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Abstract

Every minute, 500 hours of footage is uploaded to Youtube.com, and ∼ 1900

hours of footage is livestreamed on Twitch.tv. It can therefore be challeng-

ing for viewers to find the content they are most likely to enjoy. Highlight

videos can entertain users who did not watch a broadcast, e.g. due to a lack

of awareness, availability, or willingness. Furthermore, livestream content cre-

ators can grow their audiences by using highlights as advertisement, while also

engaging casual followers who do not watch full broadcasts. However, hand-

generating these videos is laborious, thus automatic highlight detection is an

active research challenge. We examine automatic highlight detection by focus-

ing on esports broadcasts. Esports are an emerging genre of sport played using

a video games. We focus on League of Legends, a popular title with multi-

ple professional leagues. Esports broadcasts are high-quality and professionally

produced, mirroring traditional sports. We tackle the problem in a weakly su-

pervised manner, utilising two datasets, one of ‘crowd-sourced’ highlight videos

and one of unedited broadcasts. These datasets allow us to leverage massive

data while hugely reducing the human cost of data curation and annotation.

We propose two novel extensions to state-of-the-art rank-based highlight detec-

tion architectures. Firstly, a multimodal hybrid fusion architecture that enables

audio-visual highlight detection, and secondly, a smoothing step to incorporate

context into decision making. Both extensions show significant improvement

over state-of-the-art ranking models, in places performing nearly twice as well

as competing architectures. Additionally, we examine the effectiveness of each

modality and compare ranking models with classification based systems.

Keywords: Highlight Detection, Neural Networks, Livestreaming, Deep

Learning, Ranking Networks, Weakly Supervised Learning
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1. Introduction

Automatic sports highlight detection has been a popular area of research for

some time. In recent years the rise of esports, competitive video games often

broadcast on livestreaming services such as Twitch.tv, has generated a demand

for esports highlight detection tools. Esports are often presented similarly to

their traditional sports cousins, e.g. between games an ‘analyst desk’ discusses

the results of previous matches as well as upcoming games. During a match, a

set of commentators (known as ‘shoutcasters’) commentate over video footage

of the gameplay. The visual feed shows a variety of scenes, e.g. gameplay, the

analyst desk, advertisements etc., as shown in Figure 1. The critical difference

to sports broadcasts is the format of the games. There are no constraints to

the content of esports, bar the need for it to be digital. This variance results in

significant differences in the visual appearance of different esports. Therefore we

focus on a single game, League of Legends1, for this work. League of Legends is

a ‘multiplayer online battle arena’ game, where matches are contested between

two teams of five players. Each team attempts to battle through the opposing

defences to reach and destroy the opponents base. Simultaneously teams must

protect their base from the other team. Unlike traditional sports where the rules

and game mechanics tend to be simple, League of Legends is highly complex, e.g.

players can choose from over 150 characters to play, each with unique abilities

and gameplay.

Due to their video-game based nature, esports have the advantage that those

who play them professionally often also livestream out-of-competition play ses-

sions as an additional revenue source. A typical content cycle would be for a

live broadcast to occur, either as part of an esports competition or from an in-

dividual streamer, then a highlight video would be manually created by a video

editor. This highlight video shows the most exciting moments of the broadcast

and can be shared through video-sharing platforms, e.g. YouTube. This dual

1https://www.leagueoflegends.com/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: The many different constituent elements which make up a League of Legends esports

broadcast - (a) advertisements, (b) analyst desk segments, (c) gameplay, (d) commentators,

(e) crowd reactions (f) transition shots, (g) feature pieces , (h) champion drafting, (i) player

cameras.

content system allows fans to catch up on a broadcast if it was missed and

mirrors traditional sports highlights broadcasts, although for esports the two

streams are often on different platforms, rather than both being televised.

This work is motivated by the observation that automatic highlight detec-

tion offers additional avenues for streamers/broadcasters to reach their audience

and for viewers to find content that suits them. An inordinate amount of data

is produced on livestreaming and video-sharing platforms. For example, every

minute, 500 hours of footage is uploaded to Youtube2 and about 1900 hours

2https://www.statista.com/
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of footage is livestreamed on Twitch3. Therefore it becomes next to impossi-

ble for small scale streamers to gain recognition and grow their audience. It is

equally challenging for viewers to find the content they are most likely to enjoy.

Automatic highlight detection can aid in several ways. For instance, reducing

cost, both in terms of time and cost to an editor, to generate highlight videos is

likely to increase the number of smaller streamers who can advertise their work

through highlight videos. There is also the potential for personalised highlights,

especially for larger channels with a diverse audience. These highlights could

be tuned to the viewer’s preferences, e.g. by biasing a detection system for the

kinds of events a particular viewer enjoys. This type of content would be infea-

sible without automatic systems, as it would require a human editor to learn the

preferences of a large number of viewers and then edit a unique video for each

one. Therefore, research into automatic highlight detection for livestreamed es-

ports has practical, real-world applications with benefits for many stakeholders.

This work tackles highlight detection through weakly supervised learning

with positive-unlabelled data. This is motivated by this paradigm’s apparent

advantages over traditional supervised learning. Namely that we can leverage

massive amounts of data due to the minimised human cost of data gathering.

In particular, we focus on using data in its most raw format, i.e. unedited

broadcasts and highlight videos, as these most closely mimic a real-world use

case for such a technology. Therefore, videos often contain adverts, analyst desk

segments, and other non-game footage. This decision is motivated by the desire

to evaluate operationalisable techniques and the observation that human data

processing is a bottleneck for such a system.

Determining what should be considered a ‘highlight’ is nebulous. Which

moments are the most interesting is subjective. Different people enjoy different

aspects of a broadcast. Additionally, despite the need for a binary highlight de-

tection system, enjoyment intensity can be considered to exist on a continuous

scale. Therefore, we gather highlight samples by looking at already generated

3https://twitchtracker.com/statistics
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highlight videos made by humans and released on video-sharing platforms such

as YouTube. We consider that a moment is a highlight if selected by these video

editors and thus take a crowd-sourced approach to highlight definition, similar

to Xiong et al. (2019). By selecting a range of highlight videos from multi-

ple sources, we aim to generate highlight detection methods that can broadly

recreate the style of already popular videos.

Additionally, we implement several state-of-the-art highlight detection meth-

ods to provide comparisons for our techniques. Models are trained to provide a

highlight value for a given short video segment, such that concatenating these

segment predictions produces a time-series ‘highlight signal’ for the video. This

signal is used to determine which moments in a video are the most likely to be

a highlight.

The key contributions of this work are summarised as follows:

• A multimodal ‘hybrid-fusion’ method is proposed to utilise highlight cues

from both the visual and audio domains. This proposed method signifi-

cantly outperforms existing state-of-the-art approaches in this task.

• The application of a smoothing convolution over the predicted time-series

highlight signal is proposed, which models video context heuristically.

Smoothing significantly improves performance for the hybrid fusion model.

• A thorough comparison of several methods for highlight detection is pre-

sented, including state-of-the-art approaches. These approaches consist of

unimodal and multimodal systems and utilise various feature representa-

tions. This comparison confirms the intuition that modelling more than

one modality improves performance and the belief that ranking outper-

forms classification.

The remainder of this paper is laid out in the following manner. Firstly, in

Section 2 we discuss pertinent existing literature, including highlight and event

detection, as well as related work in multimodal machine learning. Subsequently,

in Section 3 we detail the datasets gathered for this work, both for training and
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testing purposes. Next, in Section 4 we discuss the range of methods utilised,

breaking down our models into feature extraction techniques, fusion mecha-

nisms, and decision models. Afterwards, in Section 5 we present the details of

and results from a series of experiments aimed to examine the effectiveness of

these techniques. Finally in Sections 6, 7, and 8 respectively, we briefly discuss

the implications of these results, present our conclusions, and suggest future

work.

2. Related Work

2.1. Livestream Highlight Detection

Livestreaming is a new technology and, as such, has not been widely ex-

plored. That said, there are some prior existing studies into detecting highlights

in livestreams. Chu & Chou (2015, 2017) examined various facets of League of

Legends esports broadcasts, building highlight detection models using hand-

crafted features, such as the number of players on screen, and event detection,

utilising text recognition on in-game messages. While this work is an excellent

first work in this area, the reliance on hand-crafted features results in techniques

that may not generalise well to other games. Additionally, Ringer & Nicolaou

(2018) began to tackle unsupervised learning for highlight detection in the game

Player Unknown’s Battlegrounds, utilising measures of novelty as a proxy for a

highlight signal. Although not strictly highlight detection, Ringer et al. (2019)

explored supervised learning for joint in-game event and streamer emotion de-

tection, which may act as highlight cues. More recently, Wang et al. (2019)

experimented with rank-based highlight detection for the mobile title Honor of

Kings. This particular work takes a multimodal ranking approach, similar to

ours, and therefore we implement their architecture as a state-of-the-art refer-

ence point.

