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Detecting microevolutionary responses to natural selection by observing

temporal changes in individual breeding values is challenging. The collec-

tion of suitable datasets can take many years and disentangling the

contributions of the environment and genetics to phenotypic change is

not trivial. Furthermore, pedigree-based methods of obtaining individual

breeding values have known biases. Here, we apply a genomic prediction

approach to estimate breeding values of adult weight in a 35-year dataset

of Soay sheep (Ovis aries). Comparisons are made with a traditional

pedigree-based approach. During the study period, adult body weight

decreased, but the underlying genetic component of body weight increased,

at a rate that is unlikely to be attributable to genetic drift. Thus cryptic micro-

evolution of greater adult body weight has probably occurred. Genomic

and pedigree-based approaches gave largely consistent results. Thus,

using genomic prediction to study microevolution in wild populations can

remove the requirement for pedigree data, potentially opening up new

study systems for similar research.

1. Introduction
When directional selection on a single trait is carried out in an experimental

evolution study, or in animal and plant breeding, the response to selection is pre-

dictable. The breeder’s equation [1], R = h2S, predicts the response (R) as the

product of the strength of selection (S) and the narrow-sense heritability (h2),

and it usually gives a reasonably accurate estimate of the actual observed

response [2]. However, in more complex systems, such as in wild populations,

the response is much harder to predict [3,4]. The reasons why a trait may not

evolve as expected include: (1) unmeasured genetic correlations between the

trait and other fitness-related traits [3,5]; fluctuating environmental conditions

covarying with (2) the heritability of the trait [6] or (3) the strength of selection

[7] (or both [8]); and (4) cryptic microevolution [9], where the trait actually has

responded to selection, but a change in environmental conditions has caused

the phenotypic trend to mask the underlying genetic trend. More generally,

the term ‘paradox of stasis’ has been used to describe the absence of expected

response to selection [4]. The upshot is that identifying microevolutionary

responses to natural selection is non-trivial.

Oneway to detect microevolution in a population is to estimate each individ-

ual’s ‘genetic merit’ or breeding value, and test whether population-wide

breeding values have changed temporally, in linewith predictions frommeasured

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
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selection differentials. If phenotypic and multigenerational

pedigree data are available then estimated breeding values

(EBVs) can be obtained using restricted maximum-likelihood

(REML) procedures in linear mixed models—‘animal models’

[10–12]. Exploring temporal trends in EBVs rapidly gained

popularity once animal models began to be applied to studies

of natural populations [9,13,14]. Unfortunately, it was not long

before problems and biases with the approach were identified

[15,16]. First, pedigrees in natural populations are usually small

and unbalanced, relative to those used in applied breeding.

Therefore, many individuals lack ‘connectedness’—they have

relatively few phenotyped relatives in the dataset. EBVs of

these individuals are heavily dependent on the individual’s

phenotype, and so environmental influences on the phenotype

can be confounded with genetic effects, causing error and

bias in the EBV [16]. In studies looking at microevolutionary

trends, this can cause spurious evidence for microevolutionary

change, especially when ‘unconnected’ individuals are clus-

tered at the beginning or end of the time series and have

experienced similar environments. A second major problem

is that EBVs from animal models have sometimes been treated

as point estimates, with any uncertainty or error in their

estimate being ignored. Ignoring this uncertainty causes

temporal trends in EBVs to be anti-conservative (i.e. prone

to false positive inferences), especially as errors tend to be

correlated among relatives [17].

To overcome the problems described above, several best

practice steps have been proposed. First, fitting terms such

as year of birth or measurement in an animal model (de-

trending) should reduce the risk of temporal environmental

heterogeneity causing spurious trends in EBVs, although

it may not eliminate it completely [16]. Second, taking a

Bayesian approach to estimate breeding values allows the

uncertainty in estimates to be accommodated in the analysis

of temporal trends [17]. Bayesian animal models return a pos-

terior distribution of EBVs, rather than a point estimate, and

by regressing every posterior sample of cohort mean EBVs

on year, the slope can be estimated with an appropriate,

confidence interval [17]. In their paper demonstrating this

approach, Hadfield and colleagues [17] pointed out that

there are two different questions that can be asked with the

posterior distributions of EBVs. Is the microevolutionary

trend statistically significant? And is the trend of greater mag-

nitude than can be expected due to genetic drift? The second

question is biologically more relevant, in the context of gen-

etic response to selection, and can be tested by simulating

expected changes in breeding values due to drift alone.

