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Att-TasNet: Attending to Encodings in
Time-Domain Audio Speech
Separation of Noisy, Reverberant
Speech Mixtures
William Ravenscroft*, Stefan Goetze and Thomas Hain

Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom

Separation of speech mixtures in noisy and reverberant environments remains a

challenging task for state-of-the-art speech separation systems. Time-domain audio

speech separation networks (TasNets) are among the most commonly used network

architectures for this task. TasNet models have demonstrated strong performance on

typical speech separation baselines where speech is not contaminated with noise. When

additive or convolutive noise is present, performance of speech separation degrades

significantly. TasNets are typically constructed of an encoder network, a mask estimation

network and a decoder network. The design of these networks puts the majority of the

onus for enhancing the signal on the mask estimation network when used without any pre-

processing of the input data or post processing of the separation network output data. Use

of multihead attention (MHA) is proposed in this work as an additional layer in the encoder

and decoder to help the separation network attend to encoded features that are relevant to

the target speakers and conversely suppress noisy disturbances in the encoded features.

As shown in this work, incorporating MHA mechanisms into the encoder network in

particular leads to a consistent performance improvement across numerous quality and

intelligibility metrics on a variety of acoustic conditions using the WHAMR corpus, a data-

set of noisy reverberant speech mixtures. The use of MHA is also investigated in the

decoder network where it is demonstrated that smaller performance improvements are

consistently gained within specific model configurations. The best performing MHA

models yield a mean 0.6 dB scale invariant signal-to-distortion (SISDR) improvement

on noisy reverberant mixtures over a baseline 1D convolution encoder. A mean 1 dB

SISDR improvement is observed on clean speech mixtures.

Keywords: tasnet, speech separation, speech enhancement, encoder, decoder, attention

1 INTRODUCTION

Signal enhancement of speech signals recorded in far-field scenarios has been active research topic
for some decades now (Benesty, 2000; Cauchi et al., 2015; Reddy et al., 2021). Isolating individual
speakers from signal mixtures is often necessary when applying speech processing systems in real life
applications (Wang and Chen 2018; Haeb-Umbach et al., 2021). Speech separation is a common
approach to solving this problem. While there has been significant progress in recent years using
deep neural network based architectures to separate clean speech mixtures (Luo et al., 2017; Shi and
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Hain, 2021), the performance still drops significantly in noisy
environments, especially for low signal-to-noise ratios (SNRs)
(Wichern et al., 2019; Cosentino et al., 2020; Maciejewski et al.,
2020). Early approaches for separating speech signals were based

on harmonic relationships in the signal (Parsons, 1976) or non-
negative matrix factorization (NMF) (Schmidt and Olsson, 2006;
Cauchi et al., 2016) and later deep neural network (DNN)
variations on NMF approaches (Le Roux et al., 2015; Moritz
et al., 2017).

Models that used learned filterbank transforms from the time
domain such as TasNets are able to consistently outperform
models based on short-time Fourier transform (STFT) features
(Luo and Mesgarani, 2018; Luo and Mesgarani, 2019; Luo et al.,
2019; Chen et al., 2020; Ochiai et al., 2020; Subakan et al., 2021).
The encoder of TasNets can be interpreted as filter banks and this

paper aims at visualising the encoded signals in TasNets in that
respect. Luo and Mesgarani, (2018) first proposed a recurrent
TasNet (BLSTM-TasNet) model composed of a 1-dimensional
convolutional encoder, bidirectional long short term memory
(BLSTM) masking network and a transposed 1-dimensional
convolutional decoder. Luo and Mesgarani, (2019) revised this
into a fully convolutional network (Conv-TasNet) by replacing
the BLSTM network with a temporal convolutional network
(TCN) (Lea et al., 2016). Shi et al. (2019) proposed the
introduction of gating mechanisms into the TCN as a means
of controlling the flow of information through the network. A

dual path recurrent neural network model (DPRNN) was
introduced by Luo et al., (2019) which reorganises the input
data into multiple data chunks and processes the inter chunk and
intra chunk data sequentially using an long short term memory
(LSTM) based network for modelling temporal context in
sequences. The dual path Transformer network (DPTNet)
(Chen et al., 2020) and Sepformer (Subakan et al., 2021) are
dual path models that replace the recurrent neural networks in
the DPRNN model with Transformer networks (Vaswani et al.,
2017; Katharopoulos et al., 2020) for modelling temporal context
in the mask estimation part of the network. Work by Kadıoğlu

et al. (2020) focused more on the encoder and decoder part of the
generalized TasNet model structure where a deeper convolutional
encoder and decoder network were proposed for the Conv-
TasNet model. It was shown by Yang et al. (2019) that
combining the learned features of Conv-TasNet’s encoder with
STFT features leads to a small improvement performance for
clean speech separation tasks. Similarly, Pariente et al. (2020)
demonstrated that using complex-valued learnable analytic
filterbanks in the encoder and decoder can lead to further
performance improvement over real valued encoder of Conv-
TasNet. Ditter and Gerkmann, (2020) proposed hand-crafted

multi-phase gammatone (MPGT) filter bank features over the
learned filterbank in Conv-TasNet. This approach was effective
when just applied to the encoder but the learned decoder of Conv-
TasNet proved more effective than their MPGT based decoder.

This work investigates the use of attention mechanisms in the
encoder and decoder of TasNets to improve the performance,
particularly in noisy and reverberant situation. Vaswani et al.
(2017) proposed MHA as a way to parallelize a single attention
mechanism into multiple attention heads while maintaining a

similar parameter count to single headed attention. This work
proposes incorporating multihead attention mechanisms into the
encoders and decoders of Conv-TasNet to improve the
performance on noisy and reverberant speech mixtures where

it is assumed that the noisy content of the data is orthogonal to
the speech. Some discussion about the relevance of the
orthogonality assumption and its relationship to cross
correlation is given to motivate why attention mechanisms are
a suitable choice for improving the encoders and decoders. The
network structures are evaluated on noisy and reverberant data
from the WHAMR corpus (Maciejewski et al., 2020). Although
the main goal of this work is to minimize the negative effects of
additive noise under the assumption of orthogonality, separation
of reverberant speech mixtures, i.e. with convolutive noise
(reverberation) are also considered. The remainder of this

work proceeds as follows. In Section 2 the Conv-TasNet
model is briefly revised and analyzed. In Section 3 the
proposed Multihead Attention and the novel encoder and
decoder structures are introduced. The training configuration
and experiments conducted on the WHAMR corpus are
explained in Section 4. Further discussion and some
conclusions are give in Section 5.

2 CONV-TASNET

In this section the Conv-TasNet speech separation network
proposed by Luo and Mesgarani, (2019) is reviewed. The
network is composed of three components: an encoder, a
mask estimation network and a decoder. A schematic of the
network structure is shown in Figure 1 exemplary for C = 2
output signals. The mask estimation network formulated in
this section follows the implementation that can be found in
the open source SpeechBrain Ravanelli et al. (2021) and

ESPnet (Li et al., 2021) software toolkits. This
implementation differs slightly from the original proposed
by Luo and Mesgarani, (2019) which is discussed in greater
detail in Section 2.3.

