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Abstract 
There is an increasing demand for manufacturing processes to improve product quality and production 

rates while keeping the costs to a minimum. The quality of the products is influenced by several sources 

of errors introduced during the series of manufacturing operations. These errors accumulate over these 

multiple stages of manufacturing. Therefore, monitoring systems for product health utilising data and 

information from different sources and manufacturing stages is a key factor to meet these growing 

demands. This paper is concerned with the process of combining new measurement data or information 

with machine learning-based prediction information obtained as each product goes through a series of 

manufacturing steps to update the conditional probability distribution of the end product quality during 

manufacturing. A Bayesian approach is adopted in obtaining an updated posterior distribution of the end 

product quality given new information from subsequent measurements, and, in particular, On-Machine 

Probing (OMP). Following the steps of heat treatment, machining, and OMP, the posterior distribution of 

the previous step can be considered as the new prior distribution to obtain an updated posterior 

distribution of the product condition as new metrological information becomes available. It is 

demonstrated that the resulting posterior estimates can lead to more efficient product condition 

monitoring in multistage manufacturing. 

Keywords: Bayesian Inference; Machine Learning; Information Fusion; Multistage Manufacturing Process 

(MMP); On-Machine Probing (OMP); Uncertainty of Measurement 

 

1. Introduction 
Manufacturing is concerned with transforming starting raw materials into finished parts or products 

designed usually with exceptionally tight tolerances. One of the most important manufacturing methods 

is the Computer Numerical Control (CNC) machining in which unwanted material is removed from a 
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workpiece in the form of small chips by means of a rotary cutting tool that moves along certain multiple 

axes as indicated by a customised computer program [1], [2]. In machining, part accuracy is affected by 

many sources of errors of varying magnitude, such as geometric and kinematic errors, thermal errors, 

cutting force-induced errors, fixturing errors, and tool wear [3], [4]. In addition, a workpiece to be 

machined may have already gone through other processing stages, such as forming and heat treatment. 

Therefore, in Multistage Manufacturing Processes (MMPs), product quality variations are contributed by 

the errors generated at the current manufacturing stage, as well as the accumulated errors transmitted 

from preceding stages [5]–[7].  

 

The manufacturing industry is currently undergoing a significant transformation towards the concept of 

smart manufacturing or Industry 4.0 concerned with a new generation of manufacturing processes 

characterized with autonomy and intelligence based on Cyber-Physical Systems (CPSs) [8], [9]. The factory 

of the future will operate with manufacturing equipment and systems capable of being self-optimized and 

communicating with each other for making optimal decisions for example, in the event of producing out-

of-specifications products. Manufacturing processes are increasingly equipped with various sensors and 

data acquisition devices to gather data as the product is manufactured for process and product health 

monitoring and control [10]. Continuous condition monitoring and control of the process and product 

being manufactured make production more flexible with greater manufacturing efficiency and 

productivity. During recent years, a significant interest has been devoted to multisensor data fusion in 

dimensional metrology [11] for combining data from multiple sources, such as dimensional inspection 

data from a Coordinate Measuring Machine (CMM) and a structured line scanner [12]. Multisensor data 

fusion is a multidisciplinary field of interest that aims to overcome the limitations of individual data 

acquisition devices and reduce the uncertainty of information estimates. It is worth distinguishing 

between data fusion and information fusion though these terms are sometimes used interchangeably. 

The former refers to the combination of data obtained directly from multiple sensors while the latter 

refers to the combination of already processed data and information from sensors, technical reports, 

models, etc. [13]. 

 

Over the years, several methods have been proposed to develop monitoring systems based on machine 

learning process models and in-process metrology data for observing product health, especially surface 

quality characteristics such as surface roughness [14]. However, published work on intelligent condition 

monitoring systems for dimensional metrology characteristics is limited [15]. Also, most predictive 

monitoring methods are based on mapping single stage manufacturing data to product quality 

characteristics, though manufacturing processes typically involve multiple production stages, and do not 

take into account further metrological information obtained at a later manufacturing stage. Because of 

the complexity and diversity of manufacturing processes, developing a reliable and robust condition 

monitoring system that has minimal implementation and maintenance costs requires efficient and flexible 

modelling techniques. The use of Bayesian methods has greatly increased during recent years in many 

applications including manufacturing process monitoring and control [16], [17]. Bayesian methods make 

use of probability distributions to quantify uncertainty in statistical inferences and can be seen as being 

equivalent to combining information from multiple sources [18]–[20]. In a Bayesian formulation, 

probability distributions are updated as more information becomes available. This paves the road to 



monitor the health of the process and product using statistical and machine learning techniques, as it goes 

through multiple manufacturing steps, and update our predictions about the product quality in the light 

of subsequent measurements through Bayes’ theorem. This increases the reliability of metrological 

information estimates through the different stages. For example, in situ dimensional inspection of finished 

or semi-finished parts on the machine with a Touch-Trigger Probe (TTP) enables the evaluation of 

dimensional metrological information about the product in a single setup and can be considered as an 

additional source of information for Bayesian data or information fusion. On-Machine Probing (OMP) 

using TTPs can reduce unnecessary downtime, re-work, scrap, and post-process inspection [21]. However, 

the use of a CNC machine tool as a Coordinate Measuring System (CMS) also has some drawbacks. In 

particular, OMP is fraught with the same error sources as CMMs, and, in addition, it cannot detect 

machine tool error-induced deviations. CMM measurement results are subject to many multivariate 

influence factors, such as geometric and kinematic errors, probing system errors, and environmental 

effects [22], [23]. Therefore, the evaluation of the uncertainty associated with CMM measurement and 

OMP is not straightforward. In this work, a CMS based on parallel kinematic configuration and operating 

in comparator mode (Equator gauging system) was used for post-process inspection to obtain the 

dimensional metrology characteristics of machined parts. Operating a CMS in comparator mode has the 

advantage of obtaining measurements that are devoid of constant systematic effects associated with the 

measurement system [22], [24].   

 

The growing demand for improved product quality and production rates with reduced inspections have 

contributed significantly to the development of advanced process monitoring and control systems. 

However, the performance of machining processes, such as turning, drilling, milling, and grinding, 

depends on several parameters, including machine configuration, machining parameters and tool path 

trajectory, cutting tool type and wear, workpiece material and fixturing, process dynamics, etc. Therefore, 

the systems require training with a particular manufacturing method or fault type to provide an accurate 

prediction and then updating this prediction, given that new information is obtained. The research of this 

article applies a Bayesian fusion method to provide an improved product health parameter estimate using 

probabilistic machine learning and OMP. Unlike other studies in this domain, additional on-machine 

inspection data are utilized, so that the system can update its predictions as the product is manufactured 

when new metrology data become available. In the case presented, metrology data are obtained from a 

MMP consisting mainly of heat treatment, machining, and dimensional inspections.  