Usually, this is done by sampling from the posterior distri-

bution of the trait’s additive genetic variance and randomly

assigning the founders in the pedigree a simulated breeding

value. Simulated breeding values are then transmitted

down the pedigree, by assigning offspring a midparental

EBV. The simulated EBVs can be regressed against time to

estimate the microevolutionary trend. If the process is

repeated for each posterior estimate of the additive genetic

variance, then a null distribution of temporal trends under

a scenario of no selection (and thus no response) is generated

(i.e. the expectation due to genetic drift).

In their paper highlighting how microevolutionary trends

derived from point estimates of breeding values tended to be

anticonservative, Hadfield and colleagues [17] illustrated the

problem with two empirical datasets. One of these was an

example of apparent cryptic microevolution of adult body

size in a free-living population of feral Soay sheep [18]. In

the study population, adult weight is positively associated

with increased winter survival and is heritable [19–21], and

therefore should be increasing in response to directional

selection. In fact, during the period studied by Wilson and

colleagues (1985–2005), adult body weight declined over

time by around 100–200 g per year [18]. By contrast, during

the same period, animal model-derived EBVs for adult

weight increased by around 5–10 g per year. In other

words, microevolution was proceeding as expected but was

masked by non-genetic effects causing body sizes to be smal-

ler [20]. The contrast between phenotypic and genetic trends

is explained by smaller animals having a better survival rate

in the more recent years of the study, perhaps because harsh

winters have become less common and grass growth rates

have improved [20]. Thus, smaller animals that once would

have died have a better chance of surviving and reducing

the population mean weight. Birth year and capture year

were fitted in the animal models, thus de-trending the data

for possible environmental effects on different cohorts, prior

to estimating the temporal trends. Furthermore, the phenoty-

pic and genetic trends were in opposite directions, which is

generally considered to be a sign that apparent microevolu-

tion is not being driven by an unappreciated contribution

of an environmental effect on phenotype [16]. However, the

original analysis was anti-conservative as inference on the

genetic trend failed to properly account for uncertainty

in EBV estimation. Re-analysis by Hadfield et al. using a

Bayesian method to incorporate the posterior distributions

of EBVs yielded an estimate of the temporal increase in breed-

ing values that was quantitatively unchanged, but no longer

statistically significant. Thus, the more conservative (and

correct) analytical approach [17] no longer supported an evol-

utionary response to selection on larger adult body size.

In this paper,we revisit the question ofwhether adultweight

in Soay sheep is responding to natural selection, butwith several

potential improvements over previous investigations. First, we

use a larger dataset (electronic supplementary material, table

S1) that extends the time series studied by Wilson by a further

10 years. Second, and perhaps most obviously different to pre-

vious work, we use genomic prediction rather than a pedigree

to estimate breeding values. Genomic prediction [22], is a tool

widely used in animal and plant breeding to estimate quantitat-

ive genetic parameters from marker data. More recently,

genomic prediction has started to become adopted by research-

ers working onwild populations [23–26]. It works by exploiting

the fact that when marker density is sufficiently high, some

typed SNP markers are in linkage disequilibrium (LD) with

unknown causal loci, and the contribution of each SNP (and

the unknown loci it tags) to phenotypic variation can be esti-

mated. By estimating SNP effects in one part of the dataset

(the training population) and using those estimates to predict

breedingvalues in a seconddataset of genotypedbut not pheno-

typed individuals (the test population) it is possible to obtain

genomic estimated breeding values (GEBVs) that are indepen-

dent of the focal individual’s phenotype. Furthermore, GEBVs

are less influenced by the number of phenotyped close relatives

a focal individual has in the dataset, compared to animalmodel-

derived EBVs [27]. Genomic prediction models can include

known fixed and random effects such as sex, age, year of birth

and year of measurement. We use a Bayesian method to esti-

mate the GEBVs, so posterior distributions of GEBVs can be

used to account for uncertainty in their estimates, in the same
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way, that Hadfield recommends for EBVs derived from Baye-

sian animal models of pedigree data. We compare our results

from genomic prediction-derived EBVs with those obtained

from the traditional pedigree-based animal model approach.

