B) [MHz] 50

Idle Period (µi) [Seconds] [0.05 0.1 0.03 0.045 0.05]

Channel Availability Duration (µ) [Seconds] 0.5

Idle Probability (Pidle) 0.5, 0.9

technique, and they are compared with that of the benchmarks resource allocation techniques. This, as a

result, provides a comprehensive understanding of these designs and, thus, demonstrates the superiority

of the proposed EE maximization design.
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Fig. 2: The achieved EE for the proposed EE design and the benchmark schemes against different available

power budget Pmax, with Pidle = 0.5.

Fig. 2 illustrates the achieved EE for the different resources allocation techniques against the available
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power budget Pmax with γ = 0.85 and Pidle = 0.5. As seen in Fig. 2, the proposed EE resource allocation

technique outperforms the benchmark schemes in terms of the achieved EE. In particular, both the EE

and the SRM based designs show similar performance in terms of EE until reaching a critical power

level, referred to as the green power in the literature. When the available power budget Pt exceeds the

green power, the achieved EE for the SRM design starts decaying. However, the proposed EE-based

design’s achieved EE remains almost constant, with an optimal EE achieved with the green power. This

is due to the fact that the SRM design aims to maximize the sum-rate, which is achieved by using all

the available power budget at the CR-BS, which as a result, degrades the achieved EE. In contrast, in

the proposed EE design, the maximum achieved EE is attained at the green power, i.e., Pmax = 0.7 W.

This EE performance reflects the best trade-off between the achieved sum rate and the corresponding

power consumption. In fact, due to the fractional nature of the EE design, the optimal EE is achieved at

a certain transmit power, referred to as the green power. Therefore, the EE design consumes only this

power to achieve its optimal value, which as a result causes saturation in the achieved EE even with the

increase of the available power. The lowest EE is achieved with the P-min design compared to that of

the EE and the SRM designs. This is due to the fact that the P-min design requires a certain minimum

transmit power Pt to achieve the QoS constraints. This leads to a fixed EE as the required power to

achieve the QoS requirements remains constant, which explains the constant EE in the P-min design.

To further understand the results provided in Fig. 2, we compare the achieved sum-rate Rsum and the

corresponding required power Pt for the proposed EE design and the other benchmark designs in Fig. 3.

It can be observed from Fig. 3a and Fig. 3b that the achieved sum-rate and the corresponding required

power for the EE design saturate when the available power Pmax exceeds the green power. Similarly,

the achieved EE for the proposed EE designs also saturates. On the other hand, the SRM design shows

a different trend, where the achieved sum-rates grow with the increase of Pmax. However, this sum-rate

improvement is attained with exponential growth in power consumption, which as a result, causes a

severe degradation in the achieved EE. Based on these observations, we can conclude that the proposed

EE design offers a reasonable trade-off between the sum-rate and the power consumption for transmission

and thus, strikes a good balance between them.

Next, we investigate the performance of the proposed EE maximization resource allocation technique

against different Pidle values. Fig. 4 shows the achieved EE for the proposed EE resource allocation

technique against a wide set of Pidle values (between 0.1 and 0.9). In particular, the performance is

studied when Pt = 1.5 W for two different γ values, namely 0.75 and 0.95. As expected, the achieved

EE through the proposed EE maximization resource allocation technique is significantly improved with

the increase of the idle probability Pidle. This can be justified because the higher values of Pidle resulting in
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Fig. 3: Performance comparison between EE and the benchmarks designs, with Pidle = 0.5.

a higher number of available idle channels. The number of successful transmission increase considerably

with the increase of Pidle. This, as a result, can explain the many-fold EE improvement observed in Fig. 4.

Furthermore, Fig. 5 compares the achieved EE of the proposed EE maximization resource alloca-

tion technique against the available power budget Pmax for different Pidle values. Generally, the green

power threshold remains constant with different Pidle values, as seen Fig. 5. However, the corresponding

maximum EE increases with the increase Pidle.

Finally, we demonstrate the convergence of the proposed Dinkelbach’s algorithm to solve the original

optimization problem P1. Fig. 6 represents the variations of the non-negative variable ξ against the

number of iterations for several channel realizations. With these results, we confirm that the proposed

Dinkelbach’s algorithm to solve the EE maximization problem in P1 converges to the solution within a
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Fig. 4: The achieved EE for the proposed EE design versus Pidle with different γ.
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Fig. 5: The achieved EE for the proposed EE design with different Pidle.

few iterations.
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Fig. 6: The convergence of the proposed Dinkelbach’s algorithm for different channel realizations, with

Pmax = 1.5 W and Pidle = 0.9.

V. CONCLUSIONS

In this paper, an energy-efficient resource allocation technique for a multi-carrier NOMA CR-based

system was proposed. The proposed resource allocation technique aimed to maximize the achieved EE

of the system while satisfying a set of NOMA and CR constraints. We provided a feasibility check to

examine the feasibility of the EE maximization problem before solving it. To overcome the fractional non-

convex nature of the developed EE maximization framework, we employed the Dinkelbach’s algorithm

with SCA approach to handle these issues and solved the problem. The simulation results revealed that the

proposed EE maximization resource allocation technique outperforms the conventional SRM and P-min

resource allocation techniques in terms of the achieved EE while striking a good balance between the

achieved sum rate and the transmit power. Furthermore, simulation results were provided to demonstrate

the performance of the proposed EE resource allocation technique against different design parameters.
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