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Abstract: The study of mechanical and chemical phenomena arising within a material that is being

subjected to external stress is termed mechanochemistry (MC). Recent advances in MC have revealed

the prospect not only to enable a greener route to chemical transformations but also to offer previously

unobtainable opportunities in the production and screening of biomaterials. To date, the field of

MC has been constrained by the inability of current characterisation techniques to provide essential

localised multiscale chemically mapping information. A potential method to overcome this is

secondary electron hyperspectral imaging (SEHI). SEHI is a multiscale material characterisation

technique applied within a scanning electron microscope (SEM). Based on the collection of secondary

electron (SE) emission spectra at low primary beam energies, SEHI is applicable to the chemical

assessment of uncoated polymer surfaces. Here, we demonstrate that SEHI can provide in situ

MC information using poly(glycerol sebacate)-methacrylate (PGS-M) as an example biomaterial of

interest. This study brings the use of a bespoke in situ SEM holder together with the application of

SEHI to provide, for the first time, enhanced biomaterial mechanochemical characterisation.

Keywords: mechanochemistry; biomaterials; advanced characterisation; surface analysis; scanning

electron microscope; secondary electron hyperspectral imaging; multiscale analysis; polymer chem-

istry; biotechnology; hyperspectral imaging

1. Introduction

Materials are rarely deployed in static environments, rather they are exposed to diverse
and varying stresses within dynamic environments. The study of mechanical and chemical
phenomena arising within a material that is being subjected to external stress is termed
mechanochemistry (MC). Applied examples of MC in materials science are numerous and
include mechanical fracturing, chemical alterations of mechanically stressed materials,
stress corrosion/cracking or enhanced oxidation, tribology and polymer degradation.
Recent advances in MC have revealed the prospect of not only enabling a greener route to
chemical transformations but also to offer previously unobtainable opportunities in the
production and screening of materials [1,2].

A promising area of research associated with MC, which has the potential to realise
significant benefits, is the development of future biomaterials [1,3,4]. In common with other
material systems, the impact of MC interactions is dependent on the context of a material’s
deployment [4,5]. It is expected that for many material systems applications, MC interac-
tions will occur but result in limited effects that are not detrimental to a material’s function.
However, for other applications, the specific deployment scenarios of biomaterials may
result in MC interactions, particularly on the surface of the material, that give rise to major
complications [4,6,7]. Studies have revealed that even nanoscale surface alternations can
affect the suitability of a biomaterial implant due to the fact of biomaterial cell interactions
occurring at the nano–micron surface scale [8]. Recent studies have previously shown the
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value of understanding the MC mechanisms involved in order to provide insights into the
progression of implanted surgical mesh failures [4]. This multidisciplinary approach has
highlighted the potential to provide not only answers as to why materials have failed in
the past but also how MC can inform the development of future biomaterials. An analysis
technique that can identify MC interactions at a localised scale and also measure these
effects in situ is confidently expected to bring new understandings in biomaterial/cell
interaction and lay the foundations for improved pre-deployment verification.

To date, the field of MC has been constrained by the inability of current characterisation
techniques to provide essential localised multiscale chemically mapping information. A
2021 Nature Review [9] concluded that the unifying feature of mechanochemical phenomena
may be the coupling between inertial motion at the microscale to the macroscale and
changes in the chemical bonding, which can be realised by the dynamic coupling of
multiple-length scales. The requirement for multiscale localised analysis excludes the
use of commonly applied bulk averaging methods due to the fact of their inability to
provide for multiscale analysis and also their associated failure to capture the localised
information required to study a material’s susceptibility to MC interactions in situ. Atomic
force microscopy (AFM) [10] is frequently employed to address these shortcomings, as
the technique has the ability to identify localised nanoscale chemically mapping through
highly sensitive in situ mechanical force measurements. However, AFM suffers from
tip-related limitations and is constrained for MC applications by virtue of its inability to
perform quick and user-friendly real-time multiscale analysis. Other techniques that do
allow for in situ mapping, such as energy-dispersive X-ray analysis (EDX) and electron
backscatter diffraction (EBSD), do not allow for true surface analysis to provide chemical
bonding information. For surface engineering this lack of information is a significant
limitation, particularly considering that both EDX and EBSD have the benefit of being
applied within a scanning electron microscope (SEM), an instrument that has benefitted
from the development of highly sensitive commercial in situ mechanical testing stages.
Such stages capture data in real time as a sample material is undergoing applied mechanical
stress. Combining a surface sensitive chemical imaging technique, housed in an SEM, with
the deployment of an in situ mechanical testing stage would be an ideal test environment
to reveal mechanochemical effects.