2.1 Signal Model and Problem Formulation
The problem of monaural noisy reverberant speech separation is
a 1 dimensional additive and convolutive problem for which the
microphone signal x(t), t ∈ R is composed of C signals sc(t), c ∈
{1, . . ., C} convolved with their corresponding room impulse
response (RIR), hc(t), and an additive a noise source ](t).

x t( ) � ∑C
c�1

hc t( ) * sc t( ) + ] t( ) (1)

The symbol * in (1) denotes the convolution. The aim implicit in
the noisy reverberant speech separation task is to find C estimates
for each of sc(t), denoted as ŝc(t). The speech mixture signal x(t)
in (1) can be discretized such that x(ti) := x[i],

i ∈ 0, 1, . . . , Lx − 1{ } with i being the discrete sample index and
Lx the length of the signal.

The discrete mixture x [i] is processed in overlapping
segments of length LBL such that:
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xℓ � x 0.5 ℓ − 1( )LBL[ ], . . . , x 0.5ℓLBL − 1[ ][ ] (2)

where ℓ is the frame number for each of Lx frames and
xℓ ∈ R

1×LBL . Note that Lx and Lx are different quantities and
that the frame overlap in (2) is fixed to 50% in this work.

The encoder encodes short overlapping blocks of the time

domain signal xℓ as defined in (2). The encoder is a convolutional
neural network where the layer weights are learned in an end-to-
end (E2E) fashion. The mask estimation takes the output of the
encoder network wℓ and uses it to estimate a set of mask-like
vectors mℓ,c for each of the C speakers. These mask-like vectors
are then multiplied with the encoded signal vector wℓ, producing
a masked weight vector for each speaker. The decoder in the
original Conv-TasNet approach (Luo and Mesgarani, 2019) is a
transposed 1D convolutional layer that decodes these
representations back into the time domain to result in C
separated source estimates ŝℓ,c. The goal of the decoder is

theoretically to perform the inverse function of the encoder.

2.2 Encoder
The first stage of the network is to encode the input audio. The
encoder is a constructed using a 1D convolutional filter of kernel
size LBL with 1 input channel and N filters and an optional

nonlinear encoder activation layer denoted by
Henc: R

N×1
→ R

N×1. For a piece of audio of length Lx this
results in Lx frames and N output channels such that the
network produces Lx encoded mixture vectors wℓ ∈ R

1×N

given by

wℓ � Henc xℓB( ) (3)

where B ∈ R
LBL×N represents a matrix of the trainable

convolutional weights. In the implementation used in this
section the nonlinear activation used is chosen as a rectified

linear unit (ReLU) function. The encoded signal mixture for all
frames ℓ can be defined by W ∈ R

N×Lx .

W � w⊤

1 , . . . ,w
⊤

Lx
[ ] (4)

2.2.1 Channel Sorting for Visualisation of Encoded
Signals
While time-frequency approaches for speech separation based on
masking spectrogram representations are often easy to interpret,
for visualization of the encoded signalW, sorting over the output

convolutional channels n is beneficial. When visualising the

encoded representations in this work, the encoded signals’
channels are thus reordered according to the sorting algorithm
defined in Algorithm 1 based on depthwise Euclidean distance.

In the Conv-TasNet paper, Luo and Mesgarani, (2019) propose
using unweighted pair group method with arithmetic mean
(UPGMA) to sort the channels by Euclidean filter similarity.
The proposed Algorithm 1 was found to be preferable in many
cases to Luo and Mesgarani, (2019)’s approach as it leads to a less
granular representation with most of the speech energy being
located in the lower region of the representation, making it easier
to observe lower energy noisier regions within the encoded signal.
Consequently, the proposed channel sorting algorithm results in
visualisations more similar to well-known spectrogram-like time-
spectral representations. The key difference of the proposed

sorting algorithm is that Luo and Mesgarani, (2019)’s method
uses filter similarity to sort channels whereas the proposed
method sorts channels according to encoded feature similarity.
The use of UPGMA which is based on a clustering approach to
sort the channels is also not clearly motivated by Luo and
Mesgarani, (2019) hence in our approach we simply suggest
sorting the channels by decreasing similarity from the most
similar channels measured in Euclidean feature similarity. This
is premised on the assumption that the most similar channels will
contain the most amount of speech energy.

Algorithm 1. Channel sorting algorithm.

The distance matrix E in line 1 of Algorithm 1 is composed of
Euclidean distances between the encoded channel
representations, calculated element-wise by

Ei,j � ‖wni − wnj‖2 (5)

�

��������������
∑Lx
ℓ�1

Wi,ℓ −Wj,ℓ( )2
√√

(6)

withwni andwnj being the channels i and j, respectively, i.e. the ith
and jth row of W. Since the Euclidean distances are zero on the

FIGURE 1 | Generalised TasNet Model Schematic (exemplary shown for two speakers, C=2).
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main diagonal of E, these are replaced by the maximum value of E
in line 2. Here, I is the identity matrix. Next, the most similar
channels are identified in line 3. These are enumerated as the ath

and bth channel. Zeros on the main diagonal of E are restored in
line 4 to make sorting by distance possible for any given row in E.
In line 5 the ath row of E is selected. This row contains every
distance between all N channels and channel a such that v ∈ R

N.
The indices of vector v are then sorted in order of increasing
distance from channel a such that z � argsort(v) �
[a, b, . . . , argmax(v)].

A comparison of the original encoded noisy reverberant
speech mixture (NRSM) signal with its channels reordered
according to Algorithm 1 can be seen in Figure 2. It can be
seen that the right panels of Figure 2 is closer to what you would
expect from a spectrogram representation and thus allows for
more insight when analysing signals and masking. By contrast the
method proposed by Luo and Mesgarani, (2019) seemingly
provides a large number of small clusters containing speech
energy across the entire vertical axis.

Please note that values larger than 0.05 × max(W) in Figure 2

have been normalized to 1 to deal with a few extraneously large

values (which are less than 1% of the values). This normalization
scheme is used throughout this paper for the encodedmixturesW
of every clean, noisy and reverberant signal analysed in all
remaining figures.

2.3 Mask Estimation Network
The separation network is visualised in Figure 3. It uses a TCN
which consists of X layers of convolutional blocks (horizontal and
coloured in Figure 3A) which are repeated R times (vertical in

Figure 3A). The initial channel-wise normalisation for each block
of the encoded signal wℓ is defined as

C wℓ( ) �
wℓ − μwℓ������
σ2wℓ

+ ϵ

√ ⊙ γC + β
C
, (7)

μwℓ
� 1

N
∑N
n�1

wℓ,n, (8)

σ2wℓ
� 1

N
∑N
n�1

wℓ,n − μwℓ
( )2 (9)

where γC ∈ R
1×N and βC ∈ R

1×N are trainable parameter vectors.
A small value ϵ in the denominator of (7) ensures numerical
stability. A pointwise convolution acts as a bottleneck layer and

produces B channels as input for the successive convolutional
blocks. At the output of the mask estimation network a set of
masks are produced in a single vector, one each speaker at each
frame (cf. also Section 2.3.3). This is done using a single
pointwise convolution that changes feature dimension from B
to CN.