 

The purpose of this paper is to present a novel approach to update the conditional probability distribution 

of the end product quality, by using Bayesian information fusion of machine learning based estimation 

and subsequent measurements, such as OMP. The advantages of the proposed approach to product 

health monitoring for MMPs naturally arise from the sequential nature of Bayes’ theorem for updating 

posterior distributions. The proposed method is validated using experimental data from a multistage 

manufacturing case study (see Figure 1). Section 2 presents a detailed review of literature relating to 

dimensional metrology and process monitoring and control methods. Section 3 describes the product 

health metric deviation matrix and the probabilistic model. Section 4 validates the model using data from 

an experimental case study concerned with the manufacture of steel bearing housing parts [25]–[27]. 



Section 5 presents the proposed Bayesian information fusion approach and the results obtained with this 

method. Concluding remarks are given in Section 6. 

 

2. Related literature 
Dimensional metrology is concerned with the measurement of geometric features of a manufactured part 

in order to determine whether or not the part conforms to its geometric tolerance specifications (form, 

orientation, profile, runout, size, and location). Dimensional measurements can be obtained by a variety 

of methods including both manual inspection methods, such as hard gauging and Articulated Arm 

Coordinate Measuring Machine (AACMM) measurement, and automated inspection methods, such as 

OMP, CMM measurement, and flexible gauging [28]. Manual inspection methods are prone to a non-

predictable error source, the operator, affecting the repeatability, reproducibility, and part throughput, 

and usually lead to high measurement uncertainties. Coordinate metrology, particularly the use of CMMs 

has become vital for industrial dimensional metrology because of their efficiency, flexibility and accuracy. 

However, providing valid uncertainty statements associated with a particular CMM measurement task 

requires significant efforts as CMM measurement results are subject to a large range of influence factors 

including both random and systematic effects [22]. CMSs can also be used to perform coordinate 

measurements in a gauging/comparator mode in which dimensional measurements of a workpiece are 

compared with those of a master artefact nominally of the same geometry. Coordinate measurements 

made in a comparator mode benefit from the fact that many of the systematic effects associated with the 

CMS cancel out and thus need not be modelled when evaluating the uncertainties. However, the 

traceability path associated with comparative coordinate measurement is not as well defined because 

such measurement results originate from indirect/relative measurement. In addition, the measurement 

uncertainty for a given workpiece measured using a comparator measurement system will always inherit 

uncertainty from the calibration of the master artefact, but this uncertainty contributor is usually not 

difficult to quantify. Process variations, such as part misalignments from rotation between master and 

measure coordinate reference frames, are also possible uncertainty contributors for comparative 

coordinate measurement, particularly when using a non-repeatable fixturing setup [28]. Furthermore, 

establishing a master artefact for comparator measurement may be not straightforward and usually 

requires calibrating a manufactured part produced close to drawing nominals on an accurate CMM.   

 

Traditional part quality assessment techniques are usually based on manually-operated measurement 

instruments and CMMs that can potentially create production bottlenecks limiting production rate. 

Therefore, in recent years, there has been a drive towards process and product health monitoring 

strategies based on machine learning and live captured sensor signals in order to make timely decisions 

while minimising the volume of non-value adding processes, such as dimensional inspection. In particular, 

Industry 4.0 has become the new trend in the manufacturing industry and much research has focused on 

mapping process parameters and monitoring data to product quality characteristics, such as surface 

roughness, using machine learning process models. Özel and Karpat [29] used Artificial Neural Networks 

(ANNs) to predict both surface roughness and tool flank wear in finish dry hard turning using material 

hardness, cutting speed, feed rate, axial cutting length, and force data. Plaza et al. [30] analyzed different 

feature extraction methods to optimize surface finish monitoring in CNC turning using vibration signals 



obtained by a single low-cost accelerometer sensor. Salgado et al. [31] developed Least Squares Support 

Vector Machines (LS-SVMs) to predict surface roughness in turning using cutting parameters (feed rate, 

cutting speed, and depth of cut), tool geometry parameters (nose radius and nose angle), and vibration 

data. Huang [32] developed a neural-fuzzy monitoring system for end-milling operations to predict surface 

roughness using spindle speed, feed rate, depth of cut, the average resultant peak force, and the absolute 

average force. Kovac et al. [33] applied fuzzy logic and regression analysis for modelling surface roughness 

in dry face milling using machining conditions including cutting speed, feed rate, depth of cut, and width 

of flank wear land. Bolar et al. [34] performed a full factorial design to investigate the influence of feed 

per tooth, tool diameter, and axial and radial depths of cut on cutting forces and surface roughness during 

machining of thin-wall parts and developed second order regression models for the prediction of both 

measurands given the studied process parameters. Han et al. [35] proposed a varying-parameter drilling 

method to improve manufacturing efficiency in successive drilling operations and ultimately increase hole 

surface roughness quality for multi-hole parts made of difficult-to-cut materials. The hole surface 

roughness was predicted by Radial Basis Function (RBF) networks using spindle speed, feed rate, crater 

wear, flank wear, outer corner wear, thrust force and torque. Moore et al.[36] proposed a machine 

learning-based machine and process monitoring system for milling using vibration and power signals. 

Correa et al. [37] applied Bayesian networks and ANNs to predict surface roughness in high-speed milling 

using various features, including workpiece geometry, material hardness, machining parameters, and 

cutting forces. They showed that Bayesian networks are easier to interpret than ANNs and performed 

better in this classification problem. 

 
Beyca et al. [38] developed a Bayesian Dirichlet Process (DP) multisensor fusion decision theoretic 

approach to detect abnormal process drifts in ultraprecision machining by integrating multiple in situ 

sensor signals, such as force, vibration, and Acoustic Emission (AE). The results showed that their approach 

can classify ultraprecision machining process drifts much more accurately than conventional classification 

methods, such as ANNs and SVMs. Karandikar et al. [39] implemented a Bayesian learning method for 

stability lobe identification using milling test results and presented an adaptive experimental strategy to 

identify the optimal combination of parameters, which maximise material removal rate. Wang et al. [40] 

proposed a multisensor fusion method of vision and sound to monitor in-process grinding material 

removal rate. They conducted belt grinding experiments using different parameters and derived a 

predictive model for material removal rate monitoring based on the optimal feature subsets and an 

improved light gradient boosting machine algorithm. Nazir and Shao [41] proposed an online tool 

condition monitoring system for ultrasonic metal welding using sensor fusion and machine learning 

techniques. They tested a variety of classification models using experimental data and concluded that 

displacement and AE sensor signals are more useful in predicting tool conditions than power and sound 

signals. Atoui et al. [42] presented a probabilistic framework for system monitoring based on Bayesian 

networks, but their approach was tested with a simulation of a water heater process. Zhao et al. [43] 

derived an algorithm based on a linear state-space model for sensor monitoring, which estimates the 

probability distributions of measurement noise covariance and state variable simultaneously, assuming 

that all the sensors are uncorrelated with each other. The joint posterior distribution was approximated 

by two independent proposal distributions under the variational Bayesian inference framework, but the 

algorithm was tested with a numerical simulation and a quadruple water tank experiment. Du et al. [44] 

developed a Bayesian monitoring method based on a linear state-space model to estimate the process 

control parameters and establish the control limits of the cause-selecting chart in the ramp-up phase of a 



MMP. Tran et al. proposed two one-sided Shewhart-type charts to monitor the ratio of two normal 

random variables for a finite horizon production as there are numerous situations where the production 

run is finite, but they considered simulation data from the food industry for the quality control problem. 

Riaz et al. [45] presented Bayesian posterior predictive exponentially weighted moving average control 

charts under different loss functions for small to moderate process mean shift detection, but the 

applications considered for validation were not in the manufacturing sector. For a lab-scale distillation 

column and the Tennessee Eastman (ET) industrial challenge problem, Ghosh et al. [46] used multiple 

heterogeneous fault detection and identification methods and fused their results to overcome the 

limitations of each method when used separately. Zhang and Ge [47] designed a fusion system by 

combining results of various methods for fault detection and identification in industrial processes. They 

used the Dempster-Shafer evidence theory to combine decisions generated from different models and a 

resampling strategy as a data pre-processing step to enhance the diversity performance of the fusion 

system. The case study included the ET process. In summary, Bayesian and machine learning methods via 

sensor and decision fusion techniques had been applied to specific manufacturing stages and to other 

industrial processes involving a variety of formulations ranging from classification to dynamic fault 

estimation, but homogeneously within the methods.  

 

To the best of our knowledge, no research has been done regarding the fusion of in-process inspection 

data and in-process monitoring data for dimensional product health monitoring. The overwhelming 

majority of published research works have proposed machine learning-based methods to identify the 

finish-machined part condition, particularly surface metrology characteristics, by monitoring only the 

machining process, and do not enhance their predictions when new information becomes available. The 

aim of this article is to fill this gap by introducing a multisensor fusion method to predict an improved 

product health parameter estimate. First, this research work develops an intelligent, dimensional product 

health monitoring system, which learns from in-process metrology data obtained from multiple different 

manufacturing stages and sources, to predict the end product quality. Second, it develops a Bayesian 

information fusion algorithm to update this prediction as the product is manufactured, given new 

information from subsequent measurements, such as OMP. A Bayesian updating procedure is adopted in 

combining the information obtained from machine learning with the new information obtained from 

OMP. It is tested on a real industrial case study used to manufacture bearing housing parts made by EN24T 

steel. The manufacturing process involves heat treatment, grinding, hardness testing, machining, in-

process inspection, and post-process inspection.  

 

3. Product health metric deviation matrix and the probabilistic model 
The concepts of basic probability and random variables that are used in this paper are first given. Let 𝑌 be 

a continuous random variable with Probability Density Function (PDF) 𝑔(𝓎). This function must: i) be 

nonnegative, i.e., 𝑔(𝓎) ≥ 0 for all 𝓎, and ii) have unit area, i.e., ∫ 𝑔(𝓎)𝑑𝓎∞−∞ = 𝑃(−∞ < 𝑌 < ∞) = 1. 

These two criteria must be strictly satisfied in order for a function to qualify as a PDF. The probability that 

the random variable 𝑌 is less than or equal to a value 𝓎 is given by the Cumulative Distribution Function 

(CDF). The CDF 𝐺(𝓎) for the random variable 𝑌 is defined by 𝐺(𝓎) = 𝑃(𝑌 ≤ 𝓎), −∞ < 𝓎 < ∞, and 

satisfies the marginal conditions lim𝓎→−∞ 𝐺(𝓎) = 0 and lim𝓎→∞ 𝐺(𝓎) = 1. The expectation 𝐸(𝑌) of the 



random variable 𝑌 with PDF 𝑔(𝓎) is 𝐸(𝑌) = 𝜇𝑌 = ∫ 𝓎𝑔(𝓎)𝑑𝓎∞−∞ , the variance is 𝑉(𝑌) = 𝜎𝑌2 =𝐸 [(𝑌 − 𝐸(𝑌))2] = ∫ (𝓎 − 𝜇𝑌)2𝑔(𝓎)𝑑𝓎∞−∞ , and the standard deviation 𝜎𝑌 is the positive square root of 

the variance, thus 𝜎𝑌 = √𝑉(𝑌) [48].  

 

In this paper, the product health information is represented through a metric deviation matrix. Suppose 

independent observations 𝔂 = (𝓎1, … , 𝓎𝑚)T of the random variable 𝑌 are available from a CMS, such as 

a CMM or a comparator measurement system. More generally, the measurement 𝓎𝑖, for 𝑖 = 1,… ,𝑚, is 

regarded as an observation of the random variable 𝑌𝑖  that has a PDF identical to that of 𝑌. Consider now 𝑌𝑖𝑗  independent random variables, for 𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛, and let 𝑯 be the corresponding 

product health metric deviation matrix: 

  

𝑯 = (ℎ𝑖𝑗) = [ℎ11 ℎ12 ⋯ ℎ1𝑛ℎ21 ℎ22 … ℎ2𝑛⋮ ⋮ ⋱ ⋮ℎ𝑚1 ℎ𝑚2 … ℎ𝑚𝑛] = [ �̃�1 − 𝓎11 �̃�2 − 𝓎12 ⋯ �̃�𝑛 − 𝓎1𝑛�̃�1 − 𝓎21 �̃�2 − 𝓎22 … �̃�𝑛 − 𝓎2𝑛⋮ ⋮ ⋱ ⋮�̃�1 − 𝓎𝑚1 �̃�2 − 𝓎𝑚2 … �̃�𝑛 − 𝓎𝑚𝑛] ∈ ℛ𝑚×𝑛,  (1) 

 

where ℎ𝑖𝑗 = �̃�𝑗 − 𝓎𝑖𝑗  denotes the element located in the 𝑖th row and the 𝑗th column of the product 

health metric deviation matrix 𝑯, �̃�𝑗 is the Computer-Aided Design (CAD) model based nominal value of 

the random variable or measurand 𝑌𝑗, and 𝓎𝑖𝑗  is the 𝑖th observation of the measurand 𝑌𝑗. Given a 

tolerance specification 𝑇𝑗 and a measured product health metric deviation ℎ𝑖𝑗, the product can be either 

accepted or rejected for the 𝑗th quality characteristic or, in some cases, it may be re-worked or re-

measured with the same or more accurate measuring system.  

 

The focus of this paper is to reduce inspections by firstly, creating a predictive model of the post-process 

inspection results from the in-process monitoring data. For each measurand 𝑗, consider a model of the 

form: 

  𝓱 = 𝑿𝒂 + 𝝐,     𝓱 ∈ 𝓗,     𝓗~N𝑝(𝑿𝒂, 𝜎ℰ2𝑰𝑝), (2) 

 

where 𝓱 = (𝒽1, … , 𝒽𝑝)T
 is the response variable obtained from a CMS operating in comparator mode 

with 𝒽𝑙 = ℎ̅𝑙 = 1𝑚 ∑ ℎ𝑖𝑙𝑚𝑖=1  for 𝑙 = 1,… , 𝑝, 𝑿 is a matrix of order 𝑝 × (𝑞 + 1) known as the design matrix 

or matrix of covariates, 𝒂 = (𝑎0, 𝑎1, … , 𝑎𝑞)T
 is the vector of unknown parameters, 𝝐 = (𝜖1, … , 𝜖𝑝)T

 is the 

error vector with 𝝐 ∈ N𝑝(𝟎, 𝜎ℰ2𝑰𝑝), 𝜎ℰ2 is the unknown error variance parameter, and 𝑰𝑝 is the 𝑝 × 𝑝 

identity matrix with ones on the main diagonal and zeros elsewhere. The variables 𝓱 and 𝝐 are regarded 

as realizations of vectors of random variables 𝓗 = (ℋ1, … ,ℋ𝑝)T
, with 𝐸(𝓗) = 𝑿𝒂 and 𝑉𝓱 = 𝑉(𝓗) =𝜎ℰ2𝑰𝑝, and 𝓔 = (ℰ1, … , ℰ𝑝)T

, with 𝐸(𝓔) = 𝟎 and and  𝑉𝝐 = 𝑉(𝓔) = 𝜎ℰ2𝑰𝑝, respectively. Suppose 𝑿: 



 

𝑿 = [  
 1 𝘹11 𝘹12 ⋯ 𝘹1𝑞1 𝘹21 𝘹22 … 𝘹2𝑞⋮ ⋮ ⋮ ⋱ ⋮1 𝘹𝑝1 𝘹𝑝2 … 𝘹𝑝𝑞]  

 
 (3) 

 

is of full rank, 𝑟𝑎𝑛𝑘(𝑿) = 𝑞 + 1, and that 𝑞 + 1 ≤ 𝑝. Provided that (𝑿T𝑿)−1
 exists since 𝑿T𝑿 also has 

rank 𝑞 + 1 ≤ 𝑝, the ordinary least squares estimate 𝞪 of 𝒂 is: 

 𝞪 = 𝒜(𝓱) = 𝑿†𝓱,     𝑿† = (𝑿T𝑿)−1𝑿T, (4) 

 

which is the same as the maximum likelihood estimate of 𝒂 due to the assumptions of the linear model 

for the error term 𝝐 drawn from a multivariate normal distribution with expectation 𝟎 and covariance 

matrix 𝜎ℰ2𝑰𝑝. Note that, 𝞪 is a realization of a vector of random variables 𝑨 = 𝒜(𝓗) = 𝑿†𝓗 with 

expectation 𝐸(𝑨) = 𝐸(𝑿†𝓗) = 𝑿†𝐸(𝓗) = (𝑿T𝑿)−1𝑿T𝑿𝒂 = 𝒂. Therefore, 𝞪 is an unbiased estimate 

of 𝒂. This parameter estimate can be used to make a prediction of the mean estimate of the post-process 

inspection results. However, this does not provide a measure of uncertainty associated with this mean 

estimate.  

 

The uncertainty of the mean estimate will depend on the uncertainty covariance of the model parameter 

estimate. The covariance matrix 𝑉𝞪 of 𝑨 is 𝑉𝞪 = 𝑉(𝑨) = 𝑿†𝑉(𝓗)(𝑿†)T =(𝑿T𝑿)−1𝑿T(𝜎ℰ2𝑰𝑝)𝑿(𝑿T𝑿)−1 = 𝜎ℰ2(𝑿T𝑿)−1𝑿T𝑿(𝑿T𝑿)−1 = 𝜎ℰ2(𝑿T𝑿)−1
. The estimate 𝞪 is also a 

sample from a multivariate normal distribution, 𝞪 ∈ N𝑞+1 (𝒂, 𝜎ℰ2(𝑿T𝑿)−1), since 𝞪 results from a linear 

transformation of the data vector 𝓱. The maximum likelihood estimate �̂�ℰ2 = �̂�T�̂�/𝑝 of the error variance 𝜎ℰ2 is biased, but as 𝑝 increases the bias of �̂�ℰ2 shrinks toward 0. An unbiased estimate of the error variance 𝜎ℰ2 can be obtained from the Residual Sum of Squares (RSS) divided by its degrees of freedom: 

 

𝑠ℰ2 = �̂�T�̂�𝑝 − 𝑞 − 1 = (𝓱 − 𝑿𝞪)T(𝓱 − 𝑿𝞪)𝑝 − 𝑞 − 1 . (5) 

 

Therefore, the estimated covariance matrix �̂�(𝑨) = 𝑠ℰ2(𝑿T𝑿)−1
 of 𝑨 approximates the covariance matrix 𝑉(𝑨) = 𝜎ℰ2(𝑿T𝑿)−1

 of 𝑨. Computational methods based on matrix decompositions are used for 

numerical stability [49].    

 



In this paper, a Bayesian approach is employed to first estimate the parameters 𝒂 and 𝜎ℰ2 using only the 

in-process data. A Bayesian approach to statistical estimation and inference of regression models 

considers the parameters 𝒂 and 𝜎ℰ2 as random variables rather than fixed, unknown quantities and hence 

uses probability distributions to describe information about the model parameters. These probability 

distributions are updated using Bayes’ theorem when information from measurement data becomes 

available to obtain posterior distributions of the parameters. This approach can incorporate prior 

knowledge (before the data are observed) about the model parameters by setting up an informative prior 

distribution for the parameters [18]. The prior knowledge may be available from various sources of 

information depending on the specific problem. For example, expert knowledge and historical data can 

be used to obtain a prior distribution. In cases where prior knowledge may be vague or not available then, 

a non-informative prior distribution can be specified. The posterior distribution summarizes all the 

information about the model parameters after observing the data by incorporating the prior beliefs 

through the prior distribution and the information from the measurement data through the likelihood 

function. With non-informative priors, the posterior distribution is dominated by the likelihood. On the 

contrary, the posterior is approximately proportional to the prior when the prior contains much more 

precise information about the parameters than the data. The posterior distribution is proportional to the 

product of the prior distribution and the likelihood function and appropriately normalized to ensure that 

it integrates to one. The data in a regression problem include both 𝓱 and 𝑿. Therefore, the posterior 

density for the unknown parameter vector 𝜽 = (𝜽𝒽|𝘹, 𝜽𝘹)T
is given by [19]: 

 𝑝(𝜽|𝓱, 𝑿) ∝ 𝑝(𝜽)𝑝(𝓱, 𝑿|𝜽), (6) 

 

where 𝑝(𝜽) is the prior density and 𝑝(𝓱,𝑿|𝜽) = 𝑝(𝓱|𝑿, 𝜽𝒽|𝘹)𝑝(𝑿|𝜽𝘹) is the likelihood. Assuming prior 

independence, 𝑝(𝜽𝒽|𝘹, 𝜽𝘹) = 𝑝(𝜽𝒽|𝘹)𝑝(𝜽𝘹), then, the posterior density factors as: 

 𝑝(𝜽𝒽|𝘹, 𝜽𝘹|𝓱, 𝑿) = 𝑝(𝜽𝒽|𝘹|𝓱, 𝑿)𝑝(𝜽𝘹|𝑿). (7) 

 

Since our interest lies only with 𝜽𝒽|𝘹 = (𝒂, 𝜎ℰ2) then, the posterior density for the parameter vector 𝜽𝒽|𝘹 

is given by: 

 𝑝(𝜽𝒽|𝘹|𝓱, 𝑿) ∝ 𝑝(𝜽𝒽|𝘹)𝑝(𝓱|𝑿, 𝜽𝒽|𝘹), (8) 

 

where 𝑝(𝜽𝒽|𝘹) is the prior density and 𝑝(𝓱|𝑿, 𝜽𝒽|𝘹) is the likelihood given by: 

 

𝑝(𝓱|𝑿, 𝜽𝒽|𝘹) ∝ (𝜎ℰ2)−𝑝/2 exp [−(𝓱 − 𝑿𝒂)T(𝓱 − 𝑿𝒂)2𝜎ℰ2 ]. (9) 

 



The posterior is derived analytically when prior knowledge can be expressed with conjugate priors. 

Conjugate priors for the parameter vector 𝜽𝒽|𝘹 can be given by: 

 𝒂|𝜎ℰ2~N𝑞+1(𝜶0, 𝜎ℰ2𝑽0−1),     𝜎ℰ2~IΓ(𝘢0, 𝘣0), (10) 

 

where the conditional prior for 𝒂 is a (𝑞 + 1)-dimensional multivariate normal distribution with mean 

vector 𝜶0 and covariance matrix 𝜎ℰ2𝑽0−1 and the marginal prior for 𝜎ℰ2 is an inverse Gamma distribution 

with shape 𝘢0 > 0 and scale 𝘣0 > 0. Note, 𝑽0 is a symmetric positive definite matrix of order (𝑞 + 1) ×(𝑞 + 1). A non-informative prior usually used for the normal linear regression model is the improper 

density 𝑝(𝒂, 𝜎ℰ2) ∝ 1/𝜎ℰ2.  

 

4. Model validation using experimental multistage manufacturing data 
Experimental data have been obtained from a case study concerned with multiple stages of 

manufacturing, such as heat treatment, grinding, hardness testing, CNC machining, and dimensional 

inspections [25]–[27]. The starting material blocks made of steel EN24T were heated up to 845°C using a 

VECSTAR furnace and then quenched in oil for hardening. After hardening, the blocks were tempered at 

different temperatures, including 450°C, 550°C and 650°C, to introduce variation in material properties. 

High temperature thermocouples were used to measure temperature gradient and temperature variation 

during heat treatment. Following hardening and tempering, the material blocks were grinded to improve 

their surface quality and surface hardness measurements of the material blocks were then obtained using 

a Rockwell device. A full factorial design with four factors at two levels and one center point each was 

performed for machining using a DMG MORI NVX 5080 3-axis machine. The factors included material 

surface hardness, feed rate, spindle speed and datum error in both X and Y axes when setting the 

workpiece in the second orientation. During machining, an accelerometer sensor and the NI LabVIEW 

SignalExpress software were employed to measure tool vibration signals at a sampling rate of 10 kHz. 

After each experimental run, all the cutting tools used for the machining operations were inspected for 

wear on each flute using a Leica microscope. The cutting tools were used until they reached a certain flank 

wear width. The following features were generated in MATLAB from the in-process monitoring data: i) a 

three-state variable for the material surface hardness obtained from repeated measurements at different 

locations on the material block; ii) the maximum tempering temperature obtained by five K-type 

thermocouples; and iii) time domain features including Root-Mean-Square (RMS), sample kurtosis, 

sample skewness, sample variance and sample mean of vibration components Vx, Vy, and Vz. The dataset 

was normalized by the Euclidean norm (2-norm). After machining each side of the workpiece, OMP was 

performed for in-process inspection using a Renishaw OMP60 optical transmission probe. Figure 1 shows 

a general overview of the experimental setup and the CAD model of the product. The measurand of 

interest in this work is the diameter of the circle labeled in Figure 1. A Renishaw Equator 300 Extended 

Height Gauging System was used for post-process inspection on the shop floor. The Equator was employed 

using the CMM Compare method in scanning measuring mode. The CMM used to calibrate the master 

part was a Mitutoyo CMM located in a metrology lab. 

 



 

Figure 1. The experimental setup and the CAD model of the part. The subfigures indicate the different 

manufacturing and inspection stages with the arrows indicating the sequence of the processes. 

 

Suppose that prior knowledge about 𝜽𝒽|𝘹 is not available or ignored, e.g. it is considered as imprecise. 

Therefore, the improper prior density 𝑝(𝒂, 𝜎ℰ2) ∝ 1/𝜎ℰ2 is specified. Provided that 𝑿T𝑿 is invertible, with 

this prior distribution, the conditional posterior distribution for 𝒂 is a (𝑞 + 1)-dimensional multivariate 

normal distribution: 

   𝒂|𝜎ℰ2, 𝓱, 𝑿~N𝑞+1 (𝞪, 𝜎ℰ2(𝑿T𝑿)−1). (11) 

 

The marginal posterior distribution for 𝜎ℰ2 is an inverse Gamma distribution: 

 

𝜎ℰ2|𝓱,𝑿~IΓ(𝑝 − 𝑞 − 12 , (𝓱 − 𝑿𝞪)T(𝓱 − 𝑿𝞪)2 ). 
(12) 

 

The marginal posterior distribution for 𝒂 is a (𝑞 + 1)-dimensional multivariate t-distribution with 𝑝 − 𝑞 −1 degrees of freedom: 

 𝒂|𝓱,𝑿~t𝑞+1,𝑝−𝑞−1 (𝞪, 𝑠ℰ2(𝑿T𝑿)−1). (13) 

 

Now suppose the model is applied to a new set of data �̃� to predict unobserved data �̃�, where �̃� is a 

matrix of dimension 𝓂 × (𝑞 + 1) and �̃� ∈ �̃� is a vector of dimension 𝓂. The uncertainty associated 

with the posterior predictive distribution for the vector of random variables �̃� is contributed by both the 

model variability and finite sample size 𝑝 of 𝓱. Therefore, the posterior predictive distribution for �̃� is a 



𝓂-dimensional multivariate t-distribution centered at �̃�𝞪 with two uncertainty components and 𝑝 − 𝑞 −1 degrees of freedom:  

 �̃�|𝓱~t𝓂,𝑝−𝑞−1 (�̃�𝞪, 𝑠ℰ2 (𝑰𝓂 + �̃�(𝑿T𝑿)−1�̃�T)). (14) 

 

The predictive model was fitted using the first four principal components extracted from the input dataset 

and the diameter deviations obtained from the scanning comparator measurements using a sampling 

point density/distance (the distance between the points on the scan path, in the current units) of 0.1 and 

a scanning speed of 40 mm/s. The expanded measurement uncertainties, 𝑈, for diameter for a coverage 

factor 𝑘 = 2 and a confidence level of 95.45% were found to be less than 1 μm for all parts tested. The 

procedure followed to evaluate the uncertainty associated with this measurement process is described in 

[27]. Principal Component Analysis (PCA) was performed via a Singular Value Decomposition (SVD) of the 

input data matrix [49], [50]. Mean-centering the columns of the input data matrix was therefore a 

necessary pre-processing step. The leave-one-out cross-validation approach was used to evaluate the 

performance of the model on unseen data. The average percentage variability explained by the first four 

principal components during training was 96.2878% and by taking into account only the first four principal 

components the average reconstruction Root Mean Squared Error (RMSE) was 0.0101. The fitted 

predictive model was tested using the test dataset by applying the PCA transformation obtained from the 

training data to the test dataset. The average reconstruction RMSE considering the first four principal 

components obtained from the trained PCA model using the test dataset was 0.0149. Figure 2 shows the 

scree plot of the percentage variability explained by the first four principal components during training 

for a single fold data. For each validation case, sixteen parts were used for training and one part was used 

for testing the model and repeated across all folds. MATLAB was used to implement the PCA-based 

probabilistic model. 



 

Figure 2. Scree plot for a single fold data. 

Figure 3 shows the normal probability plot of the residuals of the classical linear fitted model for a single 

fold data. As can be seen, the model residuals follow a normal distribution with small deviations from 

normality. The coefficient of (multiple) determination 𝑅2 was  0.706 and the adjusted �̃�2 was 0.599. Figure 

4 shows the prior and posterior distributions of the model parameters 𝒂 and 𝜎ℰ2. Table 1 shows the 

Bayesian linear regression model results for a single fold data including the mean value of the parameters, 

the Standard Error (SE) of the parameters, and the 95% Bayesian equal-tailed Credible Interval (CI) for the 

parameters. Tables 2 and 3 show the cross-validation results of the PCA-based probabilistic model. The 

developed model was evaluated using the RMSE metric. The comparison between the training and testing 

data performances for PCA indicate that feature extraction process did not result in any adverse loss of 

information in the features from the in-process monitoring data. The cross-validation results show that 

the linear model can predict the diameter deviations with an average accuracy better than 6 μm. Again, 

the similarity of the order between the training and training errors across all parts suggest a good 

generalization with little overfitting to the data.  

 



 

Figure 3. Normal probability plot of residuals for a single fold data. 

 

 

Figure 4. Prior and posterior distributions of the regression coefficients and disturbance variance for a 

single fold data. 

 

 



Table 1. Results of the PCA-based probabilistic model for a single fold data. 

 Estimate SE Bayesian CI95 𝑎0 0.05930 0.00162 [0.05608, 0.06252]  𝑎1 0.02427 0.00906 [0.00624, 0.04230]  𝑎2 0.04698 0.01934 [0.00848, 0.08548]  𝑎3 0.05821 0.02307 [0.01228, 0.10414] 𝑎4 -0.06964 0.04720 [-0.16360, 0.02433] 𝜎ℰ2 0.00004 0.00002 [0.00002, 0.00010] 

 

Table 2: Cross-validation results of the PCA model. 

Folds Sum of  

variance  

explained 

Training  

reconstruction  

RMSE 

Testing  

reconstruction  

RMSE 

1 96.2111 0.0102 0.0128 

2 96.2355 0.0100 0.0182 

3 96.2329 0.0102 0.0120 

4 96.2616 0.0101 0.0207 

5 96.0725 0.0104 0.0092 
6 96.2358 0.0102 0.0136 

7 96.3934 0.0100 0.0174 

8 96.3579 0.0099 0.0175 

9 96.3920 0.0102 0.0133 

10 96.0847 0.0103 0.0123 

11 96.0049 0.0105 0.0072 

12 96.6805 0.0095 0.0220 

13 96.1143 0.0103 0.0105 

14 96.3225 0.0101 0.0149 

15 96.2642 0.0102 0.0121 
16 96.4237 0.0100 0.0155 

17 96.6048 0.0095 0.0245 

Average 96.2878 0.0101 0.0149 

 

Table 3: Cross-validation results of the predictive probabilistic model. 

Folds 𝑅2 �̃�2 Training RMSE (mm) Testing RMSE (mm) 

1 0.706 0.599 0.0049 0.0019 
2 0.664 0.542 0.0042 0.0131 
3 0.746 0.654 0.0044 0.0092 
4 0.736 0.639 0.0046 0.0052 
5 0.711 0.605 0.0048 0.0055 
6 0.740 0.646 0.0045 0.0099 
7 0.695 0.584 0.0048 0.0050 
8 0.778 0.697 0.0042 0.0112 
9 0.726 0.627 0.0047 0.0060 



10 0.711 0.605 0.0049 0.0028 
11 0.692 0.580 0.0049 0.0021 
12 0.707 0.600 0.0046 0.0087 
13 0.700 0.591 0.0048 0.0017 
14 0.743 0.650 0.0045 0.0086 
15 0.710 0.605 0.0049 0.0005 
16 0.708 0.602 0.0049 0.0032 
17 0.592 0.443 0.0049 0.0029 
Average 0.710 0.604 0.0047 0.0057 

 

5. Combining information from different sources via the normal 

approximation 
OMP has been used successfully in a variety of machining processes to replace hard gauging and improve 

the productivity and capability of the machining process, provided that the machine performs with 

sufficient accuracy and repeatability. It can provide feedback to the machining process to compensate for 

inherent variations, such as tool wear, and verify the process before the machined part is moved. 

However, it provides measurement results with high levels of uncertainties, which can compromise the 

reliability of the inspection process. Depending on the accuracy requirements of an application, 

independent measurements, such as CMM measurements, may be required to supplement this 

inspection strategy.  

 

Consider now a Bayesian information fusion approach to update the probability distribution 𝑝(�̃�|𝓱) of 

the end product quality by incorporating new information from subsequent measurements, such as OMP, 𝒽𝑂𝑀𝑃 ∈ ℋ, as the product is manufactured. A Renishaw OMP60 optical transmission probe with tungsten 

carbide stylus (50 mm overall length) and ruby ball (2 mm ball diameter) was used for OMP. The 

unidirectional repeatability of the OMP60 probe is 1 μm 2σ. A circle was fitted to the OMP data in the 𝑥𝑦-

plane in MATLAB in order to evaluate the diameter of the circular feature of interest from the OMP 

coordinate data. Given a two-dimensional set of 𝘮 data points 𝓟 = {𝓹𝑖 = (𝑥𝑖, 𝑦𝑖)T}1𝘮, with 𝘮 ≥ 𝘯, 

representing a circle specified by parameters 𝒃 = (𝑥0, 𝑦0, 𝑟0)T, where (𝑥0, 𝑦0) is its centre coordinates, 𝑟0 is its radius, and 𝘯 is the number of parameters and thus in this case 𝘯 = 3, the least squares best-fit 

circle is found by solving the optimization problem: 

 

min𝒃 ∑𝑑2(𝓹𝑖, 𝒃)𝘮
𝑖=1 ,  

 

(15) 

 

where 𝑑(𝓹𝑖, 𝒃) = 𝑑𝑖 = √(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2 − 𝑟0 is the (signed) distance from a point 𝓹𝑖  to the 

circle specified by 𝒃, with 𝑑𝑖 > 0 for points outside the circle and 𝑑𝑖 < 0 for points inside it. One of the 

most common approaches in solving this optimization problem is the Gauss-Newton algorithm [51]. This 



algorithm requires the 𝘮 × 𝘯 Jacobian matrix 𝑱 of partial derivatives of 𝑑𝑖  with respect to the parameters 𝒃 [52], [53]: 

 𝜕𝑑𝑖𝜕𝑥0 = − (𝑥𝑖 − 𝑥0)√(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2 

 𝜕𝑑𝑖𝜕𝑦0 = − (𝑦𝑖 − 𝑦0)√(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2 

 𝜕𝑑𝑖𝜕𝑟0 = −1. 

 
 

 

 

 

 

 

 

(16) 

 

Note, for each part/circle, eight points were taken as such a sample size of probing points can provide 

sufficient information on diameter deviation and is practical in order to maintain inspection cycle time 

within desired limits. Let 𝒽𝑂𝑀𝑃 be a single scalar circular feature characteristic (diameter) obtained from 

an OMP inspection cycle with 𝒽𝑂𝑀𝑃 ∈ N(𝜇ℋ , 𝜎ℋ2 ). If the variance 𝜎ℋ2  is a known constant then, the 

likelihood is represented by:  

 𝑝(𝒽𝑂𝑀𝑃|𝜇ℋ) = 1√2𝜋𝜎ℋ exp [ −12𝜎ℋ2 (𝒽𝑂𝑀𝑃 − 𝜇ℋ)2]. (17) 

  

The likelihood, 𝑝(𝒽𝑂𝑀𝑃|𝜇ℋ), considered as a function of the unknown mean parameter 𝜇ℋ = 𝐸(ℋ) of 

the measurand ℋ, is a one-dimensional exponential family and thus, a conjugate prior density for this 

likelihood is the normal density, i.e., 𝜇ℋ~N(𝜇0, 𝜎02). For the fusion process the posterior predictive 

distribution for ℋ̃, 𝑝(�̃�|𝓱), becomes the prior density for 𝜇ℋ, 𝑝(𝜇ℋ), and can be well approximated by 

a normal density as the degrees of freedom of the t-distribution increase. Thus, the prior for 𝜇ℋ  is chosen 

as: 

 𝑝(𝜇ℋ) = 1√2𝜋𝜎0 exp [−12𝜎02 (𝜇ℋ − 𝜇0)2], (18) 

 

where 𝜇0 = �̃�𝞪 and 𝜎02 = 𝑠ℰ2 (𝑰𝓂 + �̃�(𝑿T𝑿)−1�̃�T). The influence of this approximation on the posterior 

inferences decreases as the sample size 𝑝 increases. However, such an approximation may not be accurate 

for small sample sizes. With a conjugate prior density, the posterior density for 𝜇ℋ  is also a normal density 𝜇ℋ|𝒽𝑂𝑀𝑃 , �̃�~N(𝜇1, 𝜎12).  

 



The Bayesian inference results in the posterior mean 𝜇1 being a precision-weighted average of the prior 

mean 𝜇0 and the observed value 𝒽𝑂𝑀𝑃, and the posterior precision (inverse of the variance) 𝜎1−2 being 

the sum of the prior precision 𝜎0−2 and the observation precision 𝜎ℋ−2:  

 𝜇1 = 𝓌𝜇0 + (1 − 𝓌)𝒽𝑂𝑀𝑃 ,     𝜎1−2 = 𝜎0−2 + 𝜎ℋ−2, (19) 

 

where 𝓌 = 𝜎0−2/(𝜎0−2 + 𝜎ℋ−2) ∈ (0,1). If the product is measured on the machine 𝑚𝑂𝑀𝑃 times 

independently, under repeatability conditions then, the joint likelihood is the product of the individual 

likelihoods: 

 𝑝(𝒽1𝑂𝑀𝑃 , … , 𝒽𝑚𝑂𝑀𝑃|𝜇ℋ) = 𝑝(𝒽1𝑂𝑀𝑃|𝜇ℋ) × …× 𝑝(𝒽𝑚𝑂𝑀𝑃|𝜇ℋ) 

 = ∏ 1√2𝜋𝜎ℋ exp [ −12𝜎ℋ2 (𝒽𝑖𝑂𝑀𝑃 − 𝜇ℋ)2]𝑚𝑂𝑀𝑃
𝑖=1 ∝ exp [ −12𝜎ℋ2 ∑ (𝒽𝑖𝑂𝑀𝑃 − 𝜇ℋ)2𝑚𝑂𝑀𝑃

𝑖=1 ]. 
 

 

 

 

(20) 

 

The new measurements based on OMP are subject to both random and systematic effects and are 

considered as the likelihood function that is also Gaussian. Therefore, 𝜇ℋ  has posterior 𝜇ℋ|𝓱𝑂𝑀𝑃, �̃�~N(𝜇𝑚𝑂𝑀𝑃 , 𝜎𝑚𝑂𝑀𝑃2 ) with mean 𝜇𝑚𝑂𝑀𝑃 and precision 𝜎𝑚𝑂𝑀𝑃−2 : 

 

𝜇𝑚𝑂𝑀𝑃 = 𝑚𝑂𝑀𝑃𝜎ℋ−2�̅�𝑂𝑀𝑃 + 𝜎0−2𝜇0𝑚𝑂𝑀𝑃𝜎ℋ−2 + 𝜎0−2 ,     𝜎𝑚𝑂𝑀𝑃−2 = 𝑚𝑂𝑀𝑃𝜎ℋ−2 + 𝜎0−2, (21) 

 

where �̅�𝑂𝑀𝑃 = 1𝑚𝑂𝑀𝑃 ∑ 𝒽𝑖𝑂𝑀𝑃𝑚𝑂𝑀𝑃𝑖=1 . The maximum likelihood estimate of 𝜇ℋ  is simply the sample mean �̅�𝑂𝑀𝑃.  

 

The measurement uncertainty associated with OMP was calculated based on the uncertainty evaluation 

methodology given in ISO 15530-3 [54], which provides an experimental technique for CMM 

measurement uncertainty evaluation with calibrated parts of similar dimension and geometry. 

Measurement uncertainty and measurement error are often mistakenly used interchangeably because 

they are thought to be synonymous. However, this is incorrect since measurement error is the 

measurement result minus the true value of the measurand while measurement uncertainty is an 

attribute of the measurement result, which quantifies the doubt about its validity [55]. Three uncertainty 

contributors were considered to evaluate the uncertainty associated with OMP: i) the standard 

uncertainty, 𝑢(𝑐𝑎𝑙), associated with the uncertainty of the CMM calibration of the master part; ii) the 

standard uncertainty, 𝑢(𝑝), associated with the OMP measurement procedure; and iii)  the standard 

uncertainty, 𝑢(𝑏), associated with the systematic error component, 𝑏 = |�̅� − 𝓎𝑐𝑎𝑙|, of the OMP 



measurement process evaluated using the master part, where �̅� denotes the mean of the measured 

values obtained from OMP and 𝓎𝑐𝑎𝑙 is the CMM calibrated value of the same part and measurand. The 

uncertainty component 𝑢(𝑐𝑎𝑙) brought-in from the calibration of the master part was evaluated by the 

experimental standard deviation of the mean,   𝑠(�̅�𝑐𝑎𝑙) = 𝑠𝓎𝑐𝑎𝑙/√𝑚𝑐𝑎𝑙, using the CMM measurements 

on the master part, where 𝑠𝓎𝑐𝑎𝑙 = √ 1𝑚𝑐𝑎𝑙−1 ∑ (𝓎𝑖𝑐𝑎𝑙 − �̅�𝑐𝑎𝑙)2𝑚𝑐𝑎𝑙𝑖=1  . The uncertainty components, 𝑢(𝑝) and 𝑢(𝑏), were calculated by the experimental standard deviation of the mean using the OMP measurements 

on the test part and master part, respectively. The uncertainty associated with OMP, 𝑢(𝓎), for a coverage 

probability of 68.27% can be given by: 

 𝑢(𝓎) = √𝑢2(𝑐𝑎𝑙) + 𝑢2(𝑝) + 𝑢2(𝑏) + 𝑏. (22) 

 

Table 4 shows the residual values between the Equator (post-process inspection results) and the PCA-

based probabilistic model, the Equator and the OMP, and the Equator and the Bayesian information fusion 

algorithm, obtained from the cross-validation process. MATLAB was used to implement the proposed 

algorithm. Figure 5 shows the prior distribution, likelihood, and posterior distribution of the end product 

quality for a single fold data. The resulting posterior is a normal distribution representing a compromise 

between the new information obtained from OMP and machine learning-based prediction information. 

Conjugacy is an important concept in Bayesian data analysis [56]. If more information is available at a later 

manufacturing stage or time, the present posterior distribution can be used as the new prior distribution 

and the new information can be considered as the new likelihood function. In other words, the posterior 

distribution obtained at manufacturing step 𝒾 acts as a prior distribution at step 𝒾 + 1. The sequential 

nature of Bayesian approach allows us to quantify many sources of information and uncertainties in the 

form of posterior distributions. The fusion is made possible by the assumption of independence in the 

measurement process from which the probability distributions are obtained. Our 100(1 − Ҩ)% posterior 

interval for 𝜇ℋ  is 𝜇𝑚𝑂𝑀𝑃 ± 𝑧 Ҩ2 × 𝜎𝑚𝑂𝑀𝑃, where the 𝑧-value can be found in the standard normal 

distribution table and Ҩ defines the amount of uncertainty and is predetermined. If an estimate 𝑠ℋ2 =1𝑚𝑂𝑀𝑃−1∑ (𝒽𝑖𝑂𝑀𝑃 − �̅�𝑂𝑀𝑃)2𝑚𝑂𝑀𝑃𝑖  of 𝜎ℋ2  is used then, the correct posterior interval for 𝜇ℋ  is 𝜇𝑚𝑂𝑀𝑃 ±𝑡 Ҩ2 × 𝜎𝑚𝑂𝑀𝑃, where similarly the 𝑡-value can be found in the Student’s t-distribution table. Although linear 

models do not have a high precision of predicting the mean value of the health parameter, this can be 

improved with a nonlinear model. The key concept of the proposed method was to introduce the inclusion 

of the uncertainty in the model prediction and how this can be harnessed in improving the estimation of 

the health parameters with additional information. The expression for the uncertainty measure for a 

linear model can be computed efficiently and hence its choice in this research work. As can be seen from 

Table 4, the fused results show good performance in health parameter estimation. The RMSE performance 

metric of the linear model (prior prediction) is 6.7847 μm and that of OMP (likelihood) is 16.9434 μm, 

which is significantly higher compared to the linear model. OMP using TTPs in the machine spindle is 

susceptible to a wide range of uncertainty sources and the main problem with this is that the 

measurement process is not independent of the machining process. The RMSE of the information fusion 

algorithm (posterior prediction) is 6.2875 μm, which is lower than both of that of the linear model and 

OMP, thus demonstrating the value of fusing information from in-process monitoring and inspection data.     



 

 

Table 4: Residuals of the different methods used for obtaining the product health parameters. 

Folds PCA-based probabilistic  
model and Equator (µm) 

OMP and  
Equator (µm) 

Information fusion algorithm  
and Equator (µm) 

1 1.8719 12.4367 3.5299 

2 13.0625 9.7696 12.6638 

3 9.2300 46.2653 1.7815 

4 5.1790 27.8882 8.4883 
5 5.5121 0.8522 4.5178 

6 9.8651 3.5189 8.9802 

7 4.9658 5.0737 4.9825 

8 11.2118 21.2005 12.4572 

9 5.9755 21.1973 1.8981 

10 2.8374 15.9113 4.8916 

11 2.1355 7.1975 0.6584 

12 8.6556 3.2939 7.8811 

13 1.6696 6.2824 2.3780 

14 8.5706 17.4240 4.9172 
15 0.4836 7.3260 0.7457 

16 3.2275 2.1101 3.0508 

17 2.8641 7.5718 3.6269 

Average 5.7246 12.6658 5.1441 

RMSE 6.7847 16.9434 6.2875 

 



 

Figure 5.Prior, likelihood, and posterior distribution for a single fold data. 

 

6. Discussion and conclusions 
Manufacturing processes usually involve a series of operations fraught with several sources of errors. 

Incorporating intelligence in manufacturing systems can help increase production efficiency and reduce 

material waste, environmental impacts, and human intervention in manufacturing operations. Existing 

product health monitoring systems are usually limited to monitoring only the machining process to 

identify the end product quality and do not update their predictions when new metrological information, 

such as On-Machine Measurements (OMMs), becomes available at a later manufacturing stage. This 

paper has been concerned with developing a Bayesian information fusion approach to update the 

probability distribution of the end product quality given new information from On-Machine Probing 

(OMP) inspection data. Bayesian methods offer a natural framework to model uncertainty and combine 

information extracted from different types of data sources. The uncertainty associated with OMP was 

calculated following the uncertainty evaluation methodology given in ISO 15530-3. Prior knowledge about 

the product condition was obtained from a linear probabilistic model, but other machine learning models, 

such as Artificial Neural Networks (ANNs), can be developed to predict the dimensional metrology 

characteristics of interest. The posterior distribution marrying the new information obtained from OMP 

with machine learning-based prediction information clearly represents a compromise between the two 

sources of information.  

 



The proposed methods have some limitations. The use of a linear model to capture the relationship 

between post-process inspection and in-process monitoring data can be improved upon by a nonlinear 

model that has the flexibility of representing more complex relationships [57]. The approximation of the 

probability distributions as Gaussians is also somewhat limiting. If extensive data are available, then these 

distributions can be more accurately represented by nonparametric methods. This in turn will require 

more computationally involved Bayesian inference algorithms, such as the use of sampling methods to 

compute the posterior probability distributions [18], [19]. Finally, the choice of the health parameter 

estimate may also require a robust estimate from the non-Gaussian posterior distribution.  

 

The Bayesian fusion method proposed to predict an improved health parameter estimate introduces a 

novel means to include in-process inspection data with the in-process monitoring data. The approach has 

been demonstrated through a case study involving multiple manufacturing stages. The methods proposed 

here are generic to other processes, such as in the case of additional sensors included for inspection of 

the products as distinct from the process monitoring system. Industry 4.0 is driving this transformation in 

which more sensors are added, and intelligent decisions are made to increase throughput and avoid highly 

costly and time-consuming accurate inspection processes taking place in controlled environments. Future 

work will look to apply the proposed method to laser welding and additive manufacturing processes.  
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