Secondary electron hyperspectral imaging (SEHI) is a multiscale material characteri-
sation technique applied within a scanning electron microscope (SEM). SEHI is based on
the collection of secondary electron (SE) emission spectra [11–15] at low primary beam
energies, making the technique applicable to the chemical inspection of uncoated polymer
surfaces [4,16–22] as well as metals [23]. SE spectra for some hydrocarbon materials have
been found to be influenced by the excitation of intramolecular vibrations [20,21]. SEHI
has been applied for the analysis of a range of beam sensitive materials and has been
shown to possess the ability to provide high-resolution chemical maps [17,22]. Recently, the
SEHI technique was applied to the evaluation of polypropylene surgical mesh and through
the data captured provided evidence of the technique’s ability to identify nano–micron
scale MC interactions. This study demonstrates that SEHI can provide in situ MC infor-
mation using poly(glycerol sebacate)-methacrylate (PGS-M) as an example biomaterial of
interest [24]. PGS-M is an elastomeric degradable polymer and a functionalised form of
the well-studied poly(glycerol sebacate) [25]. This study brings the use of a novel in situ
SEM holder together with the application of SEHI to provide, for the first time, enhanced
biomaterial characterisation including surface chemical spectroscopy and imaging methods
at the multiscale, all of which are considered essential to provide the fundamental analysis
needed to evaluate the effects of mechanochemical interactions.

2. Materials and Methods

Synthesis of polyglycerol (sebacate)-methacrylate (PGS-M): The low molecular weight
PGS-M polymer was fabricated following a previously published protocol [24]. In brief,
the PGS prepolymer was synthesised by mixing 1:1 (mol/mol) glycerol and sebacic acid,
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using a hot plate at 120 ◦C at 300 rpm for 48 h. Nitrogen gas was applied for the first
24 h, and then a vacuum was applied to the system for another 24 h to remove the water
from condensation. To methacrylate the PGS prepolymer, 1:4 (w/v) dichloromethane
(DCM) was used to dissolve the prepolymer. Subsequently, the system was changed to
0 ◦C in dark condition at 300 rpm, after which 1:1 (mol/mol of PGS hydroxyl groups) of
triethylamine (TEA) and 1 mg/g PGS hydroxyl group of 4-methoxyphenol (MeHQ) were
added to the system. Methacrylate anhydride (MAA) was used to control the percentage of
methacrylation; in this instance, 0.5 mol of MAA was added per mol PGS hydroxyl groups.
After 24 h of methacrylation, 30 mM hydrochloric acid was used to wash the PGS-M
polymer. The water from reaction was then removed using CaCl2. DCM was removed by
rotary evaporation. To synthesis PGS-M, the remaining DCM was removed from PGS-M
polymer using a vacuum. Seventy percent PGS-M in DCM was blended with 1:1 (w/w)
toluene, 10% HypermerTM B246 and 25% diphenyl(2,4,6-trimethylbenzoyl) phosphine
oxide/2-hydroxy 2-methylpropiophenone and blended (photoinitiator) at 350 rpm. After
5 min of blending, 4 mL dH2O was added dropwise to the emulsion. The emulsion was
then photocured for 5 min each side and washed with methanol for 4 days and dH2O for
4 days. The PGS-M samples were then exposed to low-pressure argon glow discharge
in a Diener Electronic Zepto plasma cleaner at 40 kHz at 100 W for 4 min in a Tyrex gas
semipermeable packaging.

