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ABSTRACT  

Our lives depend on an incredibly small number of cereal species whose grain provides more calories 

to our diet than any other source. The extraordinary productivity of cultivated cereals reflects 

millennia of selection, recent directed breeding, and modern agricultural practices. Here, we examine 

selected architectural and agronomic features of major cereal body parts: leaf, branch, inflorescence, 

stem and root; and discuss how their manipulation enhanced crop performance. Highlighting 

synergistic research across laboratory models and field-based systems, we consider how diversified 

molecular circuitry, novel regulators and conserved components of genetic, hormonal and molecular 

mechanisms control cereal architecture. Lastly, we emphasise the agricultural importance of 

developmental decisions during cereal growth and propose future perspectives for robust 

architectural improvement, made ever more urgent by our accelerating climate crisis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 INTRODUCTION 
 

Variation within wild grass species provided fertile ground to domesticate cereals. Ancient farmers 

selected variants which were easy to grow and harvest and whose grain stored well. Further selection, 

hybridisation and expansion gradually transformed cereals into predictable food sources for early 

agrarian societies, and our most productive cereals, maize (Zea mays ssp. mays), rice (Oryza sativa), 

barley (Hordeum vulgare ssp. vulgare), wheat (Triticum aestivum), and sorghum (Sorghum bicolor), 

still provide most of our calories today (90, 190). Selection for beneficial architectural variation was 

key to this process, and continues in modern breeding (76, 96, 319, 375). For instance, shorter, stiffer 

stems protect top-heavy cereals from falling over while apically dominant canopies allow for increased 

stand density. However, our understanding of the genetic and developmental networks controlling 

architecture in grasses is patchy. Directly relating well-studied architectural regulatory networks in the 

dicot model plant Arabidopsis to distantly-related and architecturally distinct grasses is challenging. 

To address a rising global population and pressures on land use, coupled with our climate crisis, cereal 

yield must rapidly increase under more variable conditions (113), making it imperative to understand 

architectural decisions in cereals and how to manipulate them for crop improvement. 

1.1 Cereal architecture and phytomeric structure 

All plants, including cereals, build their bodies from growing shoot and root tips. Above ground, the 

shoot tip sequentially adds body units or ‘phytomers’ (29, 389). The morphological nature of phytomer 

components varies by species and by developmental phase, the latter broadly moving from vegetative 

to reproductive, so that plant architecture represents an interplay between species-specific features 

and coordinated identity shifts over time.   

The typical vegetative phytomer has a leaf-bearing node, an axillary bud within the leaf-node axil, and 

an underlying internode (Figure 1.1). In grasses, vegetative phytomers arrange in alternate, opposite 

positions along the main stem axis. Cereals leaves have basal sheaths and distal leaf blades separated 

by a boundary hinge or ligular region. The sheath provides structural support by wrapping around the 

adjacent internode, while the ligular region allows the leaf blade to bend outward, controlling the 

adaxial area available for photosynthetic light capture, with the abaxial surfaces of the blade and 

sheath contributing to gas exchange (302). Since stem internodes do not elongate prior to flowering, 

the vegetative seedling resembles a compressed nodal stack enshrouded by leaf sheaths. Basal-most 

axillary buds above the soil at ‘crown’ level can grow into tillers that reiterate the main shoot 

developmental pattern. <Figure 1.1 near here> 



At the vegetative to reproduction transition, the apex shifts from producing leaves to making a 

flowering stalk or inflorescence (Figure 1.2). The inflorescence generates reproductive phytomers 

whose axillary buds can directly form spikelets, the basic reproductive unit of grasses, or undergo 

rounds of branching before spikelet formation. Variation in inflorescence branching underlies diverse 

inflorescence architectures in grasses, from the compressed spikes or ears of the Triticaceae to the 

highly branched panicles of rice. The spikelet itself is a mini inflorescence, flanked by subtending 

glumes, that generates one or more floret buds (160). Since each fertile floret can generate one grain 

kernel, the number of fertile florets per inflorescence branch, the number of inflorescence branches, 

and number of tillers with productive inflorescences all contribute to a plant’s the grain-bearing 

potential. During inflorescence development, vegetative internodes above the basal tiller dramatically 

elongate while their axillary buds remain dormant, forming an unbranched, elongated stalk. 

Elongation of the final or ‘peduncle’ internode pushes the inflorescence out of the final ‘flag’ leaf 

sheath, an event called heading. Timing and the extent of stem growth as well as photosynthate 

accumulation and transport, planting density and resource allocation all influence yield (307).  <Figure 

1.2 near here> 

Breeders match suites of beneficial variants in reproductive and vegetative architectural features 

(ideotypes) to growing conditions and downstream end use (78). Breeding for single genes and/or 

traits is challenging since individual factors often have both direct and indirect impacts on grain size, 

number and quality, which can interact, sometimes antagonistically (32, 325, 326, 385, 392, 402). 

Defining the regulatory modules and interacting pathways that control architecture over time can help 

dissect these pleiotropic effects.  

2. Leaves 
Selecting beneficial variation in cereal leaf architecture can improve crop performance (124, 198, 240). 

For instance, larger, erect leaves more efficiently collect light and increase yield in dense plantings 

(329, 388) while increasing photosynthetic capacity may help sustainably meet projected yield 

demands (97, 222, 276, 295, 434). Here, we focus on the development and manipulation of gross leaf 

architecture traits such as sheath to blade ratio, width, length and angle (219); readers are directly 

elsewhere for discussions of leaf anatomy, metabolism, senescence and vascular patterning (97, 327, 

434).  

Leaves develop through cell division, expansion and differentiation along proximodistal (tip to base), 

mediolateral (middle-to-edge), and adaxial–abaxial (top-bottom) axes (310). Normally Class I 

KNOTTED-LIKE HOMEOBOX (KNOX) meristem identity genes, such as knotted1 (kn1) of maize or ORYZA 

SATIVA HOMEOBOX 1 (OSH1) of rice (142, 241, 271) promote proliferation in the meristem by 



enhancing cytokinin and restricting gibberellin biosynthesis (117, 145, 411) and through antagonising 

expression of differentiation-associated genes (34). Leaf primordia are marked by encircling straps of 

peripheral cell initials whose high auxin levels downregulate KNOX genes. Each primordium’s initials 

bulge off to form an early leaf blade that grows over the shoot apex as proliferation in the basal 

primordium displaces expanding cells upward (266, 321). The lower part of the primordium strap is 

made up of an upper region that forms the leaf sheath, and a lower region forming the node, the 

subjacent internode and the axillary bud of the underlying leaf (152, 160, 310). KNOX genes also act 

as proximal identity factors (94, 95, 330) which are restricted in growing leaf blades by leaf MYB and 

LATERAL ORGAN BOUNDARY (LOB) transcription factors, an event facilitated by auxin and chromatin 

modifications (24, 111, 205, 211, 226, 282, 314, 315, 318, 351, 357, 367). Boundary, KNOX and KNOX 

co-factor genes are redeployed at the sheath-blade boundary to specify the ligular region (153) which 

develops a prominent midrib (central vein) and two boundary organs: an adaxial epidermal flap called 

the ligule and thickened boundary wedges called auricles (160). The leaf blade differentiates first, 

followed by the sheath and internode whose later elongation elevates the blade into the canopy as 

the blade unfurls to tilt outward (Figure 1.1, 1.2). Cereal leaf architecture appears controlled by mostly 

small effect genetic variants while mutant studies indicate a complex interplay of genetics and 

hormonal signalling regulate multiple features such as leaf angle, discussed below. 

2.1 Leaf angle 

The leaf angle (LA) between the leaf midrib and the stem (Figure 1.1) determine whether cereal 

canopy architecture is wide and open or dense and narrow, thereby influencing light penetration, 

capture and saturation as well as neighbour competition. More upright leaves improve vertical 

distribution of light through the canopy, increasing both photosynthetic efficiency and possible 

planting density, leading to strong selection for variants with smaller LA, especially in high-yielding 

maize and rice (11, 85, 87, 233, 253, 303, 329).  

While mechanical strength of the blade and ligular tissues can impact LA (270), morphological 

variation of the auricle  and ligule primarily controls LA (177, 239, 296). The boundary promotes 

bending since loss of ligules and auricles, such as in the maize liguleless1 (lg1) mutants, lead to upright 

leaves and more grain (278). LG1 encodes a SQUAMOSA PROMOTER-BINDING-LIKE (SPL) transcription 

factor whose orthologs specify and position the boundary in maize, wheat and rice by influencing  

auxin distribution and KNOX gene expression (18, 153, 185, 188, 216, 255–257, 421). Increased adaxial 

versus abaxial cell elongation in the ligule determines the extent of leaf bending, an event promoted 

by BRASSINAZOLE RESISTANT1 (BZR1), BRASSINOSTEROID-RESPONSIVE LEAF ANGLE REGULATOR 1 

(BLR1) and other factors downstream of brassinosteroid (BR) (15, 37, 38, 48, 73, 143, 303, 346, 410, 



422). Other hormones, such as GA and auxin, also regulate LA, often by cross talk with BR (203, 227, 

239), while other regulatory genes control LA via this hormonal network. For example, moderate 

overexpression of the indeterminate domain protein LOOSE PLANT ARCHITECTURE 1 (LPA1) reduces 

tiller and leaf angle by suppressing auxin-BR cross talk (215, 397) which allows increased planting 

density without decreasing tiller number or seed weight (343). Quantitative trait loci (QTL) in maize, 

rice, wheat and sorghum demonstrate the importance of ligular developmental regulators to LA in the 

field (139, 192, 217, 245, 340, 355, 364). The maize x teosinte Upright Plant Architecture2 (UPA2) QTL 

is a teosinte-derived regulatory SNP which reduces LG1 activation of ZmRAVL1, a gene promoting BR 

biosynthesis, thus reducing BR content and leaf angle in teosinte (356). This teosinte UPA2 allele was 

lost during domestication, but increased yield under dense planting when re-introduced into elite 

hybrid maize (356), showcasing that wild alleles, potentially deleterious during initial cultivation, can 

be advantageous under modern agricultural practices. Interestingly, strigalactones (SL), a root-derived 

hormone, reduce LA in rice under nutrient deficiency (324), potentially explaining nitrogen-dependent 

increases in LA (229). These examples suggest that targeting hormonal cross-talk and appreciating the 

interaction between LA and agronomic practices may help manipulate LA for crop improvement. 

2.2 Leaf blade to sheath ratio 

Erect leaves may be most beneficial higher up (222, 239, 434), leading to the concept of ‘smart 

canopies’ which spatially optimise metabolism and architecture (276). Since the shoot meristem 

generates leaves in sequence, understanding how leaf maturation changes in successive phytomers 

may help tailor canopy architecture. For instance, the sheath to blade ratio in rice declines over time, 

thus influencing the blade area available for light capture, a trend recently shown to reflect the 

progressive reduction in expression of three BLADE-ON-PETIOLE (BOP) genes (360) which encode BTB-

POZ-ANKYRIN transcription factors regulating proximal and boundary tissues in monocot and dicot 

leaves (120, 235, 244, 349, 361). Spatiotemporal regulation of OsBOPs in the rice leaf act downstream 

of the deeply-conserved phase change pathway mediated by miR156 antagonism of SPL transcription 

factors (132, 361, 379), emphasising how heterochronic shifts in developmental events influence 

agronomic traits, a consistent theme in agronomic improvement (379).  

2.3 Leaf size  

Larger leaves were selected during domestication (249, 289). Many genes link leaf biomass and grain 

size, but microRNA miR396, GROWTH REGULATING FACTORS (GRFs) and GRF-INTERACTING FACTORS 

(GIFs) stand out as a central circuit regulating cell cycle and differentiation potential during 

organogenesis (165, 208). Loss of function grf or gif mutants have more narrow and smaller leaves, 



stems and grain while gain of function mutants show enlarged organs and grain  (118, 201, 223, 323, 

419). Major alterations to this circuit have limited agronomic potential, but small modulations of the 

interaction between miR1396 and GRF transcripts appear beneficial and were selected during maize 

and rice cultivation (208). For instance, a dominant rice QTL for grain size, GRAIN SIZE of 

CHROMOSOME2 (GS2), resulting from variation within OsGRF4 that disrupts miR396-mediated 

degradation, increases seed size and weight, enlarges leaves and accelerates germination without 

major changes to plant height or inflorescence structure (43, 84). Importantly, GS2 is a rare allele with 

potential in current germplasm, as demonstrated for another OsGRF4 allele with altered miR396 

regulation (126). 

Leaf size incorporates different variables including leaf length, width and area.  Kinematic analyses in 

maize revealed that leaf basal division zone size increases leaf elongation rate and duration, and thus 

final leaf length (266, 267). Spatial regulation of GA metabolism plays a central role in regulating 

division zone size, as well as transcriptional circuits, including miR319-GRF-GIFs, hormonal cross-talk 

and light interception (59, 265, 323, 348). In addition, the PLASTOCHRON1 (ZmPLA1) gene functions 

to lengthen the proliferative and elongation phases of leaf growth which correlates with seedling 

vigour, biomass and grain yield (345), another example of heterochronic control of agronomic traits. 

Lateral cells recruited early in leaf development by WUSCHEL HOMEOBOXs (WOXs) proliferate and 

expand to widen the leaf blade and sheath in multiple grasses (46, 138, 263, 264, 312, 313, 416). WOXs 

also likely repress YABBY (YAB) genes important for boundary and mid-rib formation (56, 260, 409), 

and underlie QTL controlling LA and internode length as well as leaf width in maize (340). Regulatory 

pathways within the primordium also regulate growth along the lateral axis, such as BROAD LEAF1 

(BL1) which controls lateral proliferation of cell files to influence final leaf width in barley (155).   

2.4 Leaf surfaces 

Opposing adaxial and abaxial leaf identities drive the marginal proliferation necessary to form the 

smooth, flat leaf lamina (189, 373). HD-ZIP transcription factors conferring adaxial identity and KANADI 

transcription factors conferring abaxial identity also regulate leaf blade rolling (140, 420) which occurs 

in grasses due to shrinkage of ‘bulliform’ cells on the adaxial blade epidermis. Other factors, including 

BR and auxin, control the extent of leaf rolling by regulating bulliform specialisation, polar distribution 

and size as well as leaf thickness (88, 141, 144, 164, 399, 406, 420). Moderate leaf rolling in rice 

supports high yields by enhancing photosynthesis and upright posture (396), although variation in 

drought-induced leaf rolling may not always be related to bulliform size or number (35). Leaf rolling 



in wheat may improve water use under drought (331), with suggestions of genetic conservation with 

rice (371).  

2.5 Leaf perspectives  

As primary producers, leaves are key to crop productivity. Forward, reverse and association genetic 

approaches will continue to reveal additional genes and signalling pathways involved in leaf 

architecture which may be mobilised to improve crop performance. Single cell RNA sequencing 

provides a highly resolved view of the cell identities and developmental trajectories of complex 

tissues. Applied to the leaf, this approach is complimentary to genetic approaches and may  point to 

additional regulatory functions important for leaf development and emergence, as recently shown for 

maize (311). 

 

3 Tillers 
Domestication and breeding of barley, wheat and rice produced low and synchronous tillering 

cultivars, aiding grain harvest. However, the semi-dwarf plants of the Green Revolution show 

increased tiller number (119, 128, 207, 280) while fertilizers such as Nitrogen (N) and Phosphorus (P) 

can also increase tillering (17, 44, 297, 387). Fertilisers come with negative environmental impacts, 

including water contamination (4, 247, 425) and global P shortages may limit P-fertilizer use in the 

future (4). As such, understanding how endogenous molecular and genetic pathways control resource 

allocation, tillering and plant architecture will help to sustainably optimize cereal yield. 

3.1 Tiller Angle  

Tiller angle, defined as the angle between the main stem (culm) and tillers (Figure 1.2), has significant 

agronomic implications. Crops with excessively wide tiller angle occupy too much space, easily lodge 

and shade themselves and each other, yet overly compact plants inefficiently capture light. So, optimal 

tiller number and angle maximizes photosynthetic efficiency and yield. In rice, mutations in the 

PROSTRATE GROWTH1, encoding a C2-H2 zinc-finger transcription factor, were selected during 

domestication and lead to more erect growth and increased yield (127, 398) as was reduced 

expression of the TCP transcription factor TILLER INCLINED GROWTH 1 (TIG1) gene (424). While erect 

growth is a common outcome from selective breeding, compact forms can also increase susceptibility 

to humidity-related diseases, suggesting that other factors must be considered when breeding for an 

ideal tiller angle. For example, pyramiding QTLs for disease resistance and wider tiller angle can 

enhance sheath blight (SB) resistance in rice (438). Dynamic tiller growth where plants show prostrate 



growth at tillering stage but decrease tiller angle later on, is an appealing trait to balance benefits and 

costs of erect tiller angle. Dynamic tiller growth allows for a larger area for photosynthetic 

accumulation and competition with weeds (68), and may help adapt winter wheat where snow 

covering prostrate plants protects against freezing (134). In agreement, barley dynamic tillering locus 

V-V-HD only exhibits a prostrate growth habit when sown in winter (431).  

Tiller angle is determined by redistribution of auxin signals involved in shoot gravitropism pathways, 

and accordingly, genes regulating auxin transport control tiller angle in rice (45, 116, 199). For 

example, modulating polar auxin transport (PAT) by suppressing auxin efflux transporters PIN-

FORMED 1a (PIN1a) or enhancing PIN2 increases tiller angle (45, 405) while LAZY1 (LA1) directly 

enhances PAT to widen tiller angle (150, 154, 414, 423, 433). Overexpression of OsBRXL4, a member 

of the plant-specific Brevis Radix (BRX), widens tiller angle by promoting  the nuclear localization of 

LA1, essential for its function (206). Amino acid substitutions in two conserved residues in the 

Arabidopsis LA1 ortholog switched shoot gravitropism from negative (upward bending) to positive 

(downward bending)(415), highlighting LA1 mechanisms and potential rational engineering of 

conserved regions of LA1 to control tiller angle. Besides LA1, three QTL loci in rice, TILLER ANGLE 

CONTROL1 (TAC1), TAC3 and D2, also control tiller angle and were selected during japonica 

domestication (79). In addition, starch-deficient mutants with defective ADP-glucose 

pyrophosphorylase (AGP; OsAGPL1) activity and loci involved in SL also alter tiller angle (275, 309).  

Overall, these studies suggest that tiller angle is a complex trait which should be further explored in 

different agronomic environments.  

3.2 Tiller number  

Since each leaf normally develops one axillary meristem, tiller number reflects the number of basal 

leaves on the primary stem giving rise to secondary shoots, which themselves can produce tertiary 

shoots. The decision for the bud to grow out or not is environmentally influenced and regulated 

through sugar availability and hormone signaling, with resource-limited conditions associated with 

bud dormancy. Several tillering mutants exhibit a higher number of fast-outgrowing leaves or fail to 

suppress outgrowing bracts (41, 252, 284, 374, 382) while variation in genes involved in auxin 

transport, BR, GA and SL pathways influence tiller outgrowth (7, 8, 74, 101, 133, 137, 159, 246, 320, 

378, 405). Initiation and outgrowth of tillers is thus controlled by complex regulatory networks that 

respond to internal hormonal and environmental cues to control axillary meristem and bud fate. 

Tillers form over three steps: axillary meristem initiation, axillary bud formation and bud outgrowth. 

In Arabidopsis, KNOX genes and genes encoding plant-specific GRAS family of transcription factors 



such as LATERAL SUPPRESSOR (LAS) maintain meristematic potential during axillary meristem 

initiation (109). These appear partly conserved in cereals: for instance, loss of MONOCULM1 (MOC1), 

the rice ortholog of LAS, leads to dwarf, single stemmed rice plants due to a failure to form axillary 

buds, suggesting that MOC1 promotes both axillary meristem initiation and height (109, 202). The 

DELLA protein SLENDER RICE 1 (SLR1) protects MOC1 from degradation while GA promotes the 

degradation of SLR1, explaining why semi-dwarf rice cultivars of the Green Revolution show increased 

tiller number (207). MOC1 targets key branching genes including SHORT INTERNODES (OsSHI) 

encoding a zinc finger transcription factor and the rice orthologue of the master branching suppressor 

overexpressed in modern maize  – the TCP transcription factor TEOSINTE BRANCHED1 (TB1) (75, 341, 

383). Inhibition of bud outgrowth by TB1 appears highly conserved, including in Arabidopsis (2), rice 

(FC1/OsTB1) (347), barley (VULGARE SIX-ROWED (VRS) 5) (290), wheat (70) and sorghum (SbTB1) 

(158). A duplicated TB1 ortholog in rice, OsTB2, promotes tillering, potentially through OsTB1-OsTB2 

physical interaction, and OsTB2 variants increasing tiller number were selected during upland rice 

adaptation (231), exemplifying how close relatives of known tillering genes expand the allelic arsenal 

regulating this trait. 

External, resource and long-distance signals from the shoot (auxin) and root (SL) are integrated by TB1 

to control tillering (2, 28, 42, 81, 89, 157, 158, 339, 369, 377, 428). Besides MOC1, other upstream 

regulators of TB1 include Ideal Plant Architecture 1 (IPA1), a SPL transcription factor, which directly 

binds to the OsTB1 promoter to suppress tillering (224). Disrupted miR156 recognition elevates IPA1 

function and leads to increased lodging resistance and grain yield (149, 251). The rice CIRCADIAN 

CLOCK ASSOCIATED1 (OsCCA1) also represses tiller bud outgrowth through positive regulation of both 

OsTB1, IPA1, and the SL receptor DWARF14 (377) while SL signalling promotes TB1 expression by 

regulating degradation of DWARF53 (D53), the rice orthologue of the Arabidopsis MORE AXILLARY 

GROWTH 2 (MAX2) (358) which can also directly interact to disrupt IPA1 transactivation (335).  In 

contrast, BR signalling promotes tillering in rice through downstream transcription factors, including 

OsBZR1, which negatively regulates OsTB1 while bound by D53 (89). Since SL induces the degradation 

of D53-OsBZR1, SL and BR signalling appear to antagonistically regulate OsTB1, and thus tillering, by 

modulating protein stability.  

3.3 Tiller perspectives 

Variation in TB1 and its orthologs were selected during cultivation of barley, rice, wheat, and maize 

(70, 131, 341, 347), but downstream targets of TB1 also played key roles. For instance, TB1 directly 

regulates the TASSELS REPLACE UPPER EARS1 (TRU1) gene, encoding a BOP protein, which was directly 

selected and overexpressed in modern maize (80). Interestingly, one of barley’s two BOP genes, called 



HvUNICULM4, acts at axil and leaf boundary regions to control axillary bud differentiation (349) 

although its relationship with barley TB1 (VRS5) is little explored. Similarly,  grassy tillers1, another 

downstream target of TB1 likely selected in modern maize, encodes a HOX1 gene necessary suppress 

bud outgrowth under shaded conditions, a regulatory relationship conserved between maize, 

sorghum and rice, although potentially via different photoreceptors (180, 391). These studies show 

that regulatory networks underlying master branching regulators, such as TB1, can represent 

important agronomic targets, especially given high stand densities of modern farming. 

 

4 Flowering time   
The primary shoot apex and tiller buds integrate innate developmental signals with environmental 

input to flower. Core gene domains and families regulating the vegetative to reproductive transition 

in cereals show some conservation with Arabidopsis but many molecular components appear less 

conserved. For instance, unlike Arabidopsis, cereals regulate flowering in separate stages from the 

control of vegetative to floral transition, the rate of development through intermediate stages and/or 

the time to heading. Since each of these stages influences final architecture, variation in flowering 

signals and networks played major roles in domestication, inflorescence diversification and in current 

productivity and projected yield in different climates.  

4.1 Vegetative to reproductive development 

The vegetative to reproductive transition is normally coordinated by environmental and seasonal 

changes (Fig 3A); however, many cereal varieties show spring and /or photoperiod insensitive growth 

habits without tight environmental regulation and cease leaf production earlier relative to the winter/ 

photoperiod sensitive varieties. While reduced vegetative biomass reduces yield potential, 

accelerated ‘spring’ flowering is adaptive in harsh conditions (freezing, drought, high-temperature 

stress) shorten the growing season, and enables the expansion of wheat and barley cultivation. Cereals 

use partial or direct counterparts of flowering pathways best known in Arabidopsis, including age, 

vernalization, photoperiod and gibberellin pathways, but are classified differently.  

4.2 Vernalization pathway 

Cereals such as wheat and barley use vernalization to delay flowering until after the cold winters 

typical of temperate climates. Accordingly, this pathway seems absent in tropical cereals (e.g. maize 

and rice) although homologues of vernalization genes have developmental roles (394). The 

vernalization pathway, using hexaploid wheat gene names as the example (Figure 4.1), centres around 



a MADS-box transcription factor gene called VERNALIZATION 1 (VRN1) (362) whose expression is low 

during autumn, and the grass-specific VERNALIZATION 2 (VRN2) loci, comprising two genes, ZCCT1 and 

ZCCT2 (220). With the arrival of cold temperatures and short days (SDs), the normally long day (LD) 

activated expression of VRN2 decreases while VRN1 expression increases. VRN1 then activates the 

expression of VERNALIZATION 3 (VRN3) (also called FLOWERING LOCUS T –like 1 (FT-1)), (65) whose 

protein likely moves to the apex where it orchestrates the transition, as in Arabidopsis and rice (54). 

Allelic variation in all these genes shows strong signatures of selection and contributes to variation in 

the duration and optimal temperatures of vernalization. For instance, dominant mutations in VRN1’s 

promoter or intron 1 that increase VRN1 expression, weaken low temperature requirements and 

produce a spring habit. In diploid and tetraploid wheat, null mutations in VRN2 also remove the 

vernalization requirement, as does overexpression of VRN3 (FT1) (228).  Additional genes are involved 

but their interaction in the pathway is unclear. For further vernalization pathway details please see 

Temperature Control of Plant Development (272). <Figure 4.1 near here> 

Temperature directly regulates VRN1 at multiple levels, akin to vernalisation pathways in Arabidopsis 

(21): before cold exposure, GLYCINE RICH RNA-BINDING PROTEIN 2 (GRP2), an RNA-binding protein, 

binds and inhibits accumulation of VRN1 mRNA but vernalization-dependent modifications on GRP2, 

recognised by VERNALIZATION-RELATED 2, interferes with this binding (400). SNPs in the GRP2 binding 

site of VRN-A1 vary the vernalization requirement (166), suggesting possible breeding values. 

Characterising more loci may help fine-tune the vernalization response to slow development under 

warmer climates, accelerate it following colder winters, and provide intermediate requirements in 

extremely variable winter temperatures. 

4.3 Photoperiod pathway 

The photoperiod pathway in cereals is also adaptive and directed by selection. Wheat and barley are 

ancestral LD plants, requiring long photoperiods to trigger flowering, whereas rice is a SD plant, 

requiring less than 13.5 h of daylight to trigger flowering. Similar to the vernalization pathway, the 

photoperiod pathway works through a single gene, PHOTOPERIOD 1 (PPD1) whose expression is 

regulated by light, via PHYTOCHROME C (PHYC), and the circadian clock (322). Mutations in this 

pathway alter flowering time in crops: for instance, tetraploid wheat lacking PHYC flower much later 

under long-days (Chen et al 2014) whilst mutations in the PPD-D1 promoter of hexaploid wheat 

change its circadian regulation resulting in a photoperiod-insensitive vegetative to reproductive 

transition (20, 322, 366). CONSTANS-like (CO-like) genes also contribute to photoperiod regulation in 

wheat and barley, although not to the same extent as in Arabidopsis (214). Additionally, PPD2 

(suggested to be FT3) predominantly functions in SD regulation in barley and wheat (115, 182, 436) 



while HvFT3/ PPD2-H2 alleles in barley promote flowering even without full vernalization, an adaptive 

advantage under Mediterranean-like conditions (39). Furthermore, HvFT3 has a role regulating 

spikelet initiation (258)(discussed in 5.1). Taken together, combining the major growth response 

alleles, such as PPD1 and VRN1, with minor genetic loci may help fine-tune adaptation both of 

flowering time and floral architecture to specific climates. 

In rice, SDs promote flowering using a similar genetic framework with a CO-like gene HEADING DATE 

1 (HD1) regulating FT-like HEADING DATE 3A (HD3A) and RICE FLOWERING LOCUS T 1 (RFT1) gene 

expression. Interestingly the CCT-domain protein in rice most similar to VRN2 (wheat) and GHD7 

(barley), OsEARLY FLOWERING 3, activates expression of a rice-specific protein EHD1 under SDs and 

represses OsGHD7 under LDs (427). Exploiting these genes, and additional LD-promoting loci (342) 

could expand rice cultivation to more northern regions. Modulating photoperiod, along with 

vernalization, requirements could help adjust cereal cultivation according to new climate patterns. 

4.4 Timing of emergence  

In contrast to the rapid vegetative to floral switch in Arabidopsis, the transition in cereals can occur 

weeks or even months before heading, with intermediate steps differentially regulated. For instance, 

many cereals undergo the floral transition under SDs, but require inductive LDs for the inflorescence 

to emerge, as in barley where florets initiated under SD ultimately abort without LD conditions (69). 

Of the many emergence time QTLs identified in cereals, some are also vegetative to floral transition 

QTLs, such as VRN1 and PPD1, which could reflect indirect effects on emergence caused by earlier 

transition delays and/or that the same genes regulate both transition and emergence. The second 

hypothesis is better supported, not only by VRN1 (193) but also by the EARLY MATURITY LOCUS 8  

(HvEAM8) where selection for impaired function accelerates the floral transition and emergence 

under SDs and LDs irrespective of the PPD1 allele, enabling photoperiod insensitive flowering in 

temperate regions (5, 92, 418, 436).  

4.5 Flowering time perspectives  

Compared to Arabidopsis, monocots have a vastly expanded FT-like gene family with some members 

showing species-specific regulation (107, 115, 258, 283) as in the temperate grass-specific miR5200 

mediated photoperiodic control of two FTs (FT1 and FT2) (242, 395). Defining FT-like gene function, 

their interactions and environmental regulation may help understand the functional consequences of 

allelic variation and expand their agronomic use.  Variation in CENTRORADIALIS (HvCEN), a member 

of PEBP-family containing the FT genes, and orthologous to the flowering repressor and FT-antagonist 

TERMINAL FLOWER1 (TFL1), correlates with the expansion of the cultivation range of spring barley 



(53, 156, 173). Mutations in HvCEN accelerate progression through spikelet initiation, decreasing 

spikelet number but only under LD, potentially due to released HvCEN antagonism of FT1 (22). New 

work in rice also supports that TFL1 competes with FT1 for binding sites in 14-3-3 proteins  to control 

both flowering time and spikelet and panicle branch number (156). FT1 also affects the number of 

fertile spikelets in barley and wheat by modifying the rate and duration of spikelet initiation (23, 69), 

while increased dosage of TaTB1 promotes paired spikelet formation in wheat by directly interacting 

FT1 to delay inflorescence development (70). Thus, beyond their roles in flowering time, FT-like genes 

represent important targets for modulating phases of inflorescence development before spikelet fate, 

thereby influencing important yield components, including branch, spikelet and floret number, a role 

likely relevant in the field, as shown by PPD1 regulation of spikelet number via TaFT2 (107). Defining 

how FT-like proteins interact with other factors regulating inflorescence meristem behaviour, 

discussed in the next section, will further add to the complex regulatory networks controlling 

developmental timing.  

 

5 Inflorescences 

While cereal leaf morphology is broadly conserved, cereal inflorescences are remarkably diverse, 

reflecting differences in branching, meristem identity and fertility (26). In the Triticeae, such as wheat, 

barley and rye, rows of axillary meristems are initiated which almost immediately acquire spikelet 

meristem identity, forming single, unbranched spikes lined with pedicellate spikelets. However, 

axillary meristems in most cereals undergo rounds of branching before terminating in a spikelet 

meristem, as in the looser panicles of rice and oats, or develop into a specialised branching meristem 

such as the spikelet paired meristems (SPMs) in panicoid grasses such as sorghum, millet and maize, 

the latter also producing separate male and female inflorescences (Figure 5.1). Since branching 

normally stops when axillary meristems acquire spikelet fate and the potential to produce florets, 

branching decisions are linked with inflorescence productivity, as are floret number and fertility (104, 

106, 179, 292, 307, 376). Here, we discuss recent advances of fundamental and agricultural 

significance.  <Figure 5.1 near here> 

5.1 Inflorescence meristems and branching 

Mutant studies indicate that the size of the shoot apex influences branching potential. Across plants, 

disruptions in CLAVATA/EMBRYO SURRONDING REGION-like (CLE) mobile peptide signalling cascades 

that normally restrict meristem size by inhibiting WUSCHEL-HOMEOBOX-like (WOX) gene expression, 

lead to enlarged shoot tips with extra branching (27). The interplay between size and branching 

appears deeply conserved (170, 332) although expansion of CLE and WOX gene families in grasses, 



coupled with functional studies in maize, millet and rice, suggests distinctive molecular circuitries (27, 

386, 407, 432). Excitingly, existing and engineered variation in CLE-based signaling can increase 

inflorescence branch number (and yield potential) in cereals (25, 146, 363, 432) as shown by 

promoter-editing generation of weak CLE alleles in maize (218). Other components also influence 

meristem size and grain potential, such as the heterotrimeric G-proteins (368): the dense panicle1 QTL 

exploited in rice  results from an impaired function Gγ subunit allele which enlarges the inflorescence 

meristem and produces more grain (129, 404). Heterotrimeric G-proteins interact with CLV signalling 

and cytokinin metabolism to regulate meristematic activity and control panicle branching and grain 

number in rice (9, 181, 368).  In addition, the GRF transcription factors which regulate leaf size (section 

1.3.3) also increase axillary meristem size, branch and spikelet number (103).  

Besides pathways controlling meristem size, other regulatory players also influence meristem 

branching. One of the best understood is the maize ramosa (ra) pathway where regulatory cascades 

involving three major genes RA1-3 modulate KNOX to establish determinate spikelet identity and 

restrict branching (86, 100). While RA1 and RA3 appear specific to panicoids, RA2 orthologs, which 

encode LATERAL ORGAN BOUNDARY (LOB) transcription factors, suppress branching in other cereals, 

including barley where HvRA2, called VRS4, works to maintain the unbranched spike form (178, 439). 

Strikingly, both maize and barley RA2 control TCP transcription factors, including TB1 orthologs, whose 

impaired function also leads to branching (13, 58, 284, 286). In fact, suppression of inflorescence 

branching by TB1 orthologs appears well conserved in maize, rice, barley and wheat (70, 131, 157, 

290, 347) as is the specification of spikelet versus branching identity via the boundary-expressed 

APETALA2-ERF FRIZZY PANICLE (FZY) factors (49, 66, 71, 72, 130, 175, 285, 317). Quantitative variation 

upstream from the rice FZY locus represses FZY expression via BZR1, causing delayed spikelet fate, 

prolonged branching identity and substantial increases in yield, another example of phase timing 

modulating crop productivity (16), while another QTL in a distal FZY promoter reduces FZY expression 

and increases branch and grain number (384). Selection of variation in expression of FZY and CLE 

variation suggests a promising strategy to directly engineer yield, and point to boundary areas around 

axillary meristems as potential organising centres coordinating meristem fate and influencing yield 

components (27). For instance, defective BR boundary accumulation in sorghum lead to spikelet 

branching and the conversion of sterile branches into grain-setting spikelets (412). Taken together, 

central regulatory cascades, their control of hormone pathways and interactions across meristem 

boundaries regulate cereal inflorescence meristem potential. 

5.2 Spikelets, florets and fertility  



Spikelets form axillary floret meristems off an extending rachilla axis. Spikelet number, arrangement 

and productivity varies across species, reflecting different phyllotactic and determinacy patterns 

(Figure 5.1). For example, rice and maize inflorescences bear spikelets on spiral branches but spikes 

arrange spikelets along alternate nodes. However, while wheat spikelets are solitary, barley shows a 

distinctive spikelet arrangement with each spike node making a triple spikelet cluster of a central 

spikelet flanked by two sterile lateral spikelets. In maize, spikelet arrangement is sex-specific where 

the ears bear multiple rows of paired spikelets and the male tassel branches display spikelet pairs in 

alternate rows (161, 243). In addition, spikelets generate either a fixed number of florets, for example 

two for maize and one for barley and rice, or a variable number, such as in wheat and Brachypodium 

which generate an indeterminate number of florets, many of which remain sterile. Inflorescence 

termination can also differ: the wheat spike which terminates in a single spikelet compared to the 

barley spike that indeterminately produces spikelets before arresting. Increasing the number of florets 

produced in determinate spikelets as well as preventing floret abortion are major breeding targets. 

For example, modulating spikelet determinacy and indeterminacy in rice can produce so-called 

‘multifloret’ spikelets bearing two or three florets (292, 294), a promising avenue to increase grain 

production (292).  

 

Central developmental checkpoints during later inflorescence formation involves the progression 

from indeterminate spikelet to determinate floret meristem as well as the differentiation of the floret 

meristem into perianth and sexual floret organs (6, 160). In addition to FT-like genes, the APETALA2-

like (AP2L) transcription factors and their limitation by microRNA172 (miR172), appears crucial to 

regulate these transitions, mediated in part by controlling rachilla elongation and MADS-box genes, 

especially the LEAFY HULL STERILE1-(LHS1)-like SEPALLATA genes (31, 50–52, 60, 62, 110, 183, 184, 

187, 237, 238, 325, 328, 333, 336). For instance, the SUPERNUMERARY BRACT (SNB) and 

INDETERMINATE SPIKELET1 (IDS1) AP2L-genes in rice establish perianth organ identity and accelerate 

the spikelet to floret meristem identity transitions by promoting LHS1-like OsMADS1 expression (57, 

147, 163, 183, 273, 287, 288), a role conserved in barley and wheat (61, 325, 429). HvMADS1 also has 

a role in preventing spike branching at high temperatures (194), although whether this involves 

HvAP2Ls is unclear.  

 

Fertility depends on correct floret organ differentiation and function, with grain set additionally 

dependent on successful pollination and grain maturation. Floret meristems first form opposing 

lemma and palea hulls which enclose the stamens and single-ovary carpel with style and stigma; in 

addition, small sacs called lodicules, in between the stamens and lemma, enlarge at anthesis to open 



the lemma hinge and facilitate pollen transfer into the floret (160, 316). Based on orthologous gene 

expression, lodicules appear analogous to petals, consistent with their pollination role, while hull 

organs likely represent outer perianth organs (221, 413). Molecular circuits controlling floret organs 

show conservation with the ABCDE gene model proposed to explain dicot flower development (316) 

where class ‘A’ gene activity defines the outer perianth (sepals), ‘AB’, the inner perianth (petals), ‘BC’, 

the stamens, ‘C’, the carpel, and ‘CD’ the ovule, with the ‘E’ class genes contributing to all functions 

(136, 350). ABCDE genes encode MADS-box transcription factors, except for the class ‘A’ AP2Ls which 

encode AP2-domain transcription factors (151). Unsurprisingly, aberrant floret development and 

fertility loss in cereals results from impaired ABCDE gene function (36, 82, 83, 195, 353, 408).  

Transcriptomic studies in barley revealed suites of MADS-box genes expressed in fertile flowers, many 

of which appear downregulated in sterile lateral spikelets and potentially downstream of  the 

VULGARE SIX-ROWED spike (VRS) loci which cause lateral floral arrest shortly after lemma primordium 

formation in wild type ‘two-rowed’ barley (32, 69, 213, 352, 439). Defective alleles in VRS1 and VRS5 

allow continued lateral development and fertility, and were selected during cultivation to generate 

so-called ‘six-row’ barley (176, 225, 243, 290). Additional VRS alleles lead to partial six-row or 

intermedium phenotypes which can combine to generate novel six-rowed architectures with 

improved grain uniformity, important for malting grain (439). VRS3 encodes a histone demethylase 

(33, 370) but all other cloned VRS genes encode DNA-binding transcription factors, some of which are 

orthologous to branching regulators: VRS1 (HvHOX1) encodes a HD-ZIP (176); VRS4 encodes the RA2 

LOB (178); VRS2 encodes a SHORT INTERNODES (SHI) transcriptional regulator (417); and VRS5 

encodes barley TB1 (290). Interestingly, TB1 in maize also arrests female sex organs in male tassels 

(131). Consistent with their branching roles in other grasses, VRS alleles influence traits other than 

row-type such as tillering and spike/spikelet determinacy (178, 209, 417, 439), which also show 

potential yield benefits in novel higher order VRS combinations (439). Upregulated by HvRA2 (VRS4), 

HvVRS3 and HvTB1 (VRS5), VRS1 is the central downstream integrator of lateral floret infertility (370, 

439). Elements of this network function in other cereals, such as the VRS1 ortholog Grain Number 

Increase 1 (TaHOX1) in wheat which inhibits floret outgrowth during rachilla development and whose 

impaired function alleles were selected for increased fertile floret number per spikelet (304). 

VRS1/HvHOX1, and its paralog HvHOX2, originated from an ancestral gene duplication event. While 

the function of HvHOX2 is present in most cereals, impaired HvHOX1 and TaHOX1 were both selected 

to increase grain number in barley and wheat, respectively (304, 306). However, in barley, the Vrs1.t1 

allele, underlying the DEFICIENS (DEF) locus, leads to super suppression of the lateral spikelets and 

preferentially occurs in specific germplasm, potentially to facilitate resource allocation to enlarge the 



central grain (305). Mining the VRS network may improve grain parameters in modern cultivars 

through controlling floret fertility as well as other architectural traits (439). 

Recent work also showed that AP2L genes contribute to late perianth, carpel and post-fertilisation 

development. Ease of hull shedding was positively selected or the hulls themselves or glume bracts 

have been greatly reduced and/or softened during domestication to increase harvest. In rice, the APL2 

SHAT1 is important for abscission zone development at the base of the lemma (430) while in wheat, 

miR172-resistant alleles of TaAP2L5 (the Q domestication gene) lead to more easily shed grain due to 

softer and altered shaped glumes (62, 91, 110, 328). AP2Ls in wheat and barley reduce lodicule 

swelling, and in cultivars with enhanced APL2 function, often due to disrupted miR172 regulation, 

show cleistogamy or ‘closed’ flowering due to unexpanded lodicules, a trait commonly selected to 

maintain germplasm (1, 61, 125, 262). Double fertilisation of the ovary generates the embryo and 

endosperm which develop enclosed by maternal ovary tissue. This includes specialised transfer 

tissues, the integuments (which make the testa or seed coat) and the ovary wall or pericarp, forming 

the grain fruit or caryopsis (392) which elongates and expands to fill the void between the floret hulls 

(30), the  dimensions of which are proposed to physically limit grain size in rice (196, 197). Multiple 

rice grain size QTL control hull cell number and/or expansion (232, 291, 293, 299, 326, 334, 385, 426), 

including SNB which restricts floret hull cell expansion (148, 234). Important new work showed that 

the HvAP2 gene in barley not only constrains hull, lodicule and pericarp length but also limits 

integument and maternal transfer tissues proliferation and persistence, associated with promoting 

endosperm growth (325), consistent with roles in Arabidopsis where AtAP2 restricts integument cell 

expansion, seed size and seed mass (151, 254, 274). Thus, HvAP2 seems to control both floret shape 

and grain dimensions while selection of allelic variation in AP2L genes was associated with improved 

grain traits (148, 325, 401), pointing to a possible role of modulation of AP2L function and/or their 

MADS-box targets as important during selection for changes in spikelet and grain during cereal 

cultivation and potential routes to select for improved grain features.  

5.3 Inflorescence perspectives  

Defining the functions of more GRF-GIF-mir396, CLE, LRR and WOX genes, especially in the temperate 

cereals, will point to existing and novel routes to modify meristem size and shape for agronomic 

benefit. Understanding the relationship between floret morphology and grain parameters, as well as 

stacking of alleles controlling specific branching events, may also point to novel pathways for directed 

selection for crop improvement. 



6 The stem  
In cereals, compressed vegetative stem internodes dramatically lengthen acropetally during the 

flowering phase (160, 300) (Figure 1.2). Overly tall stems are prone to lodge or fall over while semi-

dwarf varieties lodge less as well as partition less carbon into vegetative biomass, benefits which 

contributed to the vast yield improvements of the Green Revolution. 

Intercalary meristems just about each stem node drive internode elongation, a strategy only found in 

monocots with sheathing leaf bases (93). Each internode grows through successive phases from 

intercalary proliferation, coupled proliferation-expansion to a final expansion stage (277) while 

remaining enclosed by the leaf sheaths whose earlier elongation provides structural support (167, 

269). The peduncle internode can extend longer than the flag leaf sheath to push the inflorescence 

out, often coincident or shortly after anthesis. Increasing GA levels and/or responsiveness, which leads 

to degradation DELLA growth-suppressing transcription factors (344), are long known to promote the 

cell division and expansion necessary for internode elongation, including intercalary growth (162, 300, 

301). Elevated GA signalling causes precocious and ectopic internode elongation in cereals (135) while 

defects in GA metabolism or signalling cause dwarfism, including in Green Revolution cereal varieties 

(281). For example, a major semi-dwarfing locus in rice, semidwarf-1, encodes a GA 20-oxidase 

(GA20ox) enzyme critical for GA biosynthesis whose defective alleles cause semi-dwarfism (337). The 

REDUCED HEIGHT wheat semi-dwarfs (TaRHT-B1 and -D1) show reduced responsiveness to GA (98) 

due to truncated, constitutively-active DELLAs (279, 281), as well as changes in flowering time as do 

polymorphisms in the orthologous maize gene, DWARF 8 (354).Defects in BR metabolism or signalling 

underlie other semi-dwarfing alleles (40, 121). Mutations in the barley uzu (HvBRI1) locus and in the 

BR biosynthetic genes – HvBRD (BR 6-OXIDASE), HvCPD (BRASSINOSTEROID C-23 HYDROXYLASE) and 

HvDIM (DIMINUTO) - all show similar phenotypes, including erect and small leaves as well as reduced 

stature (74). Defective BR signalling is more commonly associated with reduced cell elongation (12, 

47, 123, 346), yet loss of function BRI1 also causes  improper formation of the intercalary meristem 

(410). BR interacts with GA metabolism and signalling to control growth (14, 102, 200, 359) although 

these interactions are sensitive to developmental context (308). 

Study of other semi-dwarf alleles points to a regulatory role for hormone transport in and out of the 

intercalary meristem. Defective alleles of maize and sorghum genes encoding an ATP-binding cassette 

type B1 (ABCB1) auxin efflux transporter leads to short, thick internodes (259) with  abnormal nodal 

vasculature, while defective auxin transport out of the intercalary meristem in maize correlates with 

reduced intercalary proliferation (171). As internode elongation is specifically linked to reproductive 

development in cereals (268), understanding vascular patterning and transport dynamics in 

intercalary meristems both before and during elongation may help reveal mechanistic links 



coordinating internode elongation with flowering. For instance, control of nodal patterning in maize 

by BLH transcription factors is crucial for proper intercalary proliferation (365) while inflorescence-

derived auxin appears necessary for GA biosynthesis in the barley internode (393) with GA actively 

mobilised to the intercalary region in rice (250). Specific regulation in different parts of the cereal stem 

may also be relevant: for instance, the rice ELONGATED UPPERMOST INTERNODE gene encodes an 

enzyme which deactivates GA specifically in the peduncle internode (435), while a gibberellin 2-

oxidase, which also deactivates GA, encoded by the SHORTENED BASAL INTERNODES gene, specifically 

limits basal internode expansion (212). New work also shows that two FT-like flowering signals in rice 

control GA signalling in intercalary regions to synchronise internode growth with the flowering 

transition (108). Taken together, modification in hormone metabolism, transport and signalling 

appear key to linking and modulating internode growth in cereals during flowering and further 

understanding of these pathways may reveal new ways to control stem growth in cereal crops to 

improve yield. 

6.1 Stem perspectives 

Finding new routes to semi-dwarfism is important since the green revolution alleles have undesirable 

pleiotropy, such as reduced seed germination and vigour (261). Studying other components which 

specifically regulate internode growth may help us selectively control internode growth. For example, 

BR activates OsMIR396d expression while OsGRF6 promoted GA biosynthesis and signalling suggests 

that miR396-GRF coordinates a dynamic interplay between BR and GA, consistent with impaired 

elongation and intercalary activity from GRF and GIF defects (165, 208). Other miRNA modules also 

influence internode growth. In barley, ZEOCRITON (ZEO) alleles encoding miRNA172-resistant HvAP2 

transcripts delay the transition to floret development (125) and prolong weakened intercalary 

proliferation, block final expansion and accelerate vascularisation leading to dwarfism and severely 

dense spikes (277). ZEO leads to reduced GA responsiveness, but also elevated jasmonate (JA) 

phytohormone-related gene expression and JA sensitivity; since JA antagonises GA-promoted growth 

(112), miR172 may restrict HvAP2 activity to dampen the JA pathway and allow for rapid GA-promoted 

internode elongation at flowering (277). Taken together, miRNA regulated transcription factors such 

as the GRF-GIFs and AP2Ls may be important mediators of hormonal crosstalk to link floral progression 

and internode development. 

 



7 Below ground  
The root system is essential to the plant’s sessile lifestyle by providing structural support, facilitating 

and sensing soil water and nutrients and through responding to biotic and abiotic stresses. 

Accordingly, root systems are vital to crop performance, resiliency and yield. Understanding how roots 

sense and perceive changes in the soil, combined with accurate phenotyping, is important to learn 

how plants adapt to their environment and for genetic improvement of crop root systems.  

7.1 Root architecture  

Cereals, including, wheat, barley, rice and maize, develop a fibrous root system composed of a primary 

root and different side root types, some of which are shared with taproot systems such as lateral and 

adventitious roots, as well as seminal and crown  roots not present in taproot systems (Figure 7.1) (10, 

55, 248). Root system architecture is flexible and adjusts to environmental conditions.  Ideal root 

ideotypes for enhanced water and nitrate uptake can be combined in different ways to specific 

benefits. For example, one ideotype consists of shallow growth angles, thin diameters, many lateral 

roots and long root hairs which mainly captures water and nutrients such as phosphorus (P), 

potassium (K) and ammonium from the top soil; a second ideotype has a steep growth angle, large 

diameter and a few laterals in combination with many lateral branches arising from the crown roots 

which enable deeper rooting (230). Understanding the molecular and genetic mechanisms which 

control rooting architectures may provide breeders with genetic handles to improve crop resiliency 

and performance. <Figure 6.1 near here> 

Studies point to both common and divergent regulation of cereal root architecture (63, 122, 174, 248).  

For instance, auxin/cytokinin homeostasis, well known to regulate Arabidopsis roots, appears to 

extend into cereals since high levels of auxin reduces root length and differentiation of the stem cell 

niche (marked by accumulation of starch granules) in maize and rice, similar to Arabidopsis (67, 77, 

210, 381). However, new studies suggest differences in barley. For instance, in barley, stem cell niche 

differentiation is not marked with starch as in Arabidopsis and columella stem cells do not 

differentiate upon application of CLE peptides that normally promote this event (169, 338). 

Additionally, low auxin levels enhance Arabidopsis root growth but barley lacked this response (168). 

However, some network elements such as the PLETHORA (PLT) transcription factors, which along with 

auxin function in stem cell niche maintenance in Arabidopsis, may be conserved since the barley 

HvPLT1 homologue is expressed similarly (3, 99, 168, 236). Also, separate roles in the root, shoot and 

panicle development of PIN1 homologs in rice suggest that cereals show possible functional 

divergence in auxin transport (64, 204, 380). In addition, barley contains eleven members of the 

CYTOKININ OXIDASES/DEHYDROGENASES (CKX) gene family involved in cytokinin degradation, with 



two involved in root morphology (105, 390). New reporters for auxin and cytokinin may soon reveal 

more insights about hormone regulation and distribution during root (and shoot) development in 

barley and other cereals (168).  

7.2 Interaction with above ground traits 

Long-distance signals transmitted between the shoot and root in response to environmental changes 

are essential for plant growth and development (172). Shoot and root traits also show coordinated 

responses. For instance, in wheat most root traits negatively correlate with spikes per area, grains per 

spike and thousand grain weight while seminal root traits show a positive correlation with thousand 

grain weight (403). Similarly, overexpressing the wheat MORE ROOT (TaMOR) gene in rice resulted in 

an enlarged root system and increased grain yield (191). Genes involved in developmental timing also 

impact on root development. For example, compared to spring alleles, winter alleles of TaVRN1 

correlate with increased root length at anthesis likely due to the prolonged vegetative growth (372), 

suggesting that TaVRN1 may coordinate aerial and below ground architecture. Similarly, the barley 

RING-type E3 ubiquitin ligases HvYRG1 and HvYRG2, phylogenetically closely related to the GRAIN 

WEIGHT 2 gene that controls grain size in rice and wheat (19, 186), also function in root growth. 

Reduced expression of HvYRG1 accelerated heading time, prolonged the grain-filling period and 

stimulated in root growth while HvYRG2 downregulation delayed flowering time and reduce the root 

system (437). In rice, FPF4 (flowering-promoting factor 4), both promotes flowering time and flower 

development while influencing root development by modulating auxin homeostasis (114). Altogether, 

these studies point to important roles below ground for genes traditionally associated with flowering 

time.  

7.3 Root perspectives 

Roots are essential for uptake of nutrients and anchoring of the plant. Root architecture between 

monocots and dicots differs, although the principles of auxin and cytokinin transport, and downstream 

responsive genes show conservation (168). As such, understanding the molecular mechanisms that 

underly these different read-outs will provided a fundamental basis to understand, and possibly 

manipulate, root development and its interaction with the environment and above ground traits. 

 

8 Summary and Overall Perspectives 
Modern breeding continues to modify inflorescence architecture and developmental timing in cereals 

to improve yield. Nonetheless, projected rates of increased grain demand coupled with climate 

change present enormous challenges to global food security. Exploiting and generating novel changes 



in cereal architecture may improve yield. The explosion of plant genomic resources, including those 

for traditionally recalcitrant cereals such as barley, holds exciting potential, especially with new 

advances in gene editing (298), to reveal the underlying mechanisms regulating variation in 

reproductive architecture, both within and between species. We hope this review showcases both 

conserved and novel pathways to direct this research.  
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FIGURE CAPTIONS 

 

 

Figure 1.1 – The Vegetative Phytomer. Each phytomer consists of a node, a bud and underlying 

internode. Vegetative phytomer. Each node bears a leaf composed of a proximal sheath, boundary 

ligular region made up of the ligule and auricle, and a distal leaf blade. Leaf angle (θ) describes the 

angle between the leaf and main axis. Axillary buds form at the leaf-node axil and can grow into 

secondary shoots, called tillers. Internodes separate adjacent nodes.  



 

Figure 1.2 - Vegetative to Reproductive transition in cereals using wheat as an example. The wheat 

shoot apex transitions from a vegetative dome producing leaves into an elongating inflorescence lined 

with double ridges. The lower ridge arrests while the upper ridge goes on to produce spikelets lining 

the inflorescence axis. During flowering, the internodes underneath the apex elongate from bottom 

to top within the leaf sheaths. Final internode elongation pushes the ear out of the flag (last) leaf 

sheath. Axillary buds along elongated internodes remain dormant, while tillers grow out from nodes 

adjacent to unelongated basal internodes. Tiller angle describes the angle between the tiller and main 

stem.   

 



 

Figure 4.1 – Environmental control of flowering events. (A) Photoperiod and temperature influence 

multiple aspects of flowering including timing of the vegetative to reproduction transition, elongation 

of stem internodes and spike emergence from the flag leaf. (B) Molecular network of vernalisation in 

wheat. Pre-vernalization the repression of FLOWERING LOCUS T (FT) is via high levels of 

VERNALIZATION 2 (VRN2) under long days and low levels of VERNALIZATION 1 (VRN1). VRN1 

repression occurs via multiple molecular pathways including via binding of VRN1 pre-mRNA via GRP2 

and repression via VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2). With lowering temperatures 

and shorter days (post-vernalization) the repression of FT1 via VRN2 decreases which also potentially 

increases the availability of CONSTANS 2 bound to NF-Y proteins which could increase FT1 expression. 

Simultaneously, GRP2 is bound via VER2 and an O-GlcNAc modification which increases the availability 

of VRN1 mRNA and so protein. Increased levels of VRN1 protein repress VRN2 and other floral 

repressors, including ODDSOC2 (OS2), and increase expression of FT1. Increased levels of VRN1 and 

FT1 lead to flowering. 



 

Figure 5.1. Inflorescence architecture and spikelet architecture of key cereal species. Wheat and 

barley form unbranched spikes. Wheat forms a determinate spike tipped with a terminal spikelet while 

barley continues to produce spikelets indeterminately from the spike tip. In the wheat spike, each 

node forms a single spikelet, flanked by glumes, which generates multiple florets indeterminately 

which only a few becoming fertile to set grain. In the barley spike, spikelets are also flanked by glumes 

but only ever form one floret. In two-rowed barley, each node forms a central fertile spikelet, setting 

a single grain, flanked by two infertile lateral spikelets. In six-rowed barley, the lateral spikelets are 

fertile and can also set grain. Rice forms a branched inflorescence called a panicle which forms primary 

and secondary branched. Each rice spikelet forms a single floret flanked by glumes. Like other florets, 

the rice floret has two opposing hulls: the lemma and palea. Maize forms male (tassel) and female 

(ear) inflorescences. The maize tassel is a branched inflorescence formed on top of the shoot axis and 

makes spikelet pairs of a sessile and more distal pedicellate spikelet.  The maize ear forms rows of 

spikelet pairs where each floret’s ovary style develops a long silk. The ear is wrapped by husk leaves 

from underlying compressed internodes.  



 

Figure 7.1 - Root system architecture of Arabidopsis compared to cereals. Arabidopsis has been used 

as a model species for dicotyledons. The root system is formed by different types of secondary roots, 

of which only the primary root is formed during embryogenesis. The lateral roots are formed post 

embryogenesis from pre-branch sites that are primed in the primary root meristem. The adventitious 

roots are formed de novo from non-root tissue. Additionally, the Arabidopsis root forms adventitious 

lateral roots, these are formed the novo from root tissue. The root system of cereals 

(monocotyledons) form two embryonic derived root types, the primary root and the seminal roots. 

After germination, the lateral roots are formed, which arise from the primary, seminal and the shoot-

born crown roots (also called brace or nodal roots). 

 

 

 

 

 