Third, we use a ‘gene-dropping’ simulation approach, to for-

mally test whether any temporal patterns are likely to be due

to a response to selection or are explainable by genetic drift.

However, because the genomic prediction method estimates

the contribution of each SNP to variation in weight, the genetic

drift simulations are explicitly based on a description of the

trait’s genetic architecture (the number and effect size of

causal loci) rather than assuming an infinitesimal model. Here,

haplotypes of causal loci are assigned to founders, and offspring

inherit alleles at each locus according to Mendelian inheritance

and empirically estimated recombination rates between linked

loci. Thus, these simulations are analogous to methods that

simulate the inheritance of breeding values down a pedigree.

Our intention is that, in addition to revisiting a well-

known, but still unresolved, case study of possible cryptic

microevolution, this paper will illustrate a genomic predic-

tion-based framework to study microevolutionary change

that can be readily adopted by other researchers working

on evolution and adaptation in natural populations.

2. Methods

(a) The study population
The Soay sheep is a primitive feral breed inhabiting the St Kilda

archipelago, off the northwest coast of Scotland. Since 1985, the

population in the Village Bay area of the largest island, Hirta

(57 °480 N, 8 °370 W), has been the subject of a long-term individ-

ual-based study [28]. Most of the sheep residents in the study

area are ear-tagged and weighed shortly after birth and followed

throughout their lifetime. Ear punches and blood samples suitable

for DNA analysis are collected at tagging. During the annual

‘catch’ in August, sheep are captured andmorphological measure-

ments are taken. Winter mortality is monitored, with the peak of

mortality occurring at the end ofwinter/early spring, and approxi-

mately 80% of all deceased sheep are found. To date, extensive life-

history data have been collected for over 10 000 sheep.More details

of the study can be found elsewhere [28].

(b) Phenotypes
Weight measurements were taken on live animals, as described

elsewhere [21,29]. Weight datawere restricted to animals captured

in August, that were at least 28 months old, to remove most com-

plications of growth [21,29]. Weight data were pre-adjusted for

non-genetic factors for the genomic prediction analyses (see

below). The inclusion of measurements taken outside of August

would not have resulted in a much larger sample size, but

would have complicated analyses as animals lose weight at differ-

ent rates later in the year. Note that Wilson et al. [18] included

animals aged 0 months, 4 months and 16 months in their analyses

[18], but weight has lower additive genetic variance and heritabil-

ity at these ages. Given that wewere using repeatedmeasurements

taken across an individual’s lifetime, rather than running age-

specific models, it was deemed prudent to restrict the analyses to

older animals. August weights at different adult ages have genetic

correlations of approximately 0.99 [18].

(c) Genotyping
Genotyping of the population was performed using the Illumina

Ovine SNP50 beadchip array, developed by the International

Sheep Genomics Consortium (ISGC) [30] Genotyping was perfor-

med at theWellcome Trust Clinical Research Facility Genetics Core

(Edinburgh, UK). Details about the genotype calling and quality

control of the data and links to the genotype data are available

elsewhere [21,31]. Briefly, pruning of SNPs and individuals was

performed using Plink v. 1.9 [32]. Only autosomal SNPs were

analysed, as BayesR cannot distinguish between autosomal and

sex-linked loci (the sheepX chromosome represents approximately

5% of the total genome). SNPswere removed if they hadmore than

2% missing data, a minor allele frequency less than 0.01 or a

Hardy-Weinberg Equilibrium Test p value < 0.00001. Individuals

were retained if they were typed for at least 95% of SNPs. After

pruning, there were 35 882 SNPs in the dataset. 1168 individuals

were genotyped and phenotyped, and there were an additional

5627 animals that were genotyped but not phenotyped (because

they died or emigrated from the study area before the age of

28 months), whose weight GEBVs could nonetheless be estimated

as a test population (see below).