Use of a bespoke SEM holder: PGS-M samples of 50 (length) × 10 (width) × 5 mm
(height) were prepared. The samples were then carefully placed into the holder without
any extensive prestress. The PGS-M samples underwent a 140 degree flexion. The three-
point SEM holder mitigated sample charging by grounding the samples from contact with
aluminium pins. A solder strip was included on the printed circuit board (PCB) to create a
current pathway across the copper layers. This allowed the current to dissipate through
the aluminium stub inserted into the SEM stage. Adjusting the pin position allowed the
user to alter the degree of flexion.

Conventional low-voltage SEM imaging: Observation of the surface morphology of
the PGS-M was performed using a scanning electron microscope (Helios G4 CX Dual-
Beam). The samples were not subject to conductive coatings, in contrast to usual polymer
SEM analysis. To reduce surface charging and consequent damage to the sample, a low
accelerating voltage of 1 kV with a typical vacuum pressure of 10−6 mbar at a working
distance of 3 mm was applied. An Everhart Thornley detector (ETD) for low-magnification
images and a through-lens detector (TLD) for high-magnification images were selected for
the collection of SE images.

SEHI data collection and processing: The methodology of the application of SEHI has
been published in depth previously [23–26]. Briefly, SE spectra generation was performed
on PGS-M using the Helios FEI Helios G4 CX DualBeam microscope by applying consistent
operating conditions of 1 kV and a 50 pA immersion mode. No conductive coating was
applied to the samples in contrast to typical SEM imaging. A typical vacuum pressure
of ~10−6 mbar, working distance of 3.0 mm, and an accelerating voltage of 1 kV were
applied in the immersion mode. The collection of SE spectra of different energy ranges
was enabled through the adjustment of the mirror electrode voltage (MV) together with a
tube bias setting of 150 V. Stepping the MV in a range of −15 and 15 V (energy range of
−0.7 to 12.7 eV) was achieved through the use of an automatic iFast collection recipe [27].
Every image was captured at a frame interval of 0.5 s and an MV step size of 0.5 V, which
corresponds to a ~0.2 eV electron energy step size. Image processing was undertaken using
Fiji ImageJ software (ImageJ2, open source).

3. Results and Discussion

To showcase SEHI’s capacity to reveal MC altercations, a bespoke SEM holder was
manufactured (see Figure 1). The in situ SEM sample holder was prepared with the aim of
exposing a specimen to both compression and tension forces (outlined in Figure 1A). The
holder produced adopted the principles of a traditional three-point bending test, thereby
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allowing the material to experience in situ compression as well as tension (Figure 1B). The
three-point SEM holder was developed to mitigate sample charging by grounding the
sample via contact with aluminium pins. A solder strip was added to the PCB to create a
current pathway across the copper layers; this allowed the current to dissipate through the
aluminium stub inserted onto the SEM stage (Figure 1C,D). Mitigating sample charging is
essential for the analysis of beam sensitive materials such as poor conducting polymers.

 

Figure 1. (A) Schematic outlining the forces present when implementing a three-point bending test;

(B) a Nav Cam image taken within a scanning electron microscope (SEM) chamber of a bespoke SEM

sample holder subjecting PGS-M to both compression and tension; (C) an image showing the bespoke

SEM holder attached onto an SEM stage; (D) an image showing the range of differing SEM holders

with adjustable angles for material flexion.

As the SEM images indicate, areas of the PGS-M were subject to either compression
or tension stress as predicted in Figure 1. Figure 2A displays a conventional SEM image
of the material under compression, showing polymer buckling under the stress provided
by flexion occurring around the pin, shown at the right-hand side of the SEM image. In
contrast Figure 2B shows a conventional SEM image of the same material taken from
the other side of the sample where the force of tension was dominant on the material’s
surface. On this surface, longitudinal cracks can clearly be seen occurring as a result of
the high-tension force applied. From the conventional SEM images alone, it is noticeable
that the surface morphology displayed significant differences in response to the force being
applied across the material. The insets in Figure 2 (Figure 2C,D) show that for high-tension
and high-compression regions, it was also clear that the images showed differences in nano–
micron features. For the high-tension region, micron-scale cracking is visible, whereas the
high-compression region shows what appear to be a more sheer stress-related morphology
and crushing.