2.3.1 Convolutional Blocks
Each of the convolutional blocks consist of a pointwise 1D
convolutional layer proceeded by a depthwise separable
convolutional operation as visualized in Figure 3B resulting
in H channels within the convolutional block. Each subsequent
convolutional block has an increasing dilation factor f = 20, 21,
. . ., 2X−1 which widens the temporal context of the network for
every additional block. This implementation of the Conv-

FIGURE 2 | Encoded signal matrix W for clean speech mixtures (CSM) (top) and noisy reverberant speech mixture (NRSM) (bottom). From left to right: unsorted;

sorted using Luo and Mesgarani, (2019)’s method; sorted using the proposed method in Algorithm 1.
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TasNet TCN follows that which is used in popular research
frameworks such as SpeechBrain (Ravanelli et al., 2021) and
ESPnet (Watanabe et al., 2018; Li et al., 2021). This
implementation is in contrast to the original Conv-TasNet
proposed by Luo and Mesgarani, (2019) which includes an
additional skip connection from a parallel convolutional layer
at the output of the convolutional blocks.

Conv-TasNet was originally proposed in both causal and non
causal implementations. In the causal implementation
cumulative layer normalization is proposed by Luo and
Mesgarani, (2019) for the normalization layers in the
convolution blocks. In the implementations and results in
following sections the focus is on the non-causal model which
utilises global layer normalization (gLN) for normalizing
intermediate layers inside the convolutional blocks. The gLN
function is defined as

G F( ) � F − μF�����
σ2
F + ϵ

√ ⊙ γG + β
G

(10)

μF �
1

NLx

∑N
n�1

∑Lx
ℓ�1

Fn,ℓ (11)

σ2F �
1

NLx

∑N
n�1

∑Lx
ℓ�1

Fn,ℓ − μF( )2 (12)

where F ∈ R
N×Lx are the input features and γG, βG ∈ R

N×1 are
trainable vectors of parameters.

A parametric ReLU (PReLU) activation function is used after
the initial pointwise convolution as well as the in the depthwise
separable convolution, denoted by S in Figure 3b, cf. also (14).
The TCN takes an Lx × N dimensional input and produces a Lx ×

CN dimensional output. The input sequences to the depthwise
separable convolutional layers are zero padded such that the
output sequences are always of the same length as the input
sequences.

The depthwise separable convolution is an efficient algorithm
for computing convolutions where the convolution is computed
in two stages:

1) In the first stage a depthwise convolution, i.e. a convolution
per channel, is applied to each of G input channels.

D Y,K( ) � y0 * k0( )⊤, . . . , yG−1 * kG−1( )⊤[ ]⊤ (13)

FIGURE 3 | (A) Temporal Convolutional Mask Estimation Network. (B) Network layers inside ConvBlock in Figure 3A. G(F) denotes the layer normalisation as

defined in (7) and S(Y,K,L) is the depthwise separable convolution as defined in (14).
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for the input matrix Y ∈ R
G×Lx of the convolution operation and

the convolution kernel matrix K ∈ R
G×P of size P. Note that the

convolution input channels G also equals H in the dilated
convolutional blocks. yg ∈ R

1×Lx and kg ∈ R
1×P are the rows

of Y and K in (13), respectively. The operator (·)⊤ denotes the
transpose.

2) In the second stage pointwise convolution is then performed
across each of the H channels. This operation is defined as

S Y,K, L( ) � G Hdepth D Y,K( )( )( ) * L (14)

where L ∈ R
G×H×1, G is the global layer normalization function

(global layer normalization (gLN)) (Luo and Mesgarani, 2019)
andHdepth is a parametric rectified linear unit (PReLU) activation
function.

The depthwise separable convolution operation has G × P +
G × H parameters where as standard convolution operation has
G × P × H which means that the model size is reduced by a factor
of H × P

H+P ≈ P when H ≫ P Luo and Mesgarani, (2019).

2.3.2 Temporal Context
The TCN has a fixed window of depthwise inputs that the output

layer is able to observe for a given output block. This window of
data points is of interest particularly as the input speech data to
the network can be modelled as a causal system with long term
dependencies particularly with reverberant speech signals for
which the room impulse response hc(t) in (1) significantly
increases long term dependencies. The receptive field of a
convolutional network refers to the number of data points that
can be simultaneously observed by the network at the final
convolutional layer in a deep convolutional network. The
receptive field for the temporal convolutional network (TCN)
used in Conv-TasNet depends on the number of convolutional

blocks defined by blocks repetitions X and R as well as the kernel
size P and can be defined as

R R,X, P( ) � 1 + R P − 1( )∑X
i�1

2X−i. (15)

The receptive field in (15) is measured in the number of frames
observed in a given sequence. When the entire Conv-TasNet
model is considered, it is possible to use the receptive field to
measure the total temporal context observed by the whole
network at any given output, measured in seconds. Given the
sample rate fs and the block size LBL, the receptive field in
seconds is

T LBL, R, X, P( ) � LBL

2f s
1 + R P − 1( )∑X

i�1
2X−i⎛⎝ ⎞⎠ + LBL

2f s
(16)

� 1

fs

LBL +
RLBL

2
P − 1( )∑X

i�1
2X−i⎛⎝ ⎞⎠ (17)

2.3.3 Output Masks
The output features of the TCN network for each frame ℓ are a
concatenated vector of estimated masks, which is defined as

m⊤

ℓ,1, . . . ,m
⊤

ℓ,C[ ]⊤ ∈ 0,∞[ )1×CN (18)

where mℓ,c ∈ [0,∞)1×N and c ∈ {1, . . . , C} such that there is a set
of mask vectors for each source signal c. Note for later in Section

3.2.3.2 where novel decoders are derived that the authors
consider the mask-estimation stage complete when the mask-
like features in (18) of shape Lx × CN are de-concatenated into C
features matrices of shape Lx × N and thus all computation

proceeding from this stage is considered part of the decoder.

2.4 Decoder
The input signal of the decoderU is an element-wise multiplication
of the masksmℓ,c and the encoded mixture wℓ from (3). Estimates
for the source signals ŝℓ,c are then obtained from performing a
transposed 1D convolution operation defined as

ŝℓ,c � wℓ ⊙ mℓ,c( )U (19)

where U ∈ R
LBL×N represents a set of learned basis vectors to be

convolved with the masked mixture. ŝℓ,c ∈ R
1×LBL is the estimated

segment ℓ of for each audio source c. The matrix U in the original
Conv-TasNet model proposed by Luo and Mesgarani, (2019) is
considered to be the transposed convolution or the deconvolution
operation of B such that

xℓ � wℓU. (20)

However, no restraints are put on the model training to enforce
this condition so that this only assists the understanding in how

the model is expected to learn and hence can be a useful approach
in interpreting the model.

2.5 Objective Function
The objective function used for training is scale-invariant signal-
to-distortion ratio (SISDR)

SISDR :� 10 log10
‖starget‖2

‖edist‖2
, (21)

which is a commonly used objective function for training DNN
speech separation systems (Luo and Mesgarani, 2018; Luo and
Mesgarani, 2019; Luo et al., 2019; Chen et al., 2020; Subakan et al.,

2021), sometimes with minor modifications.

starget �
〈ŝ, s〉s

‖s‖2
(22)

in (21) is the scale invariant target speech and

edist � ŝ − starget (23)

the residual distortion present in the estimated speech. The clean
speech segment is denoted by s ∈ R1×Lx and ŝ ∈ R1×Lx is the
estimated speech segment. SISDR was first proposed by Roux
et al. (2019) for addressing energy scaling differences between
estimated and target audio clips.

2.6 Deep PReLU Encoders and Decoders
Some work has already been done to investigate improved
encoders and decoders for the Conv-TasNet model. Deeper
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convolutional encoder and decoder networks were proposed by
Kadıoğlu et al. (2020) for use with Conv-TasNet on speech
separation tasks. In this work, this deep convolutional encoder
and decoder model is implemented as an additional baseline to

the original Conv-TasNet model described in the previous part of
this section. The deep convolutional encoder consists of three
additional 1D convolutional layers each with the a kernel size of
three and a stride of 1. Each convolutional layer is proceeded by
a PReLU activation function. The number of input and output
channels are equal to N. Their deep convolutional decoder is
similarly constructed of an additional three transposed 1D
convolutional layers proceeded by PReLU activation
functions. Each additional transposed 1D convolutional layer
has the same kernel size and stride as the additional encoder
layer. Each layer also has N input and output channels. It was

found by Kadıoğlu et al. (2020) that increasing the dilation of
the encoder and decoder layers had negligible effects on the
SISDR separation performance and so a fixed dilation of 1 is
used for each layer.

3 MULTIHEAD ATTENTION ENCODER AND
DECODERS

In the following, the proposed MHA encoder and decoder
designs are introduced. The scaled dot product attention
function (Vaswani et al., 2017) and MHA are briefly
introduced and the proposed application of MHA in the
TasNet architecture is described. Attention was first
proposed by Bahdanau et al. (2015) as a layer in DNN
models that can be used to asses the similarity or relevance
between two sets of features and thus provide attention to
more relevant features.

3.1 Attention Mechanism
In this work, scaled-dot product attention

A Q,K,V( ) � softmax
QKT��
d

√( )V (24)

is used where Q ∈ R
Lq×dk ,K ∈ R

Lk×dk , and V ∈ R
Lk×dv denote the

query, key and value matrices, respectively. The terms query, key
and value are commonly used terms with MHA (Vaswani et al.,
2017) and so they are used here also. Each matrix has a sequence
dimension, Lq and Lk, as well as a feature dimension, dk and dv.
Note that the query and key matrices share the same feature
dimension dk and the key and value matrices share the same

sequence dimension Lk. The output of the attention function is of
shape Lq × dv.

In the encoders and decoders proposed here, the output of the
attention function is used to re-weight a sequence of features
according to which features in a sequence have the most
pointwise correlation (i.e. correlation across channels as
opposed to across discrete time) to one another. There is a
twofold assumption in our proposed application of the
attention function. The first is that encoded blocks containing
speech will have a higher correlation to one another than blocks

containing noise. Note that this is a similar assumption to the
orthogonality assumption made by Roux et al. (2019) in the
SISDR objective function in (21) used for training models in this
work. The second assumption is that in the encoded speech

mixture of each individual speaker’s speech signal will have a
larger pointwise correlation to itself than to any other speaker
across all frames.

Figure 4 demonstrates the proposed approach to calculating
the self-attention (Lin et al., 2017) of the transposed encoded
signal blocks W from (4), i.e. K = Q = V = W⊤. The lower right
panel shows then output of the attention mechanism which is
then used to re-weight the encoded mixture in the lower
left panel.

Figure 5 shows the attention weighted encoded input (middle
panel) compared to an encoded NRSM features (top panel) as

well as the corresponding encoded CSM features (bottom
panel). The attention weighting adds greater emphasis to
much of the features containing speech and conversely
weights down some of the noisier parts of the encoded features.

3.2 Multihead Attention Layer
The following section introduces multihead attention (Vaswani
et al., 2017) as an extension to scaled dot product attention within
the context of the encoder and decoder model proposed in this
work where all the inputs to the attention layer are of equal
dimensions.

3.2.1 Linear Projections and Attention Heads
To simplify notation in the following model descriptions, V, K,
Q ∈ R

Lx×N are used as notation for arbitrary inputs to each of the
MHA layers. The first stage inMHA layer is to linearly project the
inputs into a lower dimensional space. This is achieved by
multiplying the input sequences by three trainable weight
matrices,

θVa ∈ R
N×d

θQa ∈ R
N×d

θKa ∈ R
N×d

(25)

for each attention head a ∈ {1, . . . , A} where A is the number of

attention heads and d = N/A is the reduced dimensionality. The
motivation for reducing the dimensionality is that this retains
roughly the same computational cost of using a single attention
head with full dimensionality while allowing for using multiple
attention mechanisms. Each of these weight matrices are used to
compute (Ka, Qa, Va) for each attention head a ∈ {1, . . . , A} such
that

Ka � KθKa ∈ R
Lx×d

Qa � QθQa ∈ R
Lx×d

Va
� Vθ

V
a
∈ R

Lx×d.

(26)

For each attention head the attention function is computed such
that

χa � A Qa,Ka,Va( ) (27)

where χa is the ath attention head.
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3.2.2 Multihead Attention
The final stage is connecting the attention heads by concatenating
a long the d length dimension and projecting the features using a
linear layer defined by a weight matrices

θO ∈ R
Ad×N � RN×N (28)

The combined concatenation and linear projection is defined by
the Multihead Attention function

M Q,K,V( ) � χ1, . . . , χA[ ]θO (29)

3.2.3 MHA Encoder and Decoder Architectures
In this section the MHA encoder and decoder architectures are
described. Both the encoder and decoder models use a similar
paradigm by applying a multihead attention layer followed by a

non-linearity to produce a set of mask like features which are then
used to weight and encoded mixture.

3.2.3.1 Encoder
For the encoder self-attention (Lin et al., 2017) is used. self-
attention refers to applying attention across a sequence to itself.
Therefore the inputs to theMHA layer are defined as visualized in

Figure 6 such that

V � K � Q � Henc x1B( ), . . . ,Henc xLxB( )[ ]T ∈ R
Lx×N (30)

where every input to the MHA layer is the encoded mixture from
a 1D convolutional layer and ReLU activation similarly as in (3).
The output of the MHA layer is then treated in a mask-like
fashion where it is multiplied element-wise with the encoded
mixture. This representation is then proceeded by a ReLU
activation. Empirically it was found that placing the ReLU
activation after the elementwise multiplication as opposed to

using the direct output of the MHA layer consistently yield better
performance across all acoustic conditions. The complete
network diagram for the MHA encoder is shown in Figure 6.

FIGURE 4 | Top left: encoded NRSM signal. Top right: Computed attention matrix weights. Bottom right: Scaled dot product attention. Bottom left: encoded

NRSM signal re-weighted with attention. The figures on the left have had values above 0.05× their maximum values clipped and are normalized between 0 and 1. The

figures on the right are normalized between 0 and 1.
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3.2.3.2 Mask Refinement and Post-Masking Decoders
A number of approaches are proposed. Two encoder-decoder
attention (Vaswani et al., 2017) based decoder models are
proposed in the following subsection. The first is referred to as
mask refinement (MR) and the other is referred to post-masking

(PM). Both decoders are composed of an MHA layer proceeded
by a ReLU activation function and a transposed 1D convolutional
layer. For both architectures the input to the MHA layers are
defined as

V � w1, . . . ,wK[ ]T ∈ R
Lx×N (31)

Kc � m1,c, . . . ,mLx ,c[ ]T ∈ R
Lx×N (32)

Qc � w1 ⊙ m1,c, . . . ,wK ⊙ mLx ,c[ ]T ∈ R
Lx×N (33)

where c ∈ {1, . . . , C} and C is the number of target signals. These
inputs are defined to combine the principles of encoder-decoder
attention, described in Section 3.2.3 of Vaswani et al. (2017), with
those of self-attention as both the key and query contain
information from the estimated masks. The same MHA layer

is used for each speaker.
The MR decoder produces a mask from the MHA layer

proceeded by a ReLU function which is multiplied by the
encoded mixture and this re-masked encoded mixture is then
decoded back into the time domain with the transposed 1D
convolutional layer. The MR decoder model is depicted in
Figure 7A. The motivation in this design is to use the MHA
mechanism to produce a mask that refines the already masked
encoded representation such that is attends better to features
most relevant to the most present speaker features in the original
masked encoded features.

The post-masking decoder (PMD) also uses an MHA layer to
produce a new mask but in this model the new mask is used to
refine the already masked encoded mixture. The PMD model is
shown in Figure 7B. The motivation in this design is to use the

FIGURE 5 | Top: Encoded NRSM signal blocks. Middle: Encoded NRSM signal blocks re-weighted with attention as defined in (24). Bottom: Encoded CSM signal

blocks (](t)=0, hc(t)= δ(t), ∀t ≥0). The top and bottom figures clip values above 0.05× themaximum value of the encodedNRSM signal and then normalized between 0 and

1. The middle figure clips values above 0.05× its maximum value and is then normalized between 0 and 1.

FIGURE 6 | Convolutional MHA encoder diagram.
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MHA mechanism to produce a new mask by observing speaker
information in the masks and masked encoded mixtures to
produce an improved hypothesis of what that masks should be
by attending to the most prevalent an correlated speaker
information in both types of representation.

3.2.3.3 Self-Attention Decoder
An additional decoder based on self-attention is proposed shown
in Figure 7C. This decoder applies MHA to the masks estimated
by the network defined in Section 2.3 in a self-attentive manner
such that

V � K � Q � m1, . . . ,mLx[ ]T ∈ R
Lx×N. (34)

The output of the MHA layer is proceeded by a ReLU function to
produce a new set of masks. The Hadamard product of the new
masks with the encoded mixture is then computed. This masked
encodedmixture is then decoded back into the time domain using

a transposed 1D convolutional layer.

3.3 Relationship Between Dot Product and
Cross-Correlation
Some brief discussion is given to how the scaled dot product
function in multihead attention can be formulated as computing
a cross correlation matrix of finite discrete processes across the
features of each frame ℓ. Using this formulation it is suggested
that the attention mechanism naturally applies more weight

across frames that are highly cross correlated and applies less
weight across frames that have lower cross correlation.

The discrete cross-correlation function of two finite processes
q [n] and k [n] can be estimated by

r̂qk κ[ ] � ∑N
n�1

q n[ ]k n + κ[ ]. (35)

The numerator of (24) is the following matrix of size Lq × Lk
for which in the following Lq = Lk = Lx.

QKT �

q1k
T
1 q2k

T
1 . . . qLx

kT
1

q1k
T
2 q2k

T
2 . . . qLx

kT
2

.

.

.
.
.
.
1

.

.

.

q1k
T
Lx

q2k
T
Lx

. . . qLx
kT
Lx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (36)

For each cell in the resultant matrix there is the dot product of
the feature vectors qℓ and kℓ which can be written more
explicitly as

r̂q
ℓ
kℓ � ∑N

n�0
qℓ n[ ]kℓ n[ ]. (37)

In Eq. 35, rq
ℓ
kℓ can be formulated as the cross-correlation

function in Eq. 33 where κ = 0, x is substituted with qℓ and y

is substituted with kℓ. The intuition in using this formulation is
that additive noise features will have much lower correlation to
the target speech signal across time than the speech features will

FIGURE 7 | (A) MHA mask refinement (MR) decoder architecture. (B) MHA post-masking (PM) decoder architecture. (C) MHA self-attention (SA) decoder

architecture.
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to themselves. Similarly it is assumed that convolutional noise
features, i.e. reverberant features, will have much higher
correlation to the target speech features across the temporal
axis and thus the attention mechanism will yield less

performant results at dereverbing the reverberant features.

3.4 Encoder and Decoder Complexities
Some brief discussion is given to the model complexities
predominantly for reference. The complexities for each of the
proposed encoders and decoders as well as the baselines used later
in Section 4 are given in Table 1.

The proposed encoder described in 3.2.3.1 is more
computationally complex than the encoders proposed by Luo
and Mesgarani, (2019) and Kadıoğlu et al. (2020) however a
significant reason for this is that the attention operation

considers the entire sequence length as opposed to operating
over a smaller context window as is the case in the other
encoders. The same is true of the proposed decoders
described in Section 3.2.3.2 and Section 3.2.3.3 compared
with the purely convolutional decoders proposed by Luo and
Mesgarani, (2019) and Kadıoğlu et al. (2020). In future work,
ways to alleviate the computational complexity using linear
attention (Katharopoulos et al., 2020) and restricted self-
attention (Vaswani et al., 2017) can be explored but this is
beyond the scope of the work presented here.

4 EXPERIMENTS

This section presents details on the experimental setup as well as
the results performed to evaluate the proposed encoders and
decoders in the previous section.

4.1 Data
A number of datasets have been proposed for benchmarking

speech separation systems (Cosentino et al., 2020). The WSJ0-
2Mix dataset, published first in Hershey et al. (2016) and Isik et al.
(2016), is a popular simulated dataset for clean speech
separation. However, it neither includes additional noise nor
reverberation as targeted in this work in (1). To incorporate
additional noise the (WSJ0 Hipster Ambient Mixtures) WHAM
corpus was introduced in Wichern et al. (2019) and to
incorporate reverberation effect, the WHAMR dataset was
proposed by Maciejewski et al. (2020) as a noisy reverberant
extension to WSJ0-2Mix and is used for all experiments in this
section. WHAMR is a corpus of noisy reverberant speech

mixtures. For each training example there is a mixture and
two targets. Speech mixtures are evaluated under four different
acoustic conditionss (ACs): CSM, i.e. ](t) = 0 and h(t) = δ(t) in
(1), noisy speech mixture (NSM), i.e. h(t) = δ(t) but noise

present in (1), reverberant speech mixture (RSM) i.e. v(t) = 0
but reverberation present in (1), and NRSM. The training set
consists of 20,000 training examples resulting in overall
58.03 h of speech, the validation set consists of 5,000
training examples equalling 14.65 h of speech and the test
set consists of 3,000 examples resulting in 9 h of speech. 8kHz
audio samples are used and clipped to 3 s segments for
training. This length constraint is removed for validation
and testing.

Noise clips were sampled from a number of urban
environments and these are mixed with the speech mixtures at

a randomly selected SNR value from a uniform distribution
between −6 and +3 dB. RIRs are also randomly generated. An
RIR is generated for each speaker from the same simulated room
environment. The RIRs have a reverberation time RT60 ranging
from 0.1 to 1 s and are generated using the pyroomacoustics
software package (Scheibler et al., 2018).

4.2 Training Configuration
The Conv-TasNet model is implemented using the SpeechBrain
framework introduced by Ravanelli et al. (2021). The specific
model configuration used is slightly different to bothWHAMR

baselines provided by Maciejewski et al. (2020) as an improved
configuration was found. As previously noted, the mask
estimation network in SpeechBrain1 neglects the skip
connections in the original Conv-TasNet model proposed
by Luo and Mesgarani (2019) and implemented in
Maciejewski et al. (2020)1. A comparison of the different
model parameters as well as the CSM SISDR performance
and temporal context, reported in seconds (s), of each network
is shown in Table 2.

An utterance-level permutation invariant training (PIT)
scheme (Kolbaek et al., 2017) is employed to deal with the

unknown mismatches of the speech separator. An initial
learning rate of 1 × 10–3 is used and scheduler is used that
halves the learning rate if there is no average SISDR improvement
of the model for three epochs. A batch size of 4 was used. A total
of 100 epochs of training were performed.

TABLE 1 | Complexity of all encoder and decoder models evaluate including all non-linearities, weights and biases.

Model Complexity

Conv-TasNet encoder Luo and Mesgarani (2019) O ((LBL + 1) · Lx · N)
Conv-TasNet decoder Luo and Mesgarani (2019) O (LBL · Lx · N)
Deep-PReLU encoder Kadıoğlu et al. (2020) O ((LBL + 7) · Lx · N + 3 · Lx · N2)

Deep PReLU-decoder Kadıoğlu et al. (2020) O ((LBL + 6) · Lx · N + 3 · Lx · N2)

SA encoder (proposed) O((LBL + 3) · Lx · N + Lx · N2 + (1 + 1
A
)L2x · N)

self-attention (SA) decoder, PM decoder, MR decoder (proposed) O((LBL + 2) · Lx · N + Lx · N2 + (1 + 1
A
)L2x · N)

1Conv-TasNet implementation in SpeechBrain: https://github.com/speechbrain/

speechbrain/blob/develop/speechbrain/lobes/models/conv_tasnet.py.
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4.3 Assessment Metrics
Performance is measured using SISDR, signal-to-distortion ratio
(SDR), perceptual evaluation of speech quality (PESQ) and short-
time objective intelligibility (STOI).

SDR is a generalized SNR metric that measures the amount of
energy in the signal compared with the energy in the combined
residual noise, artifacts and interference. SDR has been widely
used in assessing source separation models in general (Stoller
et al., 2018; Luo and Mesgarani, 2019).

PESQ was proposed by Rix et al. (2001) as an objective
measure for speech quality assessment. The design of PESQ is
supposed to offer similar results to Mean Opinion Score (MOS)

by using psychoacoustically motivated filter models. The measure
ranges from −0.5 to 4.5, with −0.5 being considered lowest
quality. PESQ is often used for assessing general denoising
and dereverberation tasks. It has also been used for assessing
speech separation performance (Wang et al., 2014; Deng et al.,
2020).

STOI is an intelligibility metric proposed by Taal et al. (2010)
which uses correlation ratios between clean and degraded signals
to asses the intelligibility of the degraded signal with a score
between 0 and 1. STOI has been commonly used for assessing
general speech enhancement tasks but has also been used in
assessing speech separation models (Deng et al., 2020).

Δmeasures are shown in addition to the absolute metric values
to indicate the improvement in quality or intelligibility between
the noisy reverberant signal mixture x and the network estimates
ŝc against the reference sc.

4.4 Results
The following subsections address the speech separation results of
the proposed method in comparison to baseline methods on the
WHAMR corpus. The MHA encoder is evaluated first and then
two subsequent sections analyse the MHA decoder architectures
and look at how the number of attention heads affects

performance. All metrics use the permutation invariant
training schema to find the optimal value of each metric
under the assumption this is the correctly matched
permutation of speakers. Every set of results is compared
against the original encoder and decoder proposed by Luo and
Mesgarani, (2019) reported as Conv-TasNet and the deep
convolutional encoder and decoder model proposed by
Kadıoğlu et al. (2020) is reported as Deep PReLU.

4.4.1 MHA Encoder Results
The MHA encoder model seen in Figure 6 is compared to the
original Conv-TasNet baseline encoder proposed by Luo and
Mesgarani, (2019) as well as the Deep PReLU approach proposed
by Kadıoğlu et al. (2020). The results for this comparison across
all four acoustic conditions can be seen in Table 3. The MHA
encoder are denoted as the self-attention encoder (SAE) in all
results.

These results demonstrate a consistent improvement of the
MHA encoder over the original baseline purely convolutional
encoder. Highest improvement in performance can be observed
for the clean speech mixtures (CSM) since this is the easiest task

for the network. The MHA encoder achieved slightly more
performance improvement on the RSM condition than the
NSM condition and the NRSM. The MHA encoder
outperformed the Deep PReLU encoder on every acoustic
condition. Figure 8 shows the intermediate features in the
MHA encoder encoding an NRSM signal. Comparing the
encoded signal after the first convolutional layer in the
network to the similar representation in Figure 6 it is notable
that the convolutional layer has learned to focus on a narrow set
of channels. This implies a large number of the channels are in
fact redundant, a similar find to the MPGT encoder and

convolutional decoder model proposed by Ditter and
Gerkmann, (2020). The final output of the MHA encoder
further narrows the focus of the encoded features.

Another interesting finding of the output of the MHA layer
is that the mask-like features do not seem to attenuate the
signal where there is only noise present as one might expect
due noise not being present in the target signal at training. This
effect can be seen more clearly when compared to the
intermediaries of the CSM signal encoded by the MHA
encoder in Figure 9.

4.4.2 MHA Decoder Architecture Comparisons
A comparison of the mask refinement decoder (MRD) in
Figure 7A, the PMD in Figure 7B and the self-attention
decoder (SAD) in Figure 7C is carried out in the following to
analyse which approach, if any, leads to superior decoding
performance over the Conv-TasNet baseline (Luo and
Mesgarani, 2019) and Deep PReLU decoder (Kadıoğlu et al.,
2020). The results are shown in Table 4. In each case the number
of attention heads is set to A = 2.

TABLE 2 | Details of the Conv-TasNet configuration compared to Maciejewski et al. (2020). Bold indicates SISDR result of the proposed baseline.

Variable Description Maciejewski et al. (2020) Baseline

N Input channels 512 512

LBL Input block size 16 16

B Bottleneck output channels 128 128

Sc Skip connection channels 128 N/A

H Output channels 512 512

P Kernel size of conv. block 3 3

X Blocks of increasing dilation 8 6

R Repeats of dilated layers 3 4

T (LBL ,R,X ,P) Temporal context (s) 1.53 0.51

SISDR SISDR (dB) on CSM 14.3 14.6
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There was a clear performance improvement on clean
speech mixtures across all metrics with the MRD in
Figure 7A. Also a noticeable performance increase can be
observed for the reverberant speech mixtures but this

improvement is not also seen for the noisy reverberant
speech mixtures where there was a small drop across all
measures except for the STOI measure. The PMD design
showed decreased performance across all conditions and

TABLE 3 | Comparison of MHA encoder with 4 attention heads to Original Conv-TasNet encoder across various acoustic conditions. Bold indicates the best performing

model for each acoustic condition and metric.

AC Encoder SISDR ΔSISDR SDR ΔSDR PESQ ΔPESQ STOI ΔSTOI

CSM Conv-TasNet 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342

Deep PReLU 14.8 14.8 15.2 15.1 2.96 1.66 0.941 0.344

SAE 15.7 15.7 16.1 16.0 3.15 1.84 0.952 0.355

NSM Conv-TasNet 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373

Deep PReLU 7.83 12.3 8.51 12.7 2.04 0.900 0.840 0.432

SAE 8.37 12.9 9.01 13.2 2.09 0.93 0.854 0.446

RSM Conv-TasNet 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312

Deep PReLU 5.91 9.20 8.09 8.21 2.26 1.04 0.860 0.325

SAE 6.39 9.67 8.57 8.68 2.34 1.10 0.874 0.339

NRSM Conv-TasNet 3.54 9.66 5.48 8.96 1.79 0.656 0.75 0.366

Deep PReLU 3.63 9.76 5.56 9.05 1.82 0.68 0.76 0.372

SAE 4.11 10.4 6.00 9.48 1.92 0.754 0.787 0.399

FIGURE 8 | Top left: encoded NRSM features after 1D convolution and non-linearity in MHA encoder sorted using Algorithm 1. Top right: mask-like output of self

attentive MHA layer in MHA. Bottom left: output of the MHA encoder. Bottom right: Averaged attention weight matrix across all attention heads, A =4.
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FIGURE 9 | Top left: encoded CSM features after 1D convolution and non-linearity in MHA encoder. Top right: mask-like output of self attentive MHA layer in MHA.

Bottom left: output of the MHA encoder. Bottom right: Averaged attention weight matrix across all attention heads, A = 4.

TABLE 4 | Comparison of MRD in Figure 7 (a) to PMD in Figure 7 (b) across various acoustic conditions. Bold indicates the best performing model for each acoustic

condition and metric.

AC Decoder SISDR ΔSISDR SDR ΔSDR PESQ ΔPESQ STOI ΔSTOI

CSM Conv-TasNet 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342

Deep PReLU 15.0 15.0 15.5 15.3 3.01 1.72 0.943 0.345

SAD 15.0 15.0 15.5 15.3 3.09 1.78 0.944 0.347

MRD 15.1 15.1 15.6 15.4 3.06 1.76 0.946 0.348

PMD 12.5 12.5 13.1 13.0 2.85 1.55 0.932 0.335

NSM Conv-TasNet 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373

Deep PReLU 7.87 12.4 8.55 12.8 2.05 0.913 0.834 0.426

SAD 7.88 12.4 8.53 12.8 2.05 0.9 0.842 0.434

MRD 7.52 12.0 8.19 12.4 1.98 0.837 0.837 0.429

PMD 7.39 11.9 8.08 12.3 1.96 0.82 0.835 0.427

RSM Conv-TasNet 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312

Deep PReLU 5.85 9.14 7.88 7.99 2.27 1.04 0.856 0.32

SAD 5.92 9.2 8.07 8.19 2.27 1.03 0.859 0.323

MRD 5.77 9.06 7.96 8.07 2.20 0.976 0.855 0.319

PMD 5.37 8.66 7.32 7.44 2.22 0.986 0.850 0.315

NRSM Conv-TasNet 3.54 9.66 5.48 8.96 1.79 0.656 0.75 0.366

Deep PReLU 3.68 9.81 5.54 9.03 1.82 0.681 0.761 0.373

SAD 3.87 9.99 5.74 9.22 1.88 0.718 0.774 0.385

MRD 3.19 9.32 5.12 8.61 1.76 0.62 0.769 0.381

PMD 3.08 9.20 4.84 8.32 1.76 0.62 0.756 0.368
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metrics. The best performing of the proposed decoders across
all conditions was the self-attention decoder. This decoder also
outperformed the baseline Deep PReLU decoder with greater
success the more challenging the audio became, c. f. SISDR
results for CSM, NSM conditions with SISDR results for RSM
and NRSM conditions.

4.4.3 MHA Decoder Number of Heads Comparisons
Results shown in Section 4.4.2 demonstrated that the proposed
self-attention decoder in Figure 7C was more effective than the
MR and PM decoders. The MR decoder also showed some

potential performance improvement for the CSM condition
but this was not replicated across all conditions. In the
following subsection, further analysis is done using the
SAD and MRD to observe the effect that using a variable
number of heads might have on the model. Experiments were
performed using A = {2, 4, 8} attention heads for both
decoders and are again compared against the Conv-TasNet
(Luo and Mesgarani, 2019) and Deep-PReLU baselines
(Kadıoğlu et al., 2020).

The results in Table 5 show that using A = 4 attention heads
leads to a small but consistent performance increase across all

metrics used for MRD over the original Conv-TasNet decoder.
The smallest improvement is often close to 0.1 dB SISDR and it
is thought that this is not a strong enough improvement
beyond the effects of randomized model initialization to
confirm that this technique as implemented here is any
more effective than the original Conv-TasNet decoder. The
SAD again shows consistent improvement over the previously
demonstrated model with only two attention heads for both
A = 4 and A = 8. Typically for both models A = 4 leads to best
average improvement across all metrics for both the MRD
and SAD.

4.4.4 Comparison of Combined MHA Encoder/
Decoder Models to Deep Convolutional Encoder/
Decoder
The final set of results given in this section compare the MHA
encoder and decoder approach to a deep convolutional
encoder and decoder proposed by Kadıoğlu et al. (2020). A
Conv-TasNet model utilising both the proposed MHA encoder
and decoder was trained in an E2E fashion. For all results the
SAE, SAD and MRD 4 attention heads were used. Similarly a
Conv-TasNet model using both the deep encoder and decoder

TABLE 5 | Comparison of using 2, 4 and 8 attention heads in MRD (Figure 7a) against the original Conv-TasNet decoder proposed by Luo and Mesgarani, (2019). Bold

indicates the best performing model for each acoustic condition and metric.

AC Decoder A SISDR ΔSISDR SDR ΔSDR PESQ ΔPESQ STOI ΔSTOI

CSM Conv-TasNet — 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342

Deep PReLU — 15.0 15.0 15.5 15.3 3.01 1.72 0.943 0.345

MRD 2 15.1 15.1 15.6 15.4 3.06 1.76 0.946 0.348

MRD 4 15.0 15.0 15.4 15.3 3.07 1.75 0.944 0.347

MRD 8 14.6 14.6 15.1 14.9 3.02 1.71 0.936 0.338

SAD 2 15.0 15.0 15.5 15.3 3.09 1.78 0.944 0.347

SAD 4 15.3 15.3 15.7 15.5 3.1 1.79 0.946 0.349

SAD 8 15.3 15.3 15.8 15.6 3.14 1.82 0.948 0.351

NSM Conv-TasNet — 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373

Deep PReLU — 7.87 12.4 8.55 12.8 2.05 0.913 0.834 0.426

MRD 2 7.52 12.0 8.19 12.4 1.98 0.837 0.837 0.429

MRD 4 7.74 12.2 8.40 12.6 2.04 0.87 0.834 0.426

MRD 8 7.51 12.0 8.17 12.4 2.04 0.873 0.831 0.423

SAD 2 7.88 12.4 8.53 12.8 2.06 0.9 0.842 0.434

SAD 4 7.97 12.5 8.62 12.9 2.08 0.919 0.844 0.436

SAD 8 7.96 12.5 8.61 12.8 2.09 0.931 0.841 0.433

RSM Conv-TasNet — 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312

Deep PReLU — 5.85 9.14 7.88 7.99 2.27 1.04 0.856 0.320

MR 2 5.77 9.06 7.96 8.07 2.20 0.976 0.855 0.319

MR 4 5.58 8.87 7.84 7.96 2.25 1.00 0.846 0.311

MR 8 5.46 8.75 7.71 7.83 2.21 0.968 0.846 0.306

SA 2 5.92 9.2 8.07 8.19 2.28 1.03 0.859 0.323

SA 4 6.01 9.3 8.13 8.25 2.29 1.05 0.863 0.328

SA 8 5.99 9.28 8.12 8.24 2.28 1.04 0.862 0.326

NRSM Conv-TasNet — 3.54 9.66 5.48 8.96 1.79 0.656 0.75 0.366

Deep PReLU — 3.68 9.81 5.54 9.03 1.82 0.681 0.761 0.373

MR 2 3.19 9.32 5.12 8.61 1.76 0.622 0.769 0.381

MR 4 3.61 9.73 5.54 9.03 1.87 0.710 0.764 0.376

MR 8 3.61 9.74 5.53 9.01 1.88 0.714 0.765 0.376

SA 2 3.87 9.99 5.74 9.22 1.88 0.718 0.774 0.385

SA 4 3.81 9.93 5.74 9.23 1.89 0.728 0.766 0.377

SA 8 3.81 9.93 5.67 9.15 1.88 0.719 0.769 0.38
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proposed by Kadıoğlu et al. (2020) was trained. The SAE with
the original Conv-TasNet decoder are reported with the

decoder abbreviated to convolutional decoder (CD) for
brevity in some results.

The results in Table 6 show that the proposed combinations
of the SAE with the SAD or MRD lead to better results across all
metrics for the CSM, RSM and NRSM acoustic conditions
compared to the Deep PReLU baseline. The combination of
the SAE with both the proposed decoders performed worse in all
metrics than the SAE with the original Conv-TasNet decoder.
This implies again that the minimal performance gain reported
in Table 5 for the MRD might be purely due to initialization
properties of the MHA decoder model. Furthermore, the MHA

encoder model uses significantly less parameters than the Deep
PReLU model as well as the proposed combined SAE and
SAD model.

5 CONCLUSION AND FUTURE WORK

In this paper novel MHA encoder and decoder networks were
proposed for improving TasNet models. The proposed self-

attention based MHA encoder demonstrated significant
improvement over other encoder baselines across SISDR,
SDR, PESQ, and STOI metrics. Three MHA decoders, two
using encoder-decoder attention approaches and one using a
self-attention approach, were proposed. Performance
compared to the original Conv-TasNet model (Luo and
Mesgarani, 2019) and a Deep PReLU decoder (Kadıoğlu
et al., 2020) baselines varied. The Deep PReLU decoder
typically performing better under most acoustic conditions

than the encoder-decoder based decoders. The self-attention
decoder consistenly performed better than all the other

proposed and baseline decoders. Using the MHA encoder
alone yielded better performance than any changes to the
decoder even with both an MHA encoder and MHA decoder.
Further analysis of the intermediate MHA features in the self-
attention encoder showed evidence that the network was
being more selective in the features being attended to and
that many of the channels in the encoder might be mostly
redundant.

There are a number of avenues for further research with
the proposed MHA encoder and decoders. The MHA encoder
demonstrated reliable performance improvements without

the significant increase in model size seen in other encoder
and decoder networks proposed for Conv-TasNet (Kadıoğlu
et al., 2020). One drawback in any implementation using the
MHA layer proposed by Vaswani et al. (2017) is the
significant memory usage and computational complexity of
these network layers. Recent work by Katharopoulos et al.
(2020) proposed linear attention layers. Linear attention
reduces the quadratic sequential complexity O(L2x) of the
scaled dot-product attention mechanism used by Vaswani
et al. (2017) to have a linear complexity of O(Lx). Another
avenue for future work is to apply the self-attentive designs

proposed in this paper on other kinds of filterbank features
such as the MPGT filterbank features proposed by Ditter and
Gerkmann, (2020). In this work, the focus was solely on using
individual attention mechanisms to improved performance but
particularly with the encoder it is likely that using additional
self-attention layers might lead to further improvements in
performance across all acoustic conditions.

TABLE 6 | Comparison of MHA and encoder and decoder against the deep convolutional encoder/decoder Cont-TasNet model proposed by Kadıoğlu et al. (2020). Bold

indicates the best performing model for each acoustic condition and metric.

AC Model Size

(M)

SISDR ΔSISDR SDR ΔSDR PESQ ΔPESQ STOI ΔSTOI

CSM Conv-TasNet 3.5 14.7 14.7 15.1 15 2.99 1.69 0.94 0.342

Deep PReLU 8.2 14.8 14.8 15.2 15.1 2.96 0.66 0.943 0.345

SAE & MRD 5.5 15.2 15.2 15.7 15.5 3.12 1.81 0.946 0.349

SAE & SAD 5.5 15.6 15.6 16.0 15.9 3.16 1.85 0.952 0.355

SAE & CD 4.5 15.7 15.7 16.1 16.0 3.15 1.84 0.952 0.355

NSM Conv-TasNet 3.5 7.63 12.1 8.28 12.5 1.97 0.838 0.824 0.373

Deep PReLU 8.2 8.20 12.7 8.88 13.1 2.07 0.938 0.849 0.441

SAE & MRD 5.5 7.97 12.5 8.62 12.9 2.06 0.896 0.839 0.431

SAE & SAD 5.5 8.3 12.8 8.94 13.2 2.11 0.943 0.852 0.444

SAE & CD 4.5 8.37 12.9 9.01 13.2 2.09 0.93 0.854 0.446

RSM Conv-TasNet 3.5 5.52 8.81 7.75 7.87 2.20 0.969 0.847 0.312

Deep PReLU 8.2 6.23 9.51 8.24 8.36 2.32 1.10 0.870 0.334

SAE & MRD 5.5 6.13 9.42 8.32 8.44 2.29 1.05 0.869 0.334

SAE & SAD 5.5 6.13 9.41 8.33 8.44 2.29 1.05 0.869 0.334

SAE & CD 4.5 6.39 9.67 8.57 8.68 2.34 1.10 0.874 0.339

NRSM Conv-TasNet 3.5 3.54 9.66 5.48 8.96 1.79 0.656 0.750 0.366

Deep PReLU 8.2 3.81 9.93 5.64 9.12 1.80 0.667 0.760 0.376

SAE & MRD 5.5 3.80 9.93 5.69 9.19 1.88 0.717 0.778 0.389

SAE & SAD 5.5 3.91 10.0 5.78 9.27 1.9 0.735 0.778 0.39

SAE & CD 4.5 4.11 10.42 6.00 9.48 1.92 0.754 0.787 0.399
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