(d) Genomic prediction of weight GEBVs
Soay sheep adult weight is a polygenic trait with a moderate her-

itability and no individual loci were significant in previous

GWAS [21,26,29]. Genomic prediction of GEBVs was performed

using the BayesR method [33] implemented in the BayesR v. 0.75

software package [34]. We have previously shown that BayesR-

derived GEBVs of Soay sheep morphological traits, including

adult weight, have a high accuracy (approx. 0.64). BayesR

models SNP effects as a mixture of distributions of different

effect sizes, including one of zero effect. We used the default set-

tings that model four distributions of effect size of 0, 0.0001, 0.001

and 0.01 of the phenotypic variance. Dirichlet priors for the

number of pseudo-observations (SNPs) in each distribution

were set to 1, 1, 1 and 5. Priors for the genetic and residual var-

iances were chosen as a scaled inverse-chi squared distribution

with scaling parameters of 1.2 and 2.5 and degrees of freedom

set to 10. Our previous work has shown that GEBVs are not sen-

sitive to the model parameters used [26]. The MCMC chain was

run for a total of 120 000 iterations with a burnin of 20 000 and a

thinning interval of 10, meaning there were 1000 posterior

samples of the GEBVs for each individual.

In the BayesR models all phenotyped and genotyped animals

(n = 1168) were treated as a training population and all animals

for whom we had genotypes but no phenotypes (n = 5627)

were the test population. The phenotypes used in the BayesR

analysis were obtained by first fitting a linear mixed model

(see [26]) that included individual identity (to account for

repeated measures), birth year and capture year as random

effects, and sex and age as fixed effects. The random effect of

individual identity was used as the phenotype.

(e) Pedigree-based prediction of weight EBVs
Previous analyses of Soay sheep microevolutionary trends for

weight have used EBVs derived from animal models of pedigree

and phenotype data [17,18]. While the main motivation of this

study was to explore the potential of GEBVs to study microevo-

lution, meaningful comparison with earlier studies requires a

consistent approach, and so we also estimated EBVs with the

pedigree data. Pedigree-derived EBVs were obtained using the

R package MCMCglmm v. 2.32 [15]. The model included sex

and capture age as fixed effects, and birth year and capture

year as random effects (electronic supplementary material,

table S2). Permanent environment effects were modelled by fit-

ting identity as a random effect and the additive genetic

variance was estimated by fitting a relationship matrix derived

from the pedigree. The model was run for 600 000 iterations

with a burn-in of 100 000 iterations. The posterior distribution

of parameter estimates was obtained by sampling every 500th

royalsocietypublishing.org/journal/rspb
Proc.

R.
Soc.

B
289:

20220330

3

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

2
 M

ay
 2

0
2
2
 



iteration after the burn in. Note that the MCMCglmm runs

required more iterations, a longer burn-in and less frequent

sampling than the BayesR analyses because more terms were

estimated in the MCMCglmm models. However, both types of

analysis finished with 1000 posterior samples. Subsequent ana-

lyses of microevolutionary trends were performed only on

animals who were genotyped, to ensure complete consistency

with the analyses that used GEBVs.

( f ) Measuring microevolutionary change
To test for microevolutionary change we explored whether EBVs

for weight changed as a function of birth year. The cohort mean

EBVs were regressed against birth year, weighting each year by

the sample size. We used all 1000 posterior samples from the

BayesR (genomic EBVs)/MCMCglmm (pedigree EBVs) chain

and determined a 95% confidence interval for the slope of

cohort mean EBV on year (i.e. the approach advocated by

Hadfield et al. [17] and subsequently adopted elsewhere

[35–37]). The probability of stasis or a decline in EBVs was deter-

mined as the proportion of the 1000 models where the slope was

less than or equal to 0. We also explored an alternative approach

of using individual EBVs and fitting linear mixed models with

birth year included as both a fixed effect and as a random

effect. The birth year random term was fitted to account for

between-year heterogeneity of variances in EBVs. In fact, the

birth year random effect explained less than 1% of the variance

in GEBVs and about 4% of the variance in pedigree EBVs, and

the mixed model approach yielded almost identical results to

the regressions of cohort mean EBVs on year (electronic

supplementary material, tables S4, S5).