In order to assess any chemical changes taking place while the PGS-M underwent
compression and tension, SE spectra were collected and are presented in Figure 3. To
highlight the multiscale nature of SEHI, four different sized regions of interest (ROIs) were
analysed thus allowing for micron–nanoscale information to be obtained. To facilitate this,
SEHI data collection was configured so that each pixel exhibited a 30 nm resolution. The
largest ROI (Figure 3A) averaged an SE emission over 3 µm2 (100 × 100 pixels) to generate
the resulting SE spectra presented. This is in contract to the smallest ROI (Figure 3D),
which averaged over 150 nm2 (5 × 5 pixels). All of the SE spectra presented showed that
PGS-M surfaces under compression differed markedly to that of PGS-M under tension.
Of interest was that the variation of difference was masked at larger ROIs (Figure 3A,B)
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when compared to that of smaller ROIs (Figure 3C,D). This highlights the importance of
applying multiscale analysis methodologies due to the potential of data smoothing out
important information if the focus of the analysis is based on a single-length scale. As the
area of the ROI was reduced, finer SE peak structures became apparent, and of interest was
the increased SE emission variation within 4–6 eV. This range has been shown to contain
signatures of chemical groups containing oxygen functionalities [4,17,22]. This finding was
expected, as it has been shown that mechanical force has the potential to alter chemical
bonding [28]. Previous studies observed that the localised bond breaking leads to a strong
increase in oxygen-containing end groups through chain scission [29]. Such an effect of
polymer oxidation has been found to be stronger at the surface, compared to bulk material,
and is explained as being the result of surface bonds being exposed to higher local loads
and higher concentrations of oxygen [4]. Identifying such surface chemistry variants is
important in the development of biomaterials, as it is well established that an increase in
O-containing functionalities is proportional to improved cellular growth [30].

 

μ

μ

μ

Figure 2. (A) A conventional SEM image of PGS-M under compression taken using an Everhart

Thornley detector (ETD); (B) a conventional SEM image of PGS-M under tension taken using an

Everhart Thornley detector (ETD); (C) a secondary electron (SE) image of PGS-M under tension taken

using a through-lens detector (TLD) at a horizontal field of view of 25 µm; (D) a secondary electron

(SE) image of PGS-M under compression taken using a through-lens detector (TLD) at a horizontal

field of view of 25 µm.

The most notable difference between the compression and tension ROIs, at all length
scales observed, was within the SE emission region of 1.4–2.3 eV. This range has previously
been identified as having a relationship to molecular order/density [16,21]. The SE spectra
indicated that compression of PGS-M increased the molecular density of the material ROI
compared to that of the PGS-M under tension. Changes in molecular density and order are
well-established material effects of MC. In solid materials, the result of mechanochemical
reactions is the local build-up of radicals. Depending on the concentration of free radicals,
the molecular order can locally increase at high concentrations, until crosslinking occurs
or it decreases at low radical concentrations [31]. This finding is in line with expectations
due to the fact that the compression of a material’s ROI’s volume will result in an increase
in its density (density = mass/volume); however, this result does shows the capacity of
SEHI to observe such molecular differences across PGS-M samples when subjected to
different stress conditions. MC reactions require the input of kinetic energy; in all cases,
this input is localised across a material. The multiscale localised data presented validates
the known effect that kinetic energy causes localised molecular chain extensions. This
process yields the free radicals required for polymer chain oxidation and molecular density
realignment [29,31].
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μFigure 3. (A) Secondary electron spectra (SES) for regions of PGSM under compression (n = 6)

and tension (n = 6). SE spectra collected from an ROI of 3 × 3 µm using the Helios FEI Helios G4

CX DualBeam microscope. (B) SES for regions of PGS-M under compression (n = 6) and tension

(n = 6). SE spectra collected from an ROI of 600 × 600 nm using the Helios FEI Helios G4 CX

DualBeam microscope. (C) SES spectra for regions of PGS-M under compression (n = 6) and tension

(n = 6). SE spectra collected from an ROI of 300 × 300 nm using the Helios FEI Helios G4 CX

DualBeam microscope. (D) SES spectra for regions of PGS-M under compression (n = 6) and tension

(n = 6). SE spectra collected from an ROI of 150 × 150 nm using the Helios FEI Helios G4 CX

DualBeam microscope.

Aside from the generation of SE spectra, SEHI has the ability to map chemical dif-
ferences within the SE ranges identified. Previous studies have shown that through the
application of a non-negative matrix factorisation (nnmf) approach [16,17,22], SEHI can
select energy ranges from resulting SE spectra without any user input or bias. This
is the process that was applied to match various SE peak locations to the expressing
chemical bond/group [4,22]. From such SEHI maps, it is possible visualise the homoge-
nous/heterogeneous nature of polymers [16,21]. In this instance, SEHI mapping was
applied only to the region of the SE spectra associated with molecular density (1.4–2.3 eV).
Figure 4 shows this process, starting with the SE spectra displayed in Figure 4A, highlight-
ing the region to be coloured, with the resulting colour SEHI map shown in Figure 4C. For
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ease of comparison, an SE image (Figure 4B) is also included as an example, showing how
specific energy regions show identifiable SE emissions. These SEHI maps further the inter-
pretability of obtained SE spectra results, clearly showing that there was a large variation
in localised intensities for molecular order SE emissions. It is notable that there was greater
intensity for the compression region compared to that of the tension region of PGS-M. As
previously highlighted, this was an expected finding. Of interest, however, is that the SEHI
images presented (Figure 4C) show that the orientation of force created highly ordered
molecular regions following the path of the force applied. For example, within the tension
region’s SEHI image, it is noticeable that highly dense polymer chains are more commonly
apparent from the top to the bottom of the image (following the stress of tension), whereas
the compression image shows high-density chains aligned corner to corner in the SEHI
image. For biomaterials, it has been long recognised that a material’s mechanical properties
play a key role in the adhesion of cells onto a biomaterial’s surface [32]. An implanted
polymer-derived biomaterial will, in almost all deployment scenarios, undergo some form
of mechanical stress in situ [33–35]. Such a force will certainly not be uniform in load and
will result in localised stresses occurring across the material’s bulk and surface [36]. With
prestress mechanical testing, it is possible to capture bulk mechanical failures as a result
of a preloading stress [37]. However, for localised surface stresses, which alter surface
mechanical properties and, in turn, cellular adhesion, Figure 4C shows that SEHI has the
capacity to map spatial variations in molecular density at length scales that are directly
applicable to biomaterial integration.

 

μ
μ

Figure 4. (A) Secondary electron spectra (SES) for regions of PGSM under compression (n = 6) and

tension (n = 6) collected using the Helios FEI Helios G4 CX DualBeam microscope. The SE spectra

highlights an energy window of 2.4 eV selected for SEHI mapping. (B) Secondary electron (SE)

images of PGS-M under (i) tension and (ii) compression, taken using a through-lens detector (TLD)

(10 µm scale bar). (C) Secondary electron hyperspectral imaging (SEHI) image of PGS-M under

(i) tension and (ii) compression, taken using a through-lens detector (TLD) (10 µm scale bar).

4. Conclusions

This study highlighted the use of a novel in situ SEM holder combined with the
application of SEHI to provide, for the first time, enhanced biomaterial MC characterisation.
The results obtained showed the capacity of SEHI to observe chemical and molecular
differences across PGS-M samples when they were subjected to different stress conditions.
Both the SE spectra and SEHI maps presented provide information on the localised variation
of the effect of MC raised by compression and tension stress. Future work should build upon
this static-induced stress study by implementing SEHI with a dynamic in situ mechanical
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stage. Such a capacity to perform dynamic chemical/mechanical characterisation would
uniquely inform how the process of deformation under stress influences a sample material’s
localised chemistry, not only for polymer-derived biomaterials but also for implementing
SEHI to evaluate biomedical metal implants and surface coatings. This test capability
would enable researchers to unlock a new understanding of a material’s suitability and,
importantly, its limitations within the intended deployment environment. This could
be achieved through characterisation analysis being undertaken within an environment
that is representative of the dynamics of the material’s application environment. For the
field of biomaterials, more effective mechanochemical assessment is expected to facilitate
the elimination of unsuitable material candidates prior to extensive, time-consuming and
expensive clinical testing, thus helping to promote the development and quality assurance
of the next generation of medical implants.
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