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A B S T R A C T 

A new integrated assessment algorithm is proposed for a warehouse assessment scheme. This new algorithm 

integrates three paradigms, namely, Grey Relational Analysis (GRA), Data Envelopment Analysis (DEA), 

and an Interval Type-2 Fuzzy Logic System (IT2FLS). Based on the defined criteria and the various 

warehouses assessed according to these criteria, the GRA is employed to determine the grey relational grade. 

The DEA is, then, utilized to estimate the warehouse efficiency scores. Finally, the IT2FLS is developed to 

map the efficiency scores of the warehouses to the assessed values of the defined criteria. The developed 

IT2FLS can be used to assess new warehouses without re-performing the calculations of the GRA and the 

DEA. Validated on several warehouses, the integrated assessment algorithm can assess warehouses 

successfully, and can tackle the uncertainties during the assessment process. In addition to comparing the 

warehouses with the best practice, it can also provide managers with a linguistic understanding of the effect 

of the defined criteria on the warehouse performance. 

1. Introduction

Enterprises these days tend to outsource all or some of the logistics activities to third-party logistics providers (3PLPs). Because of the several advantages 

of outsourcing in terms of quality, flexibility, cost and efficiency, the number of enterprises that outsource their logistics activities has considerably increased. 

For instance, 77% of United State manufacturers outsourced their logistics activities to 3PLPs, such a number was doubled in less than a decade. Therefore, 

the number of 3PLPs has also increased (Asian et al., 2019). With such a considerable increase in their number, selecting the best 3PLP that can perform 

the logistics activities in the optimal way becomes a non-trivial task (Marasco, 2008). This can be attributed to the conflicting criteria that should be 

considered in addition to their importance levels. 
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Several studies have investigated the assessment of 3PLPs which is considered to be a multi-criteria decision-making (MCDM) process, in order to elicit 

the best one (AlAlaween, AlAlawin, Mahfouf, & Abdallah, 2021). Many researchers have focused on investigating the criteria and the sub-criteria of such 

an MCDM process (Jovčić et al., 2019). For instance, cost, service quality, corporate image and flexibility were identified as examples of some criteria that 

affect a 3PLP performance (Mardani et al., 2016). Other researchers investigated the implementation and development of various MCDM (Goepel & 

Performance, 2019). Linear weighting algorithms such as the Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP) has been 

employed to evaluate 3PLPs (Yadav et al., 2020). Although the AHP and the ANP have been successfully utilized, determining the relative weights of the 

defined criteria in these algorithms is considered to be computationally expensive, this being due to the fact that a considerable number of pairwise 

comparison questions is required (AlAlaween, AlAlawin, Mahfouf, & Abdallah, 2021). Mathematical programming (e.g. Data Envelopment Analysis 

(DEA)) has also been developed to assess 3PLPs and select the best one (Soheilirad et al., 2018). The DEA was, for instance, deployed to determine the 

relative efficiency of 3PLPs and then to select the one with the maximum efficiency value (Bajec & Tuljak-Suban, 2019). As the artificial intelligence 

models have been extensively used in various academic and industrial areas (e.g. manufacturing and pharmaceutical) (AlAlaween et al., 2021), they have 

recently been employed in the logistics and supply chain area to mimic the human way of thinking by incorporating experts’ knowledge (AlAlaween, 

AlAlawin, Mahfouf, & Abdallah, 2021). A Feedforward Artificial Neural Network (ANN), as a powerful interpolator, was developed based on the output 

of the ANP algorithm to choose a resource planning software for an enterprise (Yazgan et al., 2009). Likewise, an MCDM algorithm based on Fuzzy Logic 

was utilized to develop a dynamic MCDM algorithm to evaluate various warehouses as the main resources of 3PLPs (AlAlaween, AlAlawin, Mahfouf, & 

Abdallah, 2021).   

In addition to the single MCDM algorithms presented, paradigms that integrate two or more MCDM algorithms have been also proposed. For instance, an 

algorithm that integrated Interval Rough Number (IRN) based on the Best-Worst Method (BWM) and the Weighted Aggregated Sum Product Assessment 

(WASPAS) method was proposed to evaluate 3PLPs (Pamucar et al., 2019). With the recent development in the computing power, fuzzy systems have been 

commonly utilized and embedded with other algorithms to consider uncertainties (Alalaween  et al., 2018). Therefore, fuzzy logic was incorporated with 

the AHP, ANP and DEA to tackle the uncertainties that may be embedded in the subjective information provided (Bouzon et al., 2016; Chen et al., 2018). 