The main results section reports findings from both the train-

ing and test populations combined, in all cohorts from 1990

onwards. We omitted earlier years because they had less than

100 individuals (electronic supplementary material, table S1)

and earlier cohorts were treated slightly different in the gene-

dropping simulations of drift (see below). However, to enable a

comparison with the previous work, we also report trends

from the same years studied by Wilson (1985–2005). In the elec-

tronic supplementary material, we show results from 1980

onwards and also from 2005 onwards (i.e. in the cohorts born

since Wilson’s study [18]). Similarly, we compare results from

models that contained training and test population individuals

with those that just contained the test population. The main find-

ings are not sensitive to the choice of cohorts or populations used

(electronic supplementary material, tables S4 and S5).

(g) Simulating microevolutionary change under genetic

drift
Simulations to explore microevolutionary changes expected

under genetic drift used an approach where breeding values

were simulated in the pedigreed population, similar in concept

to those introduced by Hadfield et al. [17] and adopted by

others [37]. However, whereas previous methods have trans-

mitted breeding values from parents to offspring down a

pedigree by assigning a midparental breeding value to offspring,

we dropped individual SNPs down the pedigree and then calcu-

lated GEBVs from the estimated effect sizes of SNPs. This has the

advantage that instead of assuming a near-infinitesimal poly-

genic architecture, the GEBVs are predicted using empirical

estimates of the number and effect size of causal loci, as well

as realistic recombination fractions between them. Gene-

dropping was performed using the SimPed program [38].

SimPed can handle SNP genotypes or haplotype blocks of

linked SNPs. To ensure that realistic levels of LD between

linked SNPs was present in the simulated datasets, we used

haplotypes, after first phasing the real data. Phasing was per-

formed and missing genotypes were imputed using Beagle

v. 5.0 [39], assuming an effective population size of 200 [30].

Phased haplotypes were then randomly assigned to founder

individuals in the Soay sheep pedigree. Individuals born before

1990 were treated as founders. The SimPed gene-dropping simu-

lations use known linkage distances between all of the SNPs to

ensure that realistic amounts of recombination occur during

each meiosis. We used previous estimates of recombination frac-

tions in the Soay sheep pedigree [31]. Because SimPed can only

run one chromosome of markers at a time, we concatenated all

of the SNPs from different chromosomes to create one ‘super

chromosome’, but assumed a recombination fraction of 0.5

between the last SNP on one chromosome and the first SNP on

the next chromosome. This effectively ensures independent seg-

regation of unlinked chromosomes. In cases where an

individual was missing parental data, a haplotype was randomly

assigned from an individual of the correct sex that was born

between 2 and 10 years prior. Handling missing data in this

way ensures that complete genotypes were simulated for all indi-

viduals while accounting for any temporal changes in allele

frequencies in the population. Alleles are passed from parents

to offspring following Mendelian rules of independent assort-

ment and recombination. Each SimPed run generates

genotypes at every SNP in every individual in the pedigree. Mul-

tilocus genotypes were converted to GEBVs by summing the

allelic effects at each locus, using the posterior estimated SNP

effects from the BayesR runs of the real dataset. 1000 simulations

were run, each one using an estimate of SNP effect sizes from a

different posterior sample of the BayesR MCMC chain used to

perform the genomic prediction (i.e. the first gene-dropped data-

set used estimated SNP effects from the 1st posterior sample of

the MCMC chain, the second gene-dropped dataset used esti-

mated SNP effects from the 2nd posterior sample, and so on).

This ensures that uncertainty in the posterior estimate of each

SNP effect size is carried into the gene-dropping simulations.

At the end of the gene-dropping process there were 1000

simulated datasets that could be compared to the 1000 MCMC

samples of the real dataset. Thus, it was possible to determine

whether observed changes in GEBVs over time were likely to

be greater than can be expected from genetic drift alone. For

each gene-dropped dataset we regressed the cohort mean

GEBV on birth year weighting each year by sample size, exactly

as in the real dataset. For each of the 1000 comparisons the slope

of birth year from the gene-dropped dataset was subtracted from

the slope of birth year in the real dataset, in order to generate a

posterior distribution of temporal changes in GEBVs relative to

those expected under drift. The probability of the observed

microevolutionary change exceeding that expected from genetic

drift was estimated as the proportion of the 1000 comparisons

where the gene-dropped slope was greater than the real data

slope.

For the pedigree-derived EBVs, the process of comparing

observed trends with those expected under drift was the

method advocated by Hadfield and adopted by others [35–37].

For each of the 1000 simulated datasets, the additive genetic var-

iance was sampled from the posterior distribution of the

MCMCglmm animal model. We used the phensim function of

the R package pedantics v. 1.7 [40] to obtain simulated breeding

values. Founders were assigned breeding values based on the

additive genetic variance and progeny were assigned values by

sampling from a Gaussian distribution with mean equal to the

midparent breeding value and variance equal to half of the

population additive genetic variance (for that sample of the pos-

terior distribution of EBVs). Subsequent comparisons between

the observed and simulated temporal trends in EBVs were per-

formed exactly as for the genomic EBV analyses described

above. Because we have used two different methods to simulate
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patterns of change expected by drift, we distinguish between

statistical tests that employ these two simulated distributions

with the notation pdrift_genomic and pdrift_pedigree.

(h) Genomic prediction using a ‘leave one cohort out’

approach
An additional genomic prediction analysis was run in which each

cohort was treated as a test population (i.e. phenotypes unknown)

and all of the other cohorts were treated as a training population.

Thus, for every individual in the test cohort, the genomic predic-

tion did not use the phenotypes of that individual or any other

individual born in the same year. This ensures not only that the

focal individual’s phenotype does not contribute to its GEBV,

but also reduces the risk that estimated SNP effect sizes are influ-

enced by between-cohort-level covariances between allele

frequencies and adult weight. The results support the main find-

ings and are included in the electronic supplementary material

(electronic supplementary material, table S6).

3. Results

(a) Temporal changes in adult body weight
Adult body weight declined over the course of the study

period (figure 1a), by an average of 0.067 kg per year ( p =

0.003). However, in the period 2005–2015 (i.e. in the cohorts

born since the Wilson et al. [18]), there has been a non-signifi-

cant increase of 0.106 kg per year ( p = 0.23; See electronic

supplementary material).

(b) Microevolutionary changes in body weight GEBVs
Between 1990 and 2015 mean cohort adult body weight

GEBVs increased by approximately 0.011 (95% credible

interval 0.001–0020) kg per year (figure 2a; electronic sup-

plementary material, table S4). The posterior probability of

no genetic change was low (probability = 0.014), using the

conservative approach of regressing the posterior distribution

of cohort mean GEBVs on year. A similar trend was seen

with the pedigree-derived EBVs; an increase of 0.015 (95%

credible interval 0.002–0.029) kg per year, p = 0.013

(figure 2b; electronic supplementary material, table S4). When

comparing the posterior distribution of real cohort mean

GEBVs regressed on year to those generated under gene-drop-

ping genetic drift simulations, the distribution of the difference

between real and gene-dropped regression coefficientswas con-

sistent with the observed trends being larger than expected

from genetic drift (figure 2c,d; electronic supplementary

material, table S7; probability that the GEBV slope is explain-

able by drift alone: pdrift_genomic = 0.057, pdrift_pedigree = 0.028;

probability that the pedigree EBV slope is explainable by drift

alone: pdrift_genomic = 0.042, pdrift_pedigree = 0.022). Thus, while

genetic drift cannot be ruled out as an explanation for the

observed increase in adult weight GEBVs, a response to selec-

tion for greater weights is perhaps more likely. In the

electronic supplementary material we show that the main con-

clusions would be the same if all individuals from the 1980

cohort onwards are included, or if the analysis is restricted to

only test population individuals from either 1980 or 1990

onwards (electronic supplementary material, tables S4 and S5,

and figure S1).

During the period studied byWilson and colleagues (1985–

2005) the trends in GEBVs were similar to those for the longer

1990–2015 period (figure 2e). GEBVs increased by 0.012 (95%

CI –0.002–0.026) kg per year and the posterior probability of

no genetic change was low (p = 0.042). As with the extended

dataset, the possibility that the observed genetic changes

were attributable to genetic drift could not be excluded,

although drift being the explanation seems reasonably unlikely

(pdrift_genomic= 0.084, pdrift_pedigree= 0.062; electronic supple-

mentary material, table S7; figure 2g). Pedigree-derived EBVs

yield very similar findings (figure 2f,h; change in EBVs =

0.020 [CI =−0.000–0.041]; probability of no genetic change =

0.038; probability of genetic change being attributable to gen-

etic drift: pdrift_genomic= 0.056, pdrift_pedigree= 0.035; (electronic

supplementary material, tables S4 and S7).

Intriguingly, when the data are restricted to the period

2005–2015 the genomic and pedigree EBVs give qualitatively

different patterns (electronic supplementary material, table

S4 and figure S1). With the genomic EBVs, the trends are

similar to those described for the longer 1980–2015, 1985–

2005 and 1990–2015 time series (see electronic supplementary
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Figure 1. Adult weight (corrected for age and sex) has declined over the course of the long-term study. (Online version in colour.)
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material, tables S4 and S5). They are no longer significant,

perhaps because the sample sizes are more modest; there

are around half the number of animals as are in the longer

time series. However, with the pedigree EBVs, the trend for

2005–2015 is negative (a decline in EBVs of approximately

0.023 kg per year) and is borderline significant (electronic

supplementary material, table S4 and S5). In the electronic

supplementary material, we provide a possible explanation

of the discrepancy between the genomic and pedigree EBVs

over this period (see ’Is the accuracy of EBV trends affected

by pedigree depth?’)

4. Discussion
The primary aim of this study was to investigate the use of

genomic prediction as an alternative to a pedigree-based

animal model approach to studying microevolutionary

trends. There are two main advantages to a genomic predic-

tion approach. First, it avoids the necessity of reconstructing a

pedigree, which potentially opens the way to microevolution-

ary studies being conducted in a greater number of systems,

including those with very large population sizes, long

generation times or high rates of dispersal [41,42]. Second,

some of the potential biases associated with pedigree-based

approaches to studying microevolution can be avoided. For

example, when a focal individual is part of a test population,

its phenotype is not used to predict its GEBV, avoiding the

problem that phenotyped individuals with low pedigree

connectedness will tend to have GEBVs that reflect the

environmental contribution to their phenotype [16]. Further-

more, simulations and empirical data have shown that the

accuracy of an individual’s genomic estimated breeding

value is less sensitive to the number of relatives than when

pedigree-based animal models are used [27]. Genomic

approaches often outperform pedigree-based ones, including

in studies of wild populations [25], but especially when close

relatives are absent from the dataset [27]. There are further

improvements that could be made to the approach used

here. Most notably, there is not yet an easy-to-implement

single-stage framework that for allows for Bayesian alphabet

[43] genomic prediction models to be run when there are

repeated measures and other random effects that might be

fitted. Single-step genomic BLUP (GBLUP) methods are

promising, as they can accommodate relationship matrices

built jointly from SNPs and (if available) a pedigree, while

also fitting non-genetic fixed and random effects [44]. How-

ever, we are not aware of current software that does this,

while also outputting the sampled MCMC iterations which

are required to assess the significance of the observed micro-

evolutionary changes. In our dataset, there is little to be

gained from constructing a relationship matrix that combines

genotype and pedigree information as nearly all of the

phenotyped animals are also genotyped. Here, we used a

two-stage approach, running a mixed model to estimate

phenotypes adjusted for non-genetic effects, before running

the genomic prediction models. This does mean that uncer-

tainty in the adjusted phenotypes are not carried through

to the downstream analysis, although uncertainty in the

underlying breeding values is hopefully accounted for. The

pedigree-derived EBVs (which are from a single-stage model)

and the GEBVs (which are not) produced similar conclusions.

In fact, our conclusions from the GEBVs seem to be more

conservative than those from the pedigree EBVs, but of

course we cannot be certain that would be the case in

other systems.

We extended a time series examining whether there was a

microevolutionary response to selection for larger body

weight in Soay sheep. Previous work had suggested breeding

values for adult weight had increased [18], but subsequent

scrutiny suggested the temporal change may be indistin-

guishable from stasis [17]. Here, the addition of 10 more

years of data confirmed that breeding values have increased

by approximately 0.010–0.015 kg per year. Furthermore,

when analysing the same period as the previous study

(1985–2005), the evidence for evolutionary change was now

statistically significant, whether using genomic or pedigree-

derived breeding values. A possible explanation is that the

previous study suffered from the problems caused by EBVs

in the later cohorts being harder to estimate accurately as

those animals lacked phenotyped descendants. Here that pro-

blem is avoided by using either (i) GEBVs whose accuracy is

not dependent on phenotyped descendants, or (ii) pedigree

EBVs where phenotypic records were collected from another

10 years of descendants after the last cohort in the temporal

trend analyses was born, meaning the accuracy of EBVs in

the later cohorts was likely to be improved.

How does this rate of evolutionary change compare to

other studies? After adding the GEBVs to the overall mean

adult August body weight and log-transforming the data, we

estimated adult bodyweight to be evolving at a rate of approxi-

mately 0.049 Haldanes (see electronic supplementary

material). The largest published compilation of rates of micro-

evolutionary change in wild populations [45,46], contains over

3000 estimates measured in Haldanes, albeit mostly estimated

from phenotypic rather than genetic changes. Around 11% of

those estimates exceed 0.049 Haldanes. Clearly, there will be

relativelywide confidence intervals on our (and anyother) esti-

mate of rates of microevolution, but it seems that the rate

observed here is relatively large. Thus, we should be cautious

about whether genomic prediction approaches to studying

microevolutionary change will be able to detect more modest

responses to selection, especially as the accuracy of GEBVs

measured in this population is relatively high [26], but that

may not be the case in other systems. Given these consider-

ations, we are reluctant to prescribe minimum sample sizes

or number of markers required for similar investigations in

other systems. However, we do recommend that researchers

first establish the accuracy of GEBVs by cross-validation, or

attempt to estimate the likely accuracy of GEBVs using for-

mulae that predict the likely accuracy under given genetic

architectures, genome sizes and effective population sizes [47].

Although, the earlier evidence for breeding values

increasing was equivocal [17,18], adult weight at the pheno-

typic level was decreasing. However, this phenotypic

decline seems to have been arrested and possibly reversed

in the years since the earlier study. The causes of the possible

reversal are unclear and are probably a complex combination

of density, demographic and abiotic factors [20,48,49]. It

should be noted that temporal trends in adult weight and

in GEBVs between 2005–2015 are not significant, because

the sample size is considerably smaller than that of the

entire dataset. However, the regression slopes of cohort

mean GEBVs on year are almost identical to those of the

longer time series starting in 1980 or 1990. Thus, while the

phenotypic trends for adult weight have probably changed
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since the Wilson et al. [18] study, the genetic trends appear to

have been more constant.

This is not the first study to have used simulations where

breeding values are inherited through a pedigree to test

whether observed microevolutionary trends are greater than

expected by genetic drift [35–37]. However, other studies

have used estimates of additive genetic variance from

animal models to assign founder individuals a breeding

value, under the assumption that the phenotype has a classi-

cal polygenic genetic architecture. Adult weight in Soay

sheep is in fact a polygenic trait [21,29], but nonetheless the

gene-dropping simulations explicitly modelled the number,

effect size and genomic location of causal loci, using esti-

mated SNP effects from each posterior sample of the

genomic prediction analysis. Of course, the accuracy of the

estimated SNP effects is unknown, but by using the posterior

distribution of SNP effect sizes, the uncertainty in the esti-

mates is incorporated into the drift simulations. Gene-

dropping individual loci allow for variable effect sizes, and

accommodates features that cannot be modelled by gene-

dropping breeding values, such as the amount of linkage,

recombination and LD between causal loci. Thus, gene-drop-

ping simulations that explicitly model a trait’s architecture

should give a better reflection of what changes can occur

due to drift, thereby making inferences about whether

trends are due to selection more robust. In the electronic

supplementary material we provide some evidence that

simulations to test whether observed trends exceed expec-

tations under drift are more conservative if the genetic

architecture is explicitly modelled (see ’Comparison of two

methods to simulate evolutionary change expected under

drift’ and table S7).

In summary, we have demonstrated a genomic approach

to studying microevolutionary trends that should be robust

and applicable to other systems. We show that genomic

and pedigree-derived EBVs yield similar results, and where

they do differ, known problems with pedigree-based

methods are a plausible explanation. In the case of Soay

sheep, there is convincing evidence that breeding values for

adult weight have been increasing by around 0.01 kg per

year over a period of more than 30 years, and that the

trend has probably been driven by a response to selection

for larger size rather than genetic drift. The rate of increase

in breeding values has remained constant both during and

after a period when phenotypic values were declining due

to environmental or demographic effects.
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