The works discussed above focus on audio-visual data (i.e. videos). How-

ever, esports are nearly always livestreamed in settings that facilitate viewer

interaction via text chat. There is some emerging research into how cues from
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the chat domain indicate when a highlight occurs in the game. Han et al. (2019)

utilised a bidirectional GRU in a supervised setting to learn a highlight detection

model from text chat only, with promising results which outperformed baseline

models. Additionally, Liaw & Dai (2020) proposed an attention-based model for

highlight detection, utilising the text present in crowd-sourced highlight clips as

highlight cues.

2.2. Sports Highlight Detection

Sports are a popular domain for event detection research. Ren et al. (2007)

studied highlight detection in soccer games, studying four matches with good

results, especially when detecting goals scored. Xu & Chua (2006) used audio-

visual features and external text-based cues in their work towards the detection

of highlights in team sports. A similar approach, applied to baseball games, was

proposed by Chiu et al. (2012). Sun et al. (2010) analysed the excitement level

of sports commentators using audio features, mainly Mel Frequency Cepstrum

Coefficients (MFCCs) and pitch data, to detect highlights. Nguyen & Yoshi-

taka (2014) adopt a cinematography and motion-based approach, whereby they

analysed the type of camera shots used to detect highlights, especially emotional

events.

Spijkerman & van der Haar (2020) utilised convolutional neural networks

trained on footage directly obtained from the Formula 1 video game to detect

highlights in broadcasts from physical Formula 1 races. Such an approach is

made possible because the video game is designed to look realistic. In this work,

the models were trained to detect cars within a scene as the authors suggested

that such signals are indicators for highlights. Additionally, Moodley & van der

Haar (2020) also used CNN models for detecting events in Cricket matches.

Specifically, an AlexNet was trained to detect when a ‘stroke’ occurred, i.e.

the batsman hit the ball, with success. Additionally, it seems that approaches

focused on Optical Flow calculations, the change in a scene between frames,

show promise when summarising sports videos, for example Mendi et al. (2013).

Finally, Zhu et al. (2007) utilised behaviour analysis alongside optical flow to
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detect the behaviour of racket sport players and thus classify in-game events.

While the vast majority of sports highlight detection methodologies are not

suitable for our domain, e.g. they focus on supervised learning or use techniques

that have since been superseded, they do serve as inspiration for this work, e.g.

the application of convolutional networks and optical flow vectors.

2.3. Video Highlight and Event Detection

Outside of sports, there has been some research into highlight detection

and, more generally, event detection in video. Much event detection research

has been focused on motion. Simonyan & Zisserman (2014) and Feichtenhofer

et al. (2016) both utilise optical flow combined with object detection to detect

actions performed by humans. Giannakopoulos et al. (2010) also considered

motion in their work to detect violent scenes in films. Xu et al. (2015) used

unsupervised learning to detect events partly based on motion when analysing

scenes of pedestrians walking.

Xiong et al. (2019) recently published a key piece of work in video highlight

detection. The authors utilised crowd-sourced videos under the assumption that

a short clip would contain a highlight alongside ranking models for state-of-the-

art highlight detection in a range of kinetic tasks, e.g. surfing. Ranking models,

in general, have become a popular avenue for computer vision-based highlight

detection. Sun et al. (2014) took a ranking approach to detect highlights in hu-

man action videos utilising crowd-sourced data. Additionally, Video2Gif (Gygli

et al. (2016)) is a rank-based detection system trained to generate gifs from

longer videos using human-generated gifs as training data. Finally, Yao et al.

(2016) also utilised ranking for video summarisation in first-person videos.

2.4. Multimodal Machine Learning

Given the presence of both audio and visual data in most videos, it makes

sense to develop techniques that utilise both data sources to enable more robust

modelling. Utilising multiple data sources originating from the same event is

often referred to as multimodal or multi-view learning. A significant advantage
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of utilising multimodal data, as Ngiam et al. (2011) note, is that exploiting

information from multiple views can significantly aid learning from noisy or

imperfect data. For this work, the term multimodal will describe the paradigm,

with ‘modality’ used to refer to an individual data stream. For ease of discussion,

we also extend the definition of modality to refer to different handling of a data

stream, e.g. raw video frames and optical flow calculation for video frames are

considered separate modalities. One of the biggest challenges for multimodal

learning is that the modalities must be combined in a process known as fusion.

Katsaggelos et al. (2015) and Poria et al. (2017) show that there is no con-

sensus on the most appropriate fusion technique, with many studies proposing

different approaches. Some of the most popular techniques for fusion in ‘end-to-

end’ systems include early fusion, feature fusion, and model fusion. While early

fusion refers to concatenating raw features or representations (e.g. Ngiam et al.

(2011); Wöllmer et al. (2013)), feature fusion is usually performed on bottleneck

features (e.g. Shah et al. (2014)). Model fusion is where separate models are

utilised for each view and subsequently aggregated (e.g. Kahou et al. (2016);

Wang et al. (2019)). Multimodal learning, especially fusion, is an active research

area. In the paper, we provide only a brief overview of the topic as it relates

to this work. We refer the interested reader to Katsaggelos et al. (2015), Zeng

et al. (2009) and Poria et al. (2017) for a more comprehensive summary of the

area.

2.5. Learning from Positive-Unlabelled Data

Unsupervised, weakly-supervised, and self-supervised learning have all be-

come typical training paradigms due to the ability, as in this work, to leverage

massive data without the human effort cost required to label and clean the data.

However, this results in noisier training and thus research on how to compen-

sate for this. In particular, our work takes a positive-unlabelled approach to

data, where there are concrete labels for only positive training samples. This

work implements a noise aware ranking model proposed by Xiong et al. (2019)

which itself was inspired by Ilse et al. (2018). This approach can mitigate noise
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by utilising a bagging approach alongside a heuristic noise prior. Additionally,

we implement a binary classifier as a comparison model and use the weighting

methodology proposed by Elkan & Noto (2008) to weight the output of this

model by the performance on positive data.

Other attempts at learning from very noisy data include Natarajan et al.

(2013) which focused on noisy labels in both positive and negative data and

proposed probabilistic ‘flipping’ of labels to tackle this problem. Similarly,

Sukhbaatar et al. (2015) proposed label flipping for computer vision tasks with

convolutional neural networks. Further work into noise label vision tasks in-

cludes Li et al. (2017) where ‘side’ information, e.g. clean data, is used to

improve learning under noisy conditions. Reed et al. (2015) applied bootstrap-

ping to this problem, finding that it creates a robust classifier in multi-class

scenarios. Additionally, Liu & Tao (2016) applied Importance Reweighting to

noisy label classification. Finally, ∝-SVM (Yu et al. (2013)) is a Support Vector

Machine that models the latent labels for unknown data alongside the propor-

tions of known labels. This concept has been applied to event detection in video

data, e.g. Lai et al. (2014).

3. Data

3.1. Training Data

This work tackles highlight detection through weakly-supervised learning

through the application of two datasets, one of only positive samples and one of

unlabelled samples. This data-label formulation is similar to traditional semi-

supervised learning, but labels only exist for positive samples. There is a con-

siderable wealth of broadcast data and fan-made highlight videos. Broadcast

data contains a mixture of highlight moments, which we aim to capture, and

non-highlight moments, whereas highlight videos contains only highlight mo-

ments. In an ideal world, it would be possible to find the highlight moments

in the broadcast through manual annotation. For example, by utilising a set of

participants who would watch the broadcast and select their favourite moments.
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However, manual annotation is extremely expensive and time-consuming, pro-

hibiting leveraging the benefits of applying deep learning to massive datasets.

Another reasonable approach would be to align the highlight video segments

with those in the original broadcast, e.g. by detecting which frames from the

broadcast are also in the related highlight video. However, while less time

consuming than manual annotation, it still has a significant data gathering

penalty as naming conventions for both broadcasts and highlights are inconsis-

tent, requiring human preprocessing. Furthermore, the frame-matching process

is computationally expensive. Such an approach also requires a corresponding

highlight video for every broadcast video and a broadcast video for each high-

light video in the dataset. These challenges make automated broadcast-highlight

matching impractical for large-scale datasets.

Instead, the positive-unlabelled approach we use, inspired by Xiong et al.

(2019), involves collecting two datasets, one of the mixed labels, from broadcasts

and one of the positive labels, from highlight videos, but with no connection be-

tween the datasets. The broadcast dataset contains replays of League of Legends

professional broadcasts from various competitions. The dataset of human-made

highlight videos was gathered from multiple highlight makers who post their

videos online. Some highlight videos contain footage from a single game. Oth-

ers show highlights from multiple games, especially if the contest is in a ‘best

of n’ format. Figure 2 demonstrates how our data differs from the two options

for supervised learning and, in doing so, minimises the cost to gather data. In

total, 257 broadcast videos and 676 highlight videos were gathered, resulting in

more than 193 hours of broadcast video and more than 178 hours of highlight

footage. Minimal preprocessing was applied to most closely mimic a real-world

automated system. Each video was processed by converting frame dimensions

to 224 × 224 × 3. Additionally, the frame rate was set to 25 frames per second.

No audio prepossessing was applied.
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Figure 2: Comparison of the different potential dataset formulations. Notice that for tradi-

tional manual annotation (a) or frame matched annotation (b), each video in the broadcast

dataset needs a corresponding set of labels, either through expensive manual annotation or a

matched dataset of highlights. This is not the case with our data (c). The cost to gather train-

ing data is therefore minimised, and there is no requirement to have corresponding highlight

videos for each broadcast video.

3.2. Test Data

While our training structure follows the positive-unlabelled paradigm, high-

light detection in esports broadcasts is an emerging area of research, and so

there is currently a lack of test sets with which to evaluate models. Therefore

we additionally constructed a test set of data with labels, used to evaluate the

range of models presented in this work. To do this, we select 20 games, five

each for the four major League of Legends esports leagues - LCS (North Amer-

ica), LEC (Europe), LPL (China), LCK (Korea). Following the frame matching

annotation technique described above, we manually retrieve the human-made

highlights from the two most popular highlight channels and match frames be-

tween the original broadcast and the highlight videos to find which points in
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the main broadcast the highlights appear. These highlight channels each have

275, 000 and 356, 000 subscribers. In contrast, the official League of Legends

esports channel hosting full-length games has fewer subscribers with 252, 000,

and no other highlight channels have more than 40, 000 subscribers. This pro-

cess results in a test set of 20 complete games, constituting 18 hours, 6 minutes

and 51 seconds of broadcast data. It also contains a broad mix of broadcast

settings, players, advertisement, and commentators from across the world, thus

mimicking real-world challenges, as shown in Figure 1. This test set size is in

keeping with prior works; Wang et al. (2019) used just four videos for evaluation

and Chu & Chou (2015) used 24 games but from only one tournament, the 2014

World Championship.

To determine ground truth annotations for a given broadcast video, we com-

pare frames from both highlight videos associated with the original broadcast.

We select the broadcast frame that is the closest match, given a distance thresh-

old as some highlight videos contain content absent in the original broadcast,

e.g. the content creators personal brand. We sub-sample frames by a factor of

eight for processing speed, resulting in a highlight annotation fidelity of 0.32

seconds. This process is still computationally expensive and took several days

to calculate labels for our dataset, further highlighting the advantage of our

positive-unlabelled approach, which deliberately minimises processing time. To

capture the breadth of content which can be considered a highlight, we label

segments of the original broadcast as a highlight if it appears in either of the

two highlight videos. In total, this results in 203805 individual test set samples,

with the shortest video contributing 4840 samples and the longest contributing

14498 samples. Overall each video in the test set contributed a median of 10003

samples.

4. Methods

Existing state-of-the-art highlight detection models primarily have similar

components. The raw data is generally passed through feature extraction sys-
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tems, e.g. a Convolutional Neural Network (CNN) or audio frequency analysis

techniques. While it is theoretically possible to act on the raw data itself, there

are generally many inputs in the case of both audio and visual data, making this

challenging. Therefore, using a feature extractor tasked with finding a smaller

number of salient features is preferred. These are then used in the downstream

systems. Towards the end of the pipeline, there must be a decision-making

mechanism that determines if the incoming features form part of a highlight

or not. The output from this decision-making mechanism is usually the final

output of the system and consists of a time-series signal over the length of a

video where each point in the signal relates to the likelihood that a single video

segment is a highlight. Additionally, at some point between raw input and fi-

nal output, the data from each input modality, e.g. visual data, audio data,

needs to be ‘fused’ to unify the system. Exactly how this fusion mechanism

is implemented can vary between models. For example, it may be possible for

particular data formats to fuse the raw inputs, e.g. concatenating an RGB and

Optical Flow image together at the raw data level. Alternatively, fusion can

occur after feature extraction so that the decision-making process has a single

set of features to make a decision with, which we refer to as ‘feature fusion’.

Finally, perhaps each modality is trained entirely separately, including decision

making, and then the decisions made for each modality are aggregated in some

form. We call this aggregation ‘model fusion’. For a particular penitent example

of model fusion, see Wang et al. (2019).

There are very few state-of-the-art models that utilise data in a format sim-

ilar to ours. The only existing model which approaches audio-visual highlight

detection for esports titles using this approach is Wang et al. (2019), which we

implement here as a state-of-the-art comparison model. Models such as Chu

& Chou (2015, 2017) rely on hand-crafted features, and Ringer & Nicolaou

(2018) is novelty-based in a one-shot setting and thus extremely computation-

ally expensive owing to the need for training on each video. Therefore, these

approaches are not suitable for inclusion in this paper as comparison models. We

also implement the architecture from Xiong et al. (2019) as it heavily inspired
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our approach, although it is unable to utilise the benefits of the multimodal

nature of our data because it omits a fusion step. The system architecture pro-

posed in this work is discussed in detail below and is additionally presented in

Figure 3.

4.1. Feature Extraction

Our data is multimodal. Therefore, different pre-trained feature extraction

models are required for each modality. While we have only two data sources

- video frames and audio, we treat our input data as four separate modalities.

Firstly we take a stack of RGB video frames. Secondly, we convert those RGB

frames into optical flow frames to represent motion within a video segment.

Thirdly, we extract features from only a single frame. Finally, we use audio

samples. Precisely how these features are extracted is detailed below.

4.1.1. Video Feature Extraction

There is evidence that pretraining a network on a large, generic dataset

outperforms training a network to specifically generate features for a particular

task, e.g. Alwassel et al. (2020). To this end, we utilise a state-of-the-art inflated

3D convolutional network from Carreira & Zisserman (2017) which has been pre-

trained for action recognition on the kinetics dataset (Kay et al. (2017)). This

model is a two-stream model which considers both RGB video frames (RGB)

and optical flow frames (Flow). It processes both modalities separately but

using the same convolutional architecture. A 3D CNN is similar to a 2D CNN,

e.g. as used in image processing, but with an additional convolution dimension

that convolves over time, represented as a stack of frames. We use a 3D CNN

rather than a CNN-RNN style architecture, where the spatial elements of a

frame are modelled with a 2D CNN, while the temporal aspect is modelled

using a recurrent neural network, e.g. Ringer et al. (2019). This is motivated

by recent works which have shown that, at least for short video clips, a 3D

CNN is generally more performant (Carreira & Zisserman (2017)). Because

this model is pre-trained, we are limited to using an input dimension equal to
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Video Data

Segmentation - 64 frames @ 25fps

Audio-Visual PartitioningVideo Frames Audio Segments

RGB Inflated 3d 
Convolutional Neural Network

Speech Feature Encoder

Time Series Smoothing

Prediction Thresholding

Optical Flow

Input

Preprocessing

Highlight Prediction

Feature Extraction

MFCCs

Flow Inflated 3d 
Convolutional Neural Network

10 0 1 0 0 1 1 1 0 ... ... 0

Output

0Vector of binary segment predictions

Decision Model applied to all video segments

RGB-Flow Ranking Network

Concatenation Audio Ranking Network

Weighting

Figure 3: Full system architecture for Auto-Highlight model using multimodal hybrid fu-

sion and smoothing. This figure details the end-to-end system, from input data, i.e. video

data, through prepossessing, feature extraction, segment prediction and finally smoothing and

thresholding operations. The output is a binary vector where each element relates to if a video

segment is predicted as a highlight or not.
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the pre-trained model. This requirement is doubly a limitation for 3D CNNs

as it is a constraint that the input time dimension is fixed, unlike a CNN-RNN

architecture. Therefore we use frame sizes of 224× 224× 3 pixels and a stack of

64 frames total. Video data is sampled at 25 frames per second, and therefore

64 frames equate to 2.56 seconds of video per training sample. For both data

streams, RGB and Flow, 1024 features are generated for each 64 frame video

segment. The RGB network receives raw frames taken directly from the video.

We use the optical flow method proposed in Farnebäck (2003) on greyscale frame

data for the optical flow network.

4.1.2. Audio Feature Extraction

Audio is a crucial part of esports broadcasts because it represents a mix-

ture of in-game audio and commentator speech, and therefore it is pertinent to

include it in our models. Audio data is represented as a time-series vector of

data sampled at 192, 000 hertz. To keep the length of the audio samples con-

sistent with the video data, we group 491, 520 audio samples, i.e. 2.56 seconds,

into a single audio training example. We then process these samples by calcu-

lating the mel-frequency spectrograms and passing these into a state-of-the-art

pretrained speech feature encoder (Jia et al. (2018)). The encoder consists of

several LSTM layers and generates 256 audio features for use in the downstream

decision-making model.

4.1.3. Single Frame Extraction

One of the existing state-of-the-art approaches we implement, Wang et al.

(2019), uses features from a 2D CNN that extracts features from only a single

frame in addition to the video features detailed above. To offer a comparison

to this model, we also implement the same feature extraction. An Alexnet

(Krizhevsky et al. (2012)) network trained in object recognition on the ImageNet

database (Deng et al. (2009)) is utilised. We extract features from the final

bottleneck layer before classification is performed, resulting in a feature vector

of 9216 features for a single frame.
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Figure 4: Comparison of Feature (a), Model (b), and Hybrid (c) fusion architectures. For

simplicity three modalities are shown but in practice any number of modalities can be used.

4.2. Fusion

Three fusion methods, detailed below, are presented in this work. For a

visual overview of how these fusion methods differ, see Figure 4.

4.2.1. Feature Fusion

Feature fusion is perhaps the most intuitive method for fusion. After feature

extraction, the modalities are fused, e.g. via concatenation, resulting in a single

decision model provided with all modalities. However, multimodal feature fusion

may not work well in certain situations. For example, if there is a significant

disparity between the number of features from the modalities, the modality

with more features will likely be over-represented in the decision-making model

output. This is especially worth considering when comparing our audio feature

extraction, which has 256 features, and our single frame feature extraction,
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which has 9216 features. Therefore, we reserve this approach for the modalities

which produce the same number of features, i.e. RGB and Flow.

4.2.2. Model Fusion

Model fusion utilises a decision-making model for each modality and then

fuses them via weighted aggregation of the outputs. For a given video seg-

ment a highlight prediction is generated for each modality via separately trained

decision-making models, pm. The predictions for each modality are then weighted

by wm. This weighting allows the mechanism to be fine-tuned based on the per-

formance of each modality. The weighted predictions are then summed to pro-

duce a single segment prediction p (Equation 1). Past studies (e.g. Ringer et al.

(2019), Katsaggelos et al. (2015), Poria et al. (2017)) have shown that some-

times fusing later in the system can improve performance. That said, model

fusion is performed on decisions rather than features and thus loses fidelity in

the fusion step, although it is unclear how much this impacts performance. In a

positive-unlabelled setting such as ours, we need to heuristically determine the

weights for each modality because we cannot evaluate the performance of our

model on training data that mimics our test data, unlike in a supervised setting.

In future works with a more extensive test set, it may be possible to reserve a

portion of the test set for fitting hyper-parameters, thus reducing the reliance

on heuristically chosen values. For all of our models, we use equal weighting for

each modality. However, this is not a requirement, e.g. Wang et al. (2019) used

uneven weighting, which put more focus on the video model. For their work,

they selected the weights {0.7, 0.15, 0.15} for RGB, Frame, and Audio outputs,

respectively.

p =
∑

m∈modalities

pmwm (1)

4.2.3. Hybrid Fusion

Finally, we propose a mixed approach called hybrid fusion. Both the RGB

and Flow feature extraction networks are applied to the same input data domain,
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Figure 5: The rank network architecture. f(x) and h(x) are both multi-layer perceptrons.

visual data, and have the same number of features. Therefore it makes sense

to perform feature fusion because it is performed on the rich domain features,

thus providing more information to the decision model. However, feature fusion

is not appropriate for cross-domain modalities, i.e. visual and audio data, due

to the disparity in feature vector size. Therefore model fusion needs to be

employed to fuse audio and visual modalities. To maximise performance, we

apply feature fusion to two visual modalities and apply model fusion between

the visual decision-making model and the audio decision-making model. Hybrid

fusion has the added benefit that it equally weights visual and audio decision

making. We hypothesise that this allows the system to utilise rich features from

the same domain together, e.g. RGB and Flow data, while maintaining the

ability for the model to work with other modalities, e.g. audio, without having

a significant imbalance in terms of the number of features per feature set. Thus,

we hypothesise that hybrid fusion will outperform both feature fusion of just

the visual modalities or RGB, Flow, and Audio model fusion.

4.3. Decision Making

At some point, a decision needs to be made about if the extracted features

constitute a highlight or not. This is a tricky task because our input data is

extremely noisy. Data within the ‘highlight’ dataset are established as positive

labels, as segments in this dataset are selected by a video editor to be a highlight.
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However, we know with certainty that the broadcast dataset is noisy. It must

contain a mixture of highlight and non-highlight moments because the highlight

moments are sampled from the original broadcast data. Therefore, a noisy-label

mitigation mechanism is likely to yield improvements.

We employ a ranking network for our decision-making mechanism due to

their prevalence in literature. Concretely, a ranking network is a multilayer

perceptron with a single output. The model is provided with two samples during

training, one from each dataset. The expected output is that the sample from

the highlight dataset is ‘ranked’ higher than the sample from the broadcast

dataset, i.e. the output for the highlight sample is greater than the broadcast

sample. Each sample uses the same set of layers such that weight updates affect

the ranking of samples from both datasets. Often for such models, a Hinge loss

is used for weight adjustment.

For our model, we follow the modification proposed by Xiong et al. (2019).

Namely, we add a secondary network responsible for determining if an input

pairing is ‘valid’ or not. Because our non-highlight labels are noisy, it is possible

that a particular input pairing contains a sample from the broadcast dataset

which should be considered a highlight. Therefore this secondary network takes

a group of samples and, under the assumption that one sample is invalid, applies

a weighting to all losses in that batch. For our work, we assume that one in

eight samples is invalid because matches are often about 40 minutes to one hour

long, and highlight videos tend to be between five and eight minutes. This

modification performed well in Xiong et al. (2019) and given that their noisy

data is similar to ours, although a different domain, such a modification is likely

to yield good results in this work as well. Figure 5 details the architecture used.

The model is optimised against the loss function in Equation 2 where f is the

ranking network, and h is the validity network. For further detailed discussion

regarding this modification and its motivation, we refer the interested reader to

Xiong et al. (2019).
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Loss =
m∑

g=1

∑

(si,sj)∈Pg

w̃ijmax(0, 1 − f(xi) + f(xj))

s.t.
∑

(si,sj)∈Pg

w̃ij =
∑

(si,sj)∈Pg

σg(h(xi, xj)) = 1

w̃ij ∈ [0, 1]

(2)

4.3.1. Ranking Model Weights

Because each modality has a different number of input features, it makes

sense to vary the number of layers in the ranking network accordingly. The

architectures that we use are detailed in Table 1, alongside details about the

number of weights and memory requirements of the models. Two values are

given for the memory requirements of each model. Training memory refers to

training both f(x) and h(x) whereas inference memory refers to just calculating

a prediction value from f(x). Accurate memory profiling with Keras is currently

an open issue, and thus this work presents an approximation4. Note that the

implementation for Wang et al. (2019) uses an architecture of shape [64, 1] for

the audio ranking network (Audio A). However, we noticed it performed poorly,

so we additionally implemented a [512, 128, 1] architecture (Audio B) which was

used for all models except the comparison to Wang et al. (2019). All layers use

a ReLU activation function.

4.3.2. Binary Classifier

In Section 5.4 we compare the ranking approach to a binary classifier. Rank-

ing models are popular in literature, yet it is still valuable to compare ranking

with binary classification on our data to examine if the assumed benefits of us-

ing a ranking network exist. We replace the ranking models used in our hybrid

fusion model with binary classifiers. These classifiers are multilayer perceptrons

with the same topology as a single instance of the ranking network, without the

4https://github.com/tensorflow/tensorflow/issues/36327. For this work, we use the solu-

tion proposed by James Mishra.
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Table 1: Architectures for each ranking model. The architecture is detailed as a list of

feedforward neuron layers, reading left to right. The weights of the ranking network, f(x),

and validity network, h(x), are also detailed. Memory requirements are listed in MB and are

an approximation. *Feature fusion, †Wang et al. (2019).

f(x) h(x) Training Inference

Modality Architecture Weights Weights Memory Memory

RGB [512, 128, 1] 590,593 1,114,883 281.10 0.60

Flow [512, 128, 1] 590,593 1,114,883 281.10 0.60

RGB + Flow* [1024, 512, 128, 1] 2,688,769 4,785,923 572.08 2.70

Audio A† [64, 1] 16,513 32,899 68.68 0.02

Audio B [512, 128, 1] 197,377 328,451 78.60 0.20

Frame [4096, 1024, 512, 256, 128, 64, 1] 42,645,507 80,394,243 2,639.04 42.71

additional validity network. They are trained on the same data by assuming

that all samples in the highlight dataset are positive samples and all samples

in the broadcast dataset are negative, although we know that the broadcast

dataset contains mixed labels. Additionally, because the classifier network is

performing binary classification, the activation for the neuron in the final layer

is a sigmoid, not ReLU, and the loss is calculated using binary cross-entropy.

To mitigate the known deficits of this training paradigm, we implement the

positive-unlabelled weighting technique presented by Elkan & Noto (2008). Sim-

ply, we reserve a small portion of the training datasets (in our case, 10%) as

test data. Then we calculate the average output for all positive samples in the

test data and use this value as a weighting for the output when determining if

a sample is a highlight or not. Intuitively, the average output for all positive

samples can be seen as a confidence score relating to how confident the network

is that a known positive sample is positive. When using these classifier models

in our system, we multiply the output by the weighting. This weighting reduces

the output of the model and, as Elkan & Noto (2008) shows, shrinks the de-

cision boundary, thus making positive classifications less likely but improving

precision. This weighting does not affect average precision calculation, the main
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metric used in our experiments, but has a noticeable effect on classification given

a fixed decision threshold. These weighting constants were calculated as; RGB

and Flow: 0.97, Audio: 0.71.

4.4. Time-Series Smoothing

One apparent weakness of the ranking approach is that the model must de-

cide if a video segment is a highlight based on only that segment. However, in

reality, a human video editor would not do this. Instead, they would use the

context of surrounding video clips to inform their decision. For instance, an

uninteresting segment would likely be included if it links two exciting sections.

Likewise, a short but exciting section may be omitted from the highlight video

if clips before or after are uninteresting or contribute little to the match’s narra-

tive. However, influencing the segment decision making based on factors outside

that segment is impossible during training because our positive label samples,

i.e. those taken from the highlight dataset, are gathered without non-highlight

context. The only way in which it would be possible to intrinsically model

context would be if the dataset was fully labelled, e.g. scenarios (a) and (b) in

Figure 2, although as discussed, this is infeasible for large-scale datasets. There-

fore a technique for feature-agnostic modelling is required to consider context

in the decision making process.

A solution to this challenge is to apply a smoothing convolution to the

highlight signal across the whole video, which allows for context modelling in a

heuristic manner. This smoothing increases the highlight signal for segments in

a broadly interesting portion of the video and reduces the signal for moments in

a generally uninteresting segment. Because the smoothing convolution is applied

to the highlight signal rather than included as part of the rank model training,

it can be applied to our positive-unlabelled training data. We use a convolution

kernel of length L = 101 and a half-kernel length, used in kernel initialisation, of

n = ⌈L/2⌉ because this roughly equates to 30 seconds of footage surrounding the

sample, due to the sliding window segmentation approach described in Section

5. It is not clear which values would be most appropriate for this smoothing
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kernel, so we implement three options:

• Linear: A uniform smoothing kernel where each kernel element has the

same value. The kernel initialisation is described in Equation 3.

• Gaussian: A Gaussian with height 1 and the peak at the centre of the

kernel. The standard deviation is set to n/2. The kernel initialisation is

described in Equation 4.

• Power of 2: Each element is calculated as 2−x where x is the distance to

the centre of the kernel. The kernel initialisation is described in Equation

5.

k = 1 ∈ Rn (3)

k = Gaussian(i, 1, 0, n/2), ∀i ≤ n (4)

k = 2−i, ∀i ≤ n (5)

All kernels are then normalised such that all values in the kernel sum to 1,

Equation 6. The smoothed value x′
i for a given point in the time-series highlight

signal xi and kernel k is calculated via Equation 7. Note that the method

demonstrated here initialises only approximately half of the kernel weights. This

is for practical reasons and is possible because the kernel is symmetrical. In

theoretical terms, position one in a kernel vector represents the kernels centre,

position two represents the two values on either side of the centre and so on.

When calculating the resultant value, the absolute index is used to correctly

index the right element of the kernel vector when calculating the value for time-

series samples before the current time step.

k′ =
ki/min(k)∀ki ∈ k

∑k

i=0 ki
(6)

x′
i =

n∑

j=−n

xi+j · k|j| (7)
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5. Experimental Results

In total, four experiments are presented in this work. Firstly, we compare all

single modality models, including Xiong et al. (2019). Secondly, we compare all

multimodal models, including our Hybrid fusion approach as well as Wang et al.

(2019). Thirdly, we experiment with the time-series smoothing step. Finally, we

compare ranking models to binary classification, with and without noisy label

mitigation. All models are implemented in Python using a range of popular

machine learning libraries. PyTorch (Paszke et al. (2019)), Keras (Chollet et al.

(2015)), and Tensorflow (Abadi et al. (2015)) were all used to compose and

train models, with Numpy (Harris et al. (2020)), Scikit Learn (Pedregosa et al.

(2011)), Librosa (McFee et al. (2015)) and OpenCV (Bradski (2000)) used for a

range of auxiliary functions. All models were trained using 2 PCs. The first has

a Ryzen 5 1600 CPU, 16GB of RAM and an Nvidia 2080ti GPU. The second

had an Intel i7 9700 CPU, 64GB of RAM, and 2x Nvidia Titan RTX GPUs.

These machines were deliberately chosen because they represent consumer-grade

hardware and thus indicate if the techniques described in this work are likely to

be operationalisable.

We have a highlight label fidelity of 0.32 seconds. However, due to the

limitations of the feature extraction models, we must assess clips of length 2.56

seconds. We operate a sliding window system where a segment’s annotation is

calculated from the timestamp in the middle of the segment.

All experiments compare several models by evaluating their performance on

the test set. The principal metric for performance is the mean average preci-

sion (m̄AP ). This metric is popular in highlight detection literature because it

evaluates performance without determining a decision boundary for the model,

which is a tricky task given that ranking networks are deliberately trained with-

out one. m̄AP is calculated by taking the mean of the average precision (AP ) for

all videos in the test set. AP is calculated by averaging the precision achieved at

all recall values for all samples in a video. It is not clear if we would expect this

average precision to be normally distributed, and as such, we additionally re-
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Table 2: Results for Experiment One. Minimum Average Precision, Maximum Average Pre-

cision, Mean Average Precision, and Medium Average Precision are shown for four single

modality models alongside a random baseline. 1Xiong et al. (2019).

Modality Min. AP Max. AP m̄AP m̃AP

Random 0.025 0.394 0.118 0.104

RGB1 0.049 0.454 0.328 0.325

Flow 0.064 0.513 0.335 0.332

Audio 0.041 0.574 0.366 0.343

Frame 0.031 0.371 0.151 0.147

port the median average precision (m̃AP ). Precision, in general, is a reasonable

metric for evaluating our models because the quality of a highlight video suffers

if it contains many dull non-highlight moments. A high recall and low precision

model would generate a very long video that would be unlikely to function as a

‘highlight reel’. Additionally, accuracy is an inferior measurement because our

positive class constitute a tiny amount of the test data.

5.1. Experiment One - Modalities Comparison

The first experiment compares the performance of each modality if it is

treated as the sole model for highlight detection. Here the four modalities,

RGB video frames (RGB), optical flow video frames (Flow), audio (Audio),

and single-frame features (Frame), are compared alongside a random baseline.

The random baseline merely assigns a random value between [0 − 1] for each

video sample for all videos in the test set, and is included to demonstrate the

baseline challenge of this task. Note that because Xiong et al. (2019) uses just

RGB frames to determine highlights, the RGB modality here represents the

implementation of that approach.

Table 2 details the minimum AP (Min AP), maximum AP (Max AP) as well

as both averaged AP measures (m̄AP and m̃AP ) across all videos in the test
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Figure 6: Box and Whisker plots for all models evaluated in Experiment One.
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set for the five models tested in this experiment. To accompany this, Figure

6 presents box and whisker plots showing the distribution of results for each

model across each video in the test set.

To test the statistical significance of our results, we perform a Wilcoxon

signed-rank test on our models, the results of which can be found in Table 3.

Assuming that a p-value of < 0.05 indicates statistical significance, we see that,

unsurprisingly, the random model is significantly different to all of the other

models. Likewise, the single-frame features are also significantly different from

the modalities that capture temporal dynamics in some way (RGB, Flow, and

Audio). Perhaps unsurprisingly, given that the feature extraction models are

trained in the same manner following a similar architecture, the RGB and Flow

models are not significantly different. The RGB and Flow models are close in

m̃AP performance to the Audio model, indicating the importance of all three

modalities. However, the predictions from the Audio model are significantly dif-

ferent to the visual models, perhaps due to audio cues indicating different types

of highlight to visual cues. This difference may further indicate the benefits of

a multimodal approach.

Additionally, we calculate the A-measure (Vargha & Delaney (2000)), a sta-

tistical test for effect size, for each pair of models. An A-measure value of a > 0.5

indicates that one model is better than another, with values a > 0.56 indicating

a small effect, a > 0.64 indicating a medium effect, and a > 0.71 indicating a

large effect. The A-measure for a pair of models is symmetric around 0.5 and

sum to one. This means that additionally a > 0.44, a > 0.36, and a > 0.29

and indicate small, medium and large effect, albeit negative effect. We see a

large effect in the performance improvements of the temporal models, i.e. RGB,

Flow, Audio, over the single-frame model. We also see a medium effect size

when comparing Audio to RGB and Flow, indicating its performance benefits.

These results are also found in Table 3.
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Table 3: Statistical testing results for Experiment One. The upper right triangle details

Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values

more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44 ∨ a >

0.56). ‡ denote a medium effect size (a < 0.36 ∨ a > 0.64). ⋄ and bold denotes a large effect

size (a < 0.29 ∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon

signed-rank test. Bold denotes significant values, i.e p < 0.05.

Random RGB Flow Audio Frame

Random - 0.06⋄ 0.06⋄ 0.05⋄ 0.32‡

RGB 2× 10−6 - 0.48 0.39† 0.91⋄

Flow 2× 10−6 5 × 10−1 - 0.42† 0.91⋄

Audio 2× 10−6 3× 10−3 3× 10−2 - 0.92⋄

Frame 3× 10−3 2× 10−6 2× 10−6 2× 10−6 -

5.2. Experiment Two - Comparison of Multimodal Models

Experiment Two provides a comparison between several multimodal ap-

proaches. The system proposed by Wang et al. (2019) is presented alongside

our hybrid fusion model and a selection of other models indicative of the per-

formance gains from multimodal systems. Three model fusion models are pre-

sented, RGB + Flow, RGB + Audio, RGB + Flow + Audio, and one feature

fusion model, RGB + Flow.

Similarly to Experiment One, Table 4 shows the minimum and maximum AP

and both average AP measures for all multimodal models. Likewise, Figure 7

contains the corresponding box and whisker plots. The RGB + Audio + Frame

architecture presented in Wang et al. (2019) is the worst performing model.

Our proposed hybrid approach is the best performing system and produces

significantly different predictions to all models except for the RGB + Audio

model fusion model, Table 5. This may be due to the similarities in RGB and

Flow prediction.

Table 5 also details the A-measure calculations for this experiment. We see a
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Table 4: Results for Experiment Two. Minimum Average Precision, Maximum Average Pre-

cision, Mean Average Precision, and Medium Average Precision are shown for 6 multimodal

models. 2Wang et al. (2019).

Modalities Fusion Min. AP Max. AP m̄AP m̃AP

RGB+Flow Model 0.064 0.514 0.375 0.379

RGB+Audio Model 0.081 0.654 0.444 0.456

RGB+Flow+Audio Model 0.075 0.616 0.436 0.431

RGB+Audio+Frame2 Model 0.025 0.647 0.264 0.280

RGB+Flow Feature 0.070 0.567 0.418 0.424

RGB+Flow+Audio Hybrid 0.072 0.642 0.462 0.452

Figure 7: Box and Whisker plots for all models evaluated in Experiment Two.
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Table 5: Statistical testing results for Experiment Two. The upper right triangle details

Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values

more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44 ∨ a >

0.56). ‡ denote a medium effect size (a < 0.36 ∨ a > 0.64). ⋄ and bold denotes a large effect

size (a < 0.29 ∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon

signed-rank test. Bold denotes significant values, i.e p < 0.05.

Model Feature Hybrid

RFl RA RFlA RFlFr RFl RFlA

Model RFl - 0.31‡ 0.32‡ 0.75⋄ 0.35‡ 0.24⋄

RA 1× 10−5 - 0.53 0.84⋄ 0.58† 0.46

RFlA 2× 10−6 3 × 10−1 - 0.84⋄ 0.56 0.40†

RFlFr 1 × 10−2 8× 10−5 3× 10−4 - 0.17⋄ 0.12⋄

Feature RFl 9× 10−6 8 × 10−2 5 × 10−2 6× 10−4 - 0.37†

Hybrid RFlA 2× 10−6 9 × 10−2 7× 10−4 1× 10−5 4× 10−6 -
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large effect size when comparing our Hybrid approach to the RGB+Flow model

fusion model and a medium effect compared to the RGB+Flow feature fusion

model. This large effect size indicates the performance benefits of using hybrid

fusion across audio and visual modalities compared to visual data. Interest-

ingly we see only little effect compared to RGB+Audio and RGB+Flow+Audio

model fusion models, perhaps given that these all include the Audio domain,

which appears to be the single strongest indicator of a highlight. The medium

effect over the RGB+Flow+Audio model fusion model demonstrates the value

of hybrid fusion over only using model fusion. The RGB+Flow+Frame model.,

i.e. Wang et al. (2019), performs very poorly in this test, likely due to the Frame

model being a poor indicator of highlights, thus causing prediction noise.

5.3. Experiment Three - Time-Series Smoothing Convolutions

For this experiment, smoothing convolutions were applied to our hybrid fu-

sion model. All smoothing kernels are experimented with and compared to the

model’s performance without smoothing. Once again, key results are presented

in Table 6 and Figure 8. While the ‘Power of 2’ smoothing kernel works poorly,

both ‘Linear’ and ‘Gaussian’ outperformed the non-smoothing model. Further-

more, the ‘Gaussian’ smoothing performed better than the ‘Linear’ model.

Finally, all models produce significantly different predictions except for the

Power of 2 model compared to No Smoothing. Gaussian smoothing is the only

technique that produced an improvement with a notable effect size compared to

not using smoothing. The full Wilcoxon signed-rank test and Vargha Delaney

A measure results are presented in Table 7.

5.4. Experiment Four - Comparison of Ranking Network vs Binary Classifier

Throughout the first three experiments all models use a ranking network to

make predictions. However, this experiment compares ranking to binary clas-

sification, both using hybrid fusion and Gaussian smoothing. Two classifiers

are presented, one which includes the weighting constant proposed by Elkan

& Noto (2008) and one which does not. We also experiment with setting the
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Table 6: Results for Experiment Three. Minimum Average Precision, Maximum Average

Precision, Mean Average Precision, and Medium Average Precision are shown for the hybrid

model with various smoothing kernels applied.

Smoothing Min. AP Max. AP m̄AP m̃AP

No Smoothing 0.072 0.642 0.462 0.452

Linear 0.087 0.719 0.487 0.484

Gaussian 0.079 0.726 0.511 0.503

Power of 2 0.073 0.642 0.442 0.438

Figure 8: Box and Whisker plots for all models evaluated in Experiment Three.
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Table 7: Statistical testing results for Experiment Three. The upper right triangle details

Vargha Delaney A measure. Values less than 0.5 indicate column outperforms row and values

more than 0.5 indicate row outperforms column. † denotes a small effect size (a < 0.44 ∨ a >

0.56). ‡ denote a medium effect size (a < 0.36 ∨ a > 0.64). ⋄ and bold denotes a large effect

size (a < 0.29 ∨ a > 0.71). The lower left triangle details p-values calculated via a Wilcoxon

signed-rank test. Bold denotes significant values, i.e p < 0.05.

No Smoothing Linear Gaussian Power of 2

No Smoothing - 0.44 0.34‡ 0.58‡

Linear 3× 10−3 - 0.42‡ 0.63‡

Gaussian 2× 10−6 2× 10−3 - 0.71⋄

Power of 2 2 × 10−3 2× 10−6 2× 10−6 -

Table 8: Results for Experiment Four. Minimum Average Precision, Maximum Average

Precision, Mean Average Precision, and Medium Average Precision are shown for the hybrid

model alongside a binary classifier.

Decision Model Min. AP Max. AP m̄AP m̃AP

Classifier 0.046 0.719 0.499 0.542

Ranker 0.079 0.726 0.511 0.503

detection threshold for the models rather than relying solely on m̄AP . Selecting

a suitable threshold is vital for deploying such a model in a real-world situation.

For the classifier, this selection is trivial because the model is trained with an

exact threshold value, in our case, 0.5. In fact, the weighting constant requires

the threshold to be 0.5 for it to function correctly. Selecting a threshold for

the ranking model is less straightforward and needs to be determined heuristi-

cally. The ranking model has been trained under the assumption that 1 in 8

pairings are invalid, i.e. one in eight samples (12.5%) in the broadcast dataset

are highlights. Following this, we apply a dynamic threshold where the 12.5%

of samples with the highest ranks are selected as highlights.

Once again, we present the minimum AP, maximum AP, and both average
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Figure 9: Box and Whisker plots for all models evaluated in Experiment Four.

Table 9: Accuracy, Precision, Recall and F1 score for Experiment Four.

Decision Model Accuracy Precision Recall F1

Classifier 0.878 0.411 0.295 0.343

Weighted Classifier 0.893 0.559 0.074 0.131

Ranker 0.888 0.488 0.559 0.521
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AP measures for the hybrid model and a binary classifier model in Table 8 and

Figure 9. Only one set of scores for the binary classifier is presented because

the weighting to account for uncertain labels does not affect average precision

calculations.

When comparing thresholded models output, calculating the m̄AP becomes

impossible, but more traditional metrics such as accuracy, precision, recall and

F1 Score are useful. These are shown in Table 9. The metrics presented in this

table rely on a set decision boundary. Therefore models which require a deci-

sion boundary to be set heuristically, i.e. ranking models, may appear worse as

a poorly chosen threshold may artificially affect results. However, deploying a

ranking model in a real-world application would require setting this threshold.

Furthermore, for real-world settings, precision and recall based metrics are cru-

cial. Measuring accuracy is not particularly useful for our task because there

is a considerable class imbalance in our data, and accuracy does not weigh one

class as more important than the other. In our data, many more video segments

are non-highlights, but we are interested in detecting moments in the minority

highlight class. As such, accuracy may lead to models which appear successful

but, in practice, rarely detect the exciting moments and instead over classify

the majority non-highlight class. Precision, recall and F1 are concerned only

with the positive class, i.e. highlights, and therefore are more suitable. While

precision measures are helpful for highlight detection evaluation, as evidenced

by their prevalence in literature, recall is also valuable as it ensures that all of

the interesting moments are included. Therefore the F1 Score, the harmonic

mean of the two, is a reasonable metric for evaluating the ultimate performance

of a model.

Additionally, we observe that the highlight signal produced by the two mod-

els is very different. Figure 10 shows the output for an indicative game for both

the weighted classifier and ranking model. The signals from each half of the

model (i.e. RGB + Flow and Audio) alongside the fused weighted signal are

shown. Notice how the output from the models looks very different. Further-

more, we observed that the unweighted signals appeared to be more correlated
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in the ranking model. We calculated the Pearson’s correlation coefficient for

these signals for all videos in the test set to confirm this. We found that, on

average, the ranking networks decision models are more often correlated. The

median correlation was 0.434 for the rank model and 0.291 for the classifier.

6. Discussion

These results show several important discoveries. Firstly, the proposed hy-

brid fusion model outperforms the current state-of-the-art. This performance

improvement is evidenced both with and without the time-series smoothing.

The performance benefit of the smoothing is also an important finding. It

shows that modelling our video data as part of a time series, rather than merely

individual 2.56 second segments, significantly improves performance. This is

further evidence that context is essential for modelling the highlight moments

in a broadcast.

We find that, somewhat surprisingly, audio appears to perform the best of

all of the single modalities. This is an exciting result because we would ex-

pect that the visual data, especially in-game, would be more consistent between

training examples, and thus, the ranker would be able to better model which

moments are interesting. However, sports commentators are trained to make

the audience ‘feel’ when moments are exciting by delivering their commentary

with high arousal. The high levels of arousal in commentator speech appears

to be a powerful indicator of highlight moments, mirroring Sun et al. (2010).

Furthermore, we notice a broader range of results (MaxAP −MinAP ) for the

audio modality compared to both visual domains. Furthermore, the confidence

value determined for the weighted classifier model is lower for the audio model.

The findings indicate that audio is a potent indicator but that it also appears in

some ways less reliable than visual data, perhaps due to the natural noise present

in commentator speech, e.g. they may get animated when arguing about the

effectiveness of a particular play, which would falsely appear to be an indicator

of a highlight. Less surprising is that multimodal models generally outperform
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(a)

(b)

Figure 10: Time-series highlight signal for the Ranker (a) and Classifier (b) models from

Experiment Four on a single video in the test set.
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unimodal models. This is expected as in other domains, e.g. affective comput-

ing, multimodal modelling is effective, but it is still helpful to demonstrate this

empirically.

We see that the method from Xiong et al. (2019) generally performs worse on

this domain than in the original paper. However, the method from Wang et al.

(2019) performs better on our dataset. It is valuable to point out that Xiong

et al. (2019) was evaluated on significantly different data, human action high-

light recognition, but Wang et al. (2019) was evaluated on similar data, esports

coverage of a similar game to League of Legends. We expected that this problem

would be complex, first because, as discussed above, context is vital and sec-

ondly because the visual range of gameplay is small, e.g. the difference between

a highlight and non-highlight frame is smaller than in human actions. This

might also explain the generally poor performance of the single-frame model.

There does appear to be one video in the dataset where all models perform

poorly, evidenced by the low performing outlier in most box plots and Figure 11,

which shows the precision-recall curves used to calculate the average precision

for test set videos using hybrid fusion with smoothing. Upon inspection, this

particular video has much non-game content, especially highlights from previous

matches and replays of celebrations with excited commentators speaking over

the top. This extra content is unusual among the test set and explains the poor

performance. A human editor would easily understand that these moments are

outside of the game being played, but our models currently cannot.

Table 10 details the average execution time for various parts of the sys-

tem. These times were calculated using the test set and the Nvidia 2080ti

GPU equipped machine detailed in Section 5. Feature extraction directly from

video data is the most computationally expensive part of the process. This is

understandable due to the high complexity of video data. By comparison, cal-

culating the initial segment decisions is very fast, with all models taking around

0.004 seconds. Therefore, even our most complex hybrid fusion model is ca-

pable of ‘real-time’ prediction, i.e. processing faster than data is generated,

utilising consumer-grade hardware. However, such prediction is currently infea-
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sible due to the need for thresholding and the benefits of smoothing, which are

both applied to the entire broadcast. That said, these processes are extremely

fast computationally, taking approximately 0.5 seconds per video, although this

time varies slightly depending on video length. Therefore it would be possible

to process segments in real-time and then apply the smoothing and threshold-

ing techniques when the broadcast ends and thus generate and distribute the

highlight video extremely quickly.

Calculating the memory usage of the models presented in this work is chal-

lenging due to the choice of implementation library for the ranking decision mod-

els. Keras has no native method for accurate profiling memory usage. However,

approximate solutions exist, e.g. the one used for Table 1. Comparing weights

also determines the relative complexity of models, if not the total memory cost.

Table 1 details the number of weights for each ranking model used in this work.

From this, it is clear that the Frame only model is extremely large, ∼ 42 million

weights, compared to all other models. This is approximately 15 times larger

than the next largest ranking model in terms of weights, requiring nearly five

times more memory during training and over 15 times more during inference.

Thus Wang et al. (2019) has a much larger memory footprint compared to other

approaches. Not only does the larger model size increase run-time and memory

footprint, but it is also likely contributed to the poor performance of the frame

model due to over-fitting.

To demonstrate the processing time differences between feature extraction

and ranking, the RGB and Flow feature extraction models have a combined ∼ 25

million weights, and each require over 1300MB of memory during inference while

the RGB + Flow feature fusion decision model requires just 2.7MB. Therefore

it is evident that the decision part of the network is extremely lightweight com-

pared to feature extraction. Thus, while our three modality hybrid fusion model

has approximately six times weights and nearly five times the memory require-

ments compared to Xiong et al. (2019) it still operates quickly and adds little

total operating time to the system. However, utilising this approach provides

significant performance benefits, which we argue are worth the additional time
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Table 10: Average Execution Time per sample in seconds for both Feature Extraction (in-

cluding preprocessing) and the Segment Decision Process.

Component Average Time (seconds)

RGB Feature Extraction 0.215

Flow Feature Extraction 0.298

RGB + Flow Feature Extraction 0.495

Audio Feature Extraction 0.013

Segment Decision Process 0.004

and memory requirements. Additionally, we observe that all decision models

other than the Frame model, owing to its size, are lightweight enough to train

quickly, with each model taking just one to two hours to train on consumer

hardware.

Finally, it is worthwhile discussing the implications of Experiment Four,

specifically Table 9. While we see that the performance between the two mod-

els is similar when calculating m̄AP and m̃AP , when a threshold is selected, the

ranking model performs very well, despite the threshold being chosen heuristi-

cally, compared to the, in theory, ‘perfectly’ selected threshold for the binary

classifiers, i.e. the threshold with which the model was trained. The ranking

model has similar precision to the weighted classifier and is better than the un-

weighted classifier. However, it has far better recall and thus a better F1 score.

This suggests that even with a heuristically decided threshold, a ranking ap-

proach is more suitable for deployment than the corresponding classifier model.

Furthermore, we see the classification noisy label weighting effect as it is the

most precise model. However, it seriously affects the recall of the model. This

results in an ineffectual model for our domain. The highlights are intended to

entertain but also present an abridged narrative of the match. Such a low recall

score would, in practice, lead to a model which fails in this respect.
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Figure 11: Precision Recall curves for all videos in the dataset with the hybrid fusion model

with gaussian smoothing.
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7. Conclusion

This work presents a multimodal hybrid fusion model for automatic high-

light detection in esports broadcasts. It shows significant improvement over

existing techniques, in some cases achieving a m̄AP nearly twice as high as

existing state-of-the-art multimodal approaches in this domain. In doing so, we

also show the effectiveness of multimodal models compared to using a single

modality. Furthermore, we propose applying a smoothing kernel convolution

to the output signal of the model, which further significantly improves results.

Lastly, we examined the assumption that ranking approaches would outper-

form a corresponding classification approach. While classification performance

is comparable when averaging across all potential thresholds, we see that when

we select even a heuristically chosen threshold, the ranking model outperforms

the classifier model on critical metrics such as F1 Score. While this approach

has some limitations, e.g. context is only modelled crudely, it provides a solid

foundation to operationalise automatic highlight detection. The results are an

improvement over other state-of-the-art models, and additionally, the model

can be run quickly, just a few minutes per video on consumer-grade hardware,

which would allow esports broadcasters to quickly edit and release highlight

videos after a match has finished.

8. Future Work

The hybrid fusion model performs well compared to state-of-the-art models.

However, like them, it selects highlights based only on short segments and does

not explicitly model events outside of these segments, which could provide addi-

tional context. While applying smoothing does introduce consideration for the

context of a given sample, this is not modelled in the original ranking model. It

is challenging to model context in a weakly-supervised setting. While we have

the context for the broadcast dataset, as it is the original unedited broadcast,

this is not the case for the highlight dataset because it has been edited. Careful

consideration is required to best include context data into these models as doing
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so is likely to yield positive results. Additionally, rather than using pre-trained

feature extractors, it is also possible that using self-supervised learning may

yield performance benefits. For instance, a training scheme similar to the suc-

cessful ‘jigsaw’ scheme, but using temporal stacks of frames would potentially

result in a better set of features and improved short-term context modelling.

While text chat data was outside of the scope of this work, it does appear

to be an exciting avenue of investigation. Therefore, should appropriate tech-

niques for highlight detection from chat data emerge, it would be pertinent

to develop models which leveraged audio, visual and textual information for

highlight classification.

Finally, it is arguable that these models create highlights as a pastiche of

the video editors who made the original highlight videos in the training data.

It would be potentially valuable to explore highlight detection through the lens

of computation creativity, researching algorithms that learn to generate high-

light videos with unique styles. For instance, it may be possible to utilise the

active community of League of Legends fans on social media sites to improve

our models by posting highlight clips from our model to social media channels

and judging the responses it receives as a form of fine-tuning. This may also

lead to personalised highlight systems where viewers are shown a highlight video

conditioned on the kind of content the viewer has historically enjoyed. Alter-

natively, techniques such as the ones presented in this paper may serve as a

jumping-off point for human-in-the-loop co-creativity systems where the system

aides a human editor, rather than replacing them.
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Farnebäck, G. (2003). Two-frame motion estimation based on polynomial ex-

pansion. In J. Bigun, & T. Gustavsson (Eds.), Image Analysis (pp. 363–370).

Berlin, Heidelberg: Springer Berlin Heidelberg.

Feichtenhofer, C., Pinz, A., & Zisserman, A. (2016). Convolutional two-stream

network fusion for video action recognition. In Conference on Computer Vi-

sion and Pattern Recognition (CVPR).

48



Giannakopoulos, T., Makris, A., Kosmopoulos, D., Perantonis, S., & Theodor-

idis, S. (2010). Audio-visual fusion for detecting violent scenes in videos.

In S. Konstantopoulos, S. Perantonis, V. Karkaletsis, C. D. Spyropoulos, &

G. Vouros (Eds.), Artificial Intelligence: Theories, Models and Applications

(pp. 91–100). Berlin, Heidelberg: Springer Berlin Heidelberg.

Gygli, M., Song, Y., & Cao, L. (2016). Video2gif: Automatic generation of

animated gifs from video. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (pp. 1001–1009). doi:10.1109/CVPR.2016.114.

Han, H.-K., Huang, Y.-C., & Chen, C. C. (2019). A deep learning model for ex-

tracting live streaming video highlights using audience messages. In Proceed-

ings of the 2019 2nd Artificial Intelligence and Cloud Computing Conference

AICCC 2019 (p. 75–81). New York, NY, USA: Association for Computing

Machinery. doi:10.1145/3375959.3375965.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,

P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,

Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del R’ıo,

J. F., Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy,

T., Weckesser, W., Abbasi, H., Gohlke, C., & Oliphant, T. E. (2020). Array

programming with NumPy. Nature, 585 , 357–362. doi:10.1038/s41586-020-

2649-2.

Ilse, M., Tomczak, J., & Welling, M. (2018). Attention-based deep mul-

tiple instance learning. In J. Dy, & A. Krause (Eds.), Proceedings of

the 35th International Conference on Machine Learning (pp. 2127–2136).

PMLR volume 80 of Proceedings of Machine Learning Research. URL:

https://proceedings.mlr.press/v80/ilse18a.html.

Jia, Y., Zhang, Y., Weiss, R., Wang, Q., Shen, J., Ren, F., Chen, z., Nguyen, P.,

Pang, R., Lopez Moreno, I., & Wu, Y. (2018). Transfer learning from speaker

verification to multispeaker text-to-speech synthesis. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances

49



in Neural Information Processing Systems 31 (pp. 4480–4490). Curran Asso-

ciates, Inc.

Kahou, S. E., Bouthillier, X., Lamblin, P., Gulcehre, C., Michalski, V., Konda,

K., Jean, S., Froumenty, P., Dauphin, Y., Boulanger-Lewandowski, N., Chan-

dias Ferrari, R., Mirza, M., Warde-Farley, D., Courville, A., Vincent, P.,

Memisevic, R., Pal, C., & Bengio, Y. (2016). Emonets: Multimodal deep

learning approaches for emotion recognition in video. Journal on Multimodal

User Interfaces, 10 , 99–111.

Katsaggelos, A. K., Bahaadini, S., & Molina, R. (2015). Audiovisual Fusion:

Challenges and New Approaches. Proceedings of the IEEE , 103 , 1635–1653.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,

S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., & Zisserman,

A. (2017). The kinetics human action video dataset. CoRR, abs/1705.06950 .

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,

L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Pro-

cessing Systems 25 (pp. 1097–1105). Curran Associates, Inc.

Lai, K., Yu, F. X., Chen, M., & Chang, S. (2014). Video event detection by

inferring temporal instance labels. In 2014 IEEE Conference on Computer

Vision and Pattern Recognition (pp. 2251–2258).

Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., & Li, L. (2017).

Learning from noisy labels with distillation. In 2017 IEEE In-

ternational Conference on Computer Vision (ICCV) (pp. 1928–

1936). Los Alamitos, CA, USA: IEEE Computer Society. URL:

https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.211.

doi:10.1109/ICCV.2017.211.

Liaw, C., & Dai, B. (2020). Live stream highlight detection using chat messages.

50



In 2020 21st IEEE International Conference on Mobile Data Management

(MDM) (pp. 328–332).

Liu, T., & Tao, D. (2016). Classification with noisy labels by importance

reweighting. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 38 , 447–461. doi:10.1109/TPAMI.2015.2456899.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., &

Nieto, O. (2015). librosa: Audio and music signal analysis in python. In

Proceedings of the 14th python in science conference. volume 8.

Mendi, E., Clemente, H. B., & Bayrak, C. (2013). Sports video summarization

based on motion analysis. Computers & Electrical Engineering , 39 , 790 – 796.

doi:https://doi.org/10.1016/j.compeleceng.2012.11.020. Special issue on Im-

age and Video Processing Special issue on Recent Trends in Communications

and Signal Processing.

Moodley, T., & van der Haar, D. (2020). Scene recognition using alexnet to

recognize significant events within cricket game footage. In L. J. Chmielewski,

R. Kozera, & A. Or lowski (Eds.), Computer Vision and Graphics (pp. 98–

109). Cham: Springer International Publishing.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., & Tewari, A. (2013). Learning

with noisy labels. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

& K. Q. Weinberger (Eds.), Advances in Neural Information Processing Sys-

tems 26 (pp. 1196–1204). Curran Associates, Inc.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Mul-

timodal deep learning. In Proceedings of the 28th International Conference

on International Conference on Machine Learning ICML’11 (pp. 689–696).

USA: Omnipress.

Nguyen, N., & Yoshitaka, A. (2014). Soccer video summarization based on

cinematography and motion analysis. Multimedia Signal Processing (MMSP),

(pp. 1–6).

51



Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,

DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

L., Bai, J., & Chintala, S. (2019). Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-
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Wöllmer, M., Kaiser, M., Eyben, F., Schuller, B., & Rigoll, G. (2013). Lstm-

modeling of continuous emotions in an audiovisual affect recognition frame-

work. Image and Vision Computing , 31 , 153 – 163. Affect Analysis In Con-

tinuous Input.

Xiong, B., Kalantidis, Y., Ghadiyaram, D., & Grauman, K. (2019). Less is

more: Learning highlight detection from video duration. In 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1258–

1267). doi:10.1109/CVPR.2019.00135.

Xu, D., Ricci, E., Yan, Y., Song, J., & Sebe, N. (2015). Learning deep represen-

tations of appearance and motion for anomalous event detection. In X. Xie,

M. W. Jones, & G. K. L. Tam (Eds.), Proceedings of the British Machine

Vision Conference 2015, BMVC 2015, Swansea, UK, September 7-10, 2015

(pp. 8.1–8.12). BMVA Press. URL: https://doi.org/10.5244/C.29.8.

doi:10.5244/C.29.8.

Xu, H., & Chua, T.-S. (2006). Fusion of AV features and external informa-

tion sources for event detection in team sports video. ACM Transactions

on Multimedia Computing, Communications, and Applications , 2 , 44–67.

doi:10.1145/1126004.1126007.

Yao, T., Mei, T., & Rui, Y. (2016). Highlight detection with pairwise deep

ranking for first-person video summarization. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (pp. 982–990).

Yu, F. X., Liu, D., Kumar, S., Jebara, T., & Chang, S.-F. (2013). ∝ svm

for learning with label proportions. In Proceedings of the 30th International

Conference on International Conference on Machine Learning - Volume 28

ICML’13 (p. III–504–III–512). JMLR.org.

Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey

of affect recognition methods: Audio, visual, and spontaneous expressions.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 , 39–

58. doi:10.1109/TPAMI.2008.52.

54



Zhu, G., Huang, Q., Xu, C., Xing, L., Gao, W., & Yao, H. (2007). Human

behavior analysis for highlight ranking in broadcast racket sports video. IEEE

Transactions on Multimedia, 9 , 1167–1182.

55