For example, the Fuzzy AHP (FAHP) was integrated with TOPSIS in order to evaluate 3PLPs (Singh et al., 2012). Likewise, an algorithm that integrated 

Criteria Importance Through Inter-criteria Correlation, WASPAS and Interval Type-2 Fuzzy Sets was proposed to realistically weight the defined criteria 

and, thus, evaluate 3PLPs (Keshavarz Ghorabaee et al., 2017). The frameworks that integrated two or more of the MCDM algorithms have indeed 

circumvented the potential limitations of using one algorithm, as it has been shown in the provided literature (Pamucar et al., 2019). 

In the related literature, warehouses and their logistics have been evaluated as a part of the 3PLPs assessment. Since they can considerably affect the 

performance of a 3PLP and its cost (Keshavarz Ghorabaee et al., 2017), evaluating warehouses and their logistics can provide better insights into 3PLPs 

performance and, thus, allow managers to elicit the best one reliably. Therefore, a warehouse assessment scheme is presented in this research paper. Such 

an assessment scheme is based on a new MCDM algorithm that is proposed by integrating the Grey System Theory, Linear Optimization and Type-2 Fuzzy 

Logic. The proposed MCDM algorithm can (i) assess warehouses (i.e. alternatives) according to various criteria, sub-criteria and sub-sub-criteria without 

the pairwise comparisons used usually to estimate the relative weights of the defined criteria; (ii) tackle the uncertainties in the information provided and/or 

during the assessment process; (iii) compare the warehouses with the best practice; and (iv) provide a linguistic understanding of the effect of the defined 

criteria on the warehouse performance. This research paper is organized as follows: the development of the integrated assessment algorithm is discussed in 

Section 2. The warehouse data that include the criteria and their sub-criteria, and the warehouses assessed are briefly discussed in Section 3. The 

implementation of the integrated assessment algorithm and the results obtained are discussed in Section 4, whereas the conclusions and some future works 

are presented in Section 5. 

2. Development of the Integrated Algorithm    

The MCDM process, as a sub-discipline of the operations research, is considered to be a complex cognitive process where one needs to identify the best 

course of actions or alternatives while considering a number of conflicting criteria (Bouzon et al., 2016). In addition to the conflicting criteria, the majority, 

if not all, of the MCDM cases are usually surrounded by uncertainties that may make the process of eliciting the best alternative even more complex 

(AlAlaween et al., 2020).  Therefore, in this research work, an integrated MCDM algorithm that integrates the Grey System Theory, Linear Optimization 

and Fuzzy Logic is presented. Figure 1 shows the schematic diagram of the integrated paradigm. The criteria that are used to assess various alternatives are 

identified. Such a step, as a common step for all MCDM algorithms, is followed by assessing the alternatives based on the identified criteria and by using a 

predefined scale. The GRA is, then, utilized in order to determine the grey relational grade. It is worth emphasizing that the GRA calculations are based on 

the classification of the criteria into Larger-The-Better (LTB), Nominal-The-Best (NTB) (i.e. close to a desired value) and Smaller-The-Better (STB). The 

estimated grey relational grade, as an output, and the assessed values of the defined criteria, as inputs, are used to develop the DEA to estimate the efficiency 

score of the alternatives. In order to develop the DEA paradigm successfully and maximize the efficiency, the inputs need to be minimized. Therefore, one 

needs to consider the nature of the inputs (i.e. the assessed value of the defined criteria). To illustrate, for the values of the LTB and NTB criteria, one needs 

to take the difference from the maximum and the desired values, respectively, before considering such criteria as inputs, whereas the values of the STB 

criteria can directly be considered as inputs. Once the efficiency scores of the alternatives are determined using the DEA, the IT2FLS is developed to map 

the efficiency score of the alternatives to the assessed values of the defined criteria to determine the warehouse performance. Although it is computationally 

expensive when compared to type-1 fuzzy logic system (T1FLS), IT2FLS was utilized in this research work because of its ability to handle uncertainties 

more efficiently and intrinsically when compared to T1FLS. Such a model can also be used to assess new alternatives without re-performing the calculations 

of the GRA and the DEA. In addition, the derived linguistic understanding in the form of the If-Then rules can be utilized to understand the relationships 

between the defined criteria and the warehouse performance. The mathematics behind these three algorithms are presented in this section to help the reader 
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to get grips with the key developments. For further reading about these algorithms, readers can refer to several references (AlAlaween et al., 2017; Charnes 

et al., 1978; Hu, 2020; Huang et al., 2019; Kaffash et al., 2020; Karnik & Mendel, 2001; Mendel, 2017; Zhou et al., 2018). 

 

Figure 1- Schematic diagram of the integrated assessment algorithm.  

2.1. Grey Relational Analysis  

The GRA, as a sub-discipline of the Grey System Theory, is commonly used to determine a correlation between a specific sequence, the so-called reference 

sequence, and comparability sequences. Based on such a correlation, the sequences can be ranked (Huang et al., 2019). In general, the GRA starts with the 

grey relational generating step, in which the performance values of the alternatives considered are transformed into comparability sequences, in order to 

normalize the performance measures. The comparability sequence (𝑥𝑖𝑗) of the ith alternative and the jth attribute can be expressed as follows (Huang et al., 

2019): 

𝑥𝑖𝑗 =
{   
   𝑦𝑖𝑗−𝑀𝑖𝑛(𝑦𝑖𝑗𝑖 )𝑀𝑎𝑥(𝑦𝑖𝑗𝑖 )−𝑀𝑖𝑛(𝑦𝑖𝑗𝑖 ) 𝐹𝑜𝑟 𝐿𝑇𝐵

𝑀𝑎𝑥(𝑦𝑖𝑗𝑖 )−𝑦𝑖𝑗𝑀𝑎𝑥(𝑦𝑖𝑗𝑖 )−𝑀𝑖𝑛(𝑦𝑖𝑗𝑖 ) 𝐹𝑜𝑟 𝑆𝑇𝐵 
1 − |𝑦𝑖𝑗−𝑦𝑗∗|𝑀𝑎𝑥{𝑀𝑎𝑥(𝑦𝑖𝑗𝑖 )−𝑦𝑗∗ ,𝑦𝑗∗−𝑀𝑖𝑛(𝑦𝑖𝑗𝑖 )} 𝐹𝑜𝑟 𝑁𝑇𝐵

                                            (1) 

where yij stands for the performance value of the ith alternative and the jth attribute, and yj∗ stands for the desired value for the NTB criteria. The superscript 

i is used to indicate that the minimum and maximum operations are determined over the alternatives. The calculated xij is in the range of 0 to 1, where a 

value of 1, or closer to 1, means that the performance value of the ith alternative is the best for the jth attribute. Therefore, the alternative whose performance 

values are higher (i.e. equal to 1) is considered to be the best choice. However, such an alternative does not usually exist. Therefore, a reference sequence 

definition step is often required to define the reference sequence (x0j). Such a step is followed by the grey relational coefficient calculation step. The grey 

relational coefficient is written as follows (Hu, 2020): 

λ(𝑥0𝑗 , 𝑥𝑖𝑗)= ∆𝑚𝑖𝑛+𝜉∆𝑚𝑎𝑥∆𝑖𝑗+𝜉∆𝑚𝑎𝑥                                                                                     (2) 

 

where ∆ij is the absolute value of the difference between x0j and xij. The parameters ∆min and ∆max stand for the minimum and maximum values of  ∆ij, 
respectively, and ξ stands for the distinguishing coefficient that is usually in the range of 0 to 1. Once the grey relational coefficients are calculated, the grey 

relational grade (γi) for the ith alternative can be evaluated by calculating the weighted average of the grey relational coefficients for the corresponding 

alternative. It is worth mentioning that decision-makers usually define the weights that must sum to unity. 
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2.2. Data Envelopment Analysis  

The DEA that was introduced more than four decades ago is a non-parametric mathematical and linear optimization paradigm (Charnes et al., 1978; Kaffash 

et al., 2020). It estimates the relative efficiency of comparable units that are commonly called decision-making units (DMUs) by using their inputs and 

outputs (Kaffash et al., 2020). The DEA has been successfully employed in various areas including, but not limited to, manufacturing, industrial, financial 

and environmental areas (Mardani et al., 2018). Among the various DEA models that have been presented, the CCR model is the most common one (Zhou 

et al., 2018). Such a model that is based on linear programming maximizes the relative efficiency (θ) that represents the ratio of the sum of the weighted 

outputs to the sum of the weighted inputs of defined DMUs (Charnes et al., 1978). Therefore, the efficiency of DMUo whose s inputs and q outputs are (ƞ1o, ƞ2o, … ƞso) and (γ1o, γ2o, …, γqo), respectively, can be estimated using the linear optimization model as follows (Charnes et al., 1978): 𝑀𝑎𝑥𝜃 = 𝜐1𝛾1𝑜 +⋯+ 𝜐𝑞𝛾𝑞𝑜𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                            𝜏1ƞ1𝑜 +⋯+ 𝜏𝑠ƞ𝑠𝑜 = 1𝜐1𝛾1𝑟 +⋯+ 𝜐𝑞𝛾𝑞𝑟 ≤ 𝜏1ƞ1𝑟 +⋯+ 𝜏𝑠ƞ𝑠𝑟 ∀𝑟𝜏1, … , 𝜏𝑠 ≥ 0𝜐1, … , 𝜐𝑞 ≥ 0
                                                              (3) 

                                                               

where υ and τ  stand for the weights for the outputs and the inputs, respectively. The objective of such a model is to maximize the relative efficiency of the 

DMUo by maximizing the sum of its weighted outputs while the sum of its weighted inputs must equal one, as presented in the first constraint of the model. 

In addition, the second constraint implies that the efficiency of the rth DMU does not exceed one. The weights for the outputs and the inputs must be greater 

than or equal to zero. 

2.3. Interval Type-2 Fuzzy Logic System 

The IT2FLS, as a data-driven model, has been recently employed in many applications such as pharmaceutics (Mendel, 2017; Peng et al., 2020). In addition 

to the advancement in computing power, this can be attributed to its ability to (i) represent complex processes whose physical models cannot be developed 

or, perhaps, does not exist, (ii) deal with uncertainties, and (iii) provide a linguistic understanding of the process under examination (AlAlaween et al., 2017). 

In general, the IT2FLS is analysed by using fuzzy sets that are represented by membership functions. An interval type-2 fuzzy set is commonly expressed 

as follows (Mendel, 2017): �̃� =  ∫ ∫ 1/(𝑧, 𝑣)𝐽𝑧⊆[0,1]𝑧∈𝑍                                                                            (4) 

 

where z stands for the primary variable whose measurement domain is represented by Z. The parameter 𝐽𝑧 represents the primary membership degree, and 𝑣 represents the secondary variable that belongs to 𝐽𝑧.  
 

 

Figure 2 presents the structure of the IT2FLS that is embedded in the proposed algorithm. The crisp inputs (𝑧1, 𝑧2 …𝑧𝑛) are commonly fuzzified to calculate 

the upper and lower membership functions [μF̃kl , μF̃kl ]  for the lth fuzzy set and the kth variable using the interval type-2 fuzzy sets (F̃kl ). Different types of 

membership functions (e.g. sigmoid and trapezoidal) can be utilized. Because of its ability to work as a universal approximator, the Gaussian membership 

function is employed in this research work. It can be written as follows (Mendel, 2017): 𝜇𝑘𝑙 (𝑧𝑘) = 𝑒𝑥𝑝 [− 12 (𝑧𝑘−𝑚𝑘𝑙𝜎𝑘𝑙 )] , 𝑚𝑘𝑙 ∈ [𝑚𝑘1𝑙 , 𝑚𝑘2𝑙 ]                                                              (5) 

where the parameters of the fuzzy set are represented by the mean (mkl ) and the standard deviation (σkl ). The footprint of uncertainty is represented by the 

union of the membership functions bounded between the lower and the upper functions. Once the input fuzzy sets are determined, they are mapped to the 

output fuzzy sets by employing the If-Then rules. Such a process is called inference. The rules can be represented as follows (AlAlaween, AlAlawin, 

Mahfouf, Abdallah, et al., 2021) :    

Rule l: IF 𝑧1 is �̃�1𝑙 … and 𝑧𝑚 is�̃�𝑚𝑙 , THEN w is�̃�𝑙 . 

Figure 2- The IT2FLS structure.  
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where w and G̃l represent the output and its lth fuzzy set using a Mamdani IT2FLS. Once the output type-2 fuzzy set is obtained, type reduction, by which 

the type-2 fuzzy set is reduced into a type-1 fuzzy set, takes place. It is worth mentioning that the majority of the IT2FLS computational effort is incurred 

by the type reduction step, where the lower and upper points of the interval are determined by utilizing the well-known Karnik-Mendel (KM) algorithm 

(Karnik & Mendel, 2001). Finally, the type-1 fuzzy set is defuzzified to determine the crisp output. The defuzzification process is implemented by 

determining the average value (Mendel, 2017).  

3. Warehouses Data 

3.1. Assessment Criteria  

In order to assess warehouses, the criteria that can affect the warehouse performance need to be identified. In this research paper, ten criteria were defined 

by (i) interviewing experts; (ii) distributing an online survey; and (iii) reviewing the related literature (AlAlaween, AlAlawin, Mahfouf, Abdallah, et al., 

2021). The identified criteria and their sub-criteria are presented in Table 1 and summarized as follows: 

 Facilities: Warehouse facilities play a considerable role in its performance. The corresponding five sub-criteria are “Location”, “Number of 

locations”, “Layout”, “Work conditions and workplace environment” and “Security”. Various sub-sub-criteria can be defined for each sub-

criterion. To elucidate, the “Number of locations” sub-criterion consists of three sub-sub-criteria, namely, defining the optimal number of 

warehouses based on a conducted study, inbound and outbound transportation, and existing protocol to respond to urgent orders. 

 Material Handling Equipment: Although it does not directly add value to the products stored (Venkataraman & Pinto, 2016), material handling 

equipment can improve a warehouse performance. Such a criterion consists of three sub-criteria as listed in Table 1 and many sub-sub-criteria. 

For instance, “Optimal material handling system” consists of various sub-sub-criteria, namely, the design of the material handling system, the 

order of products handled, the handling tasks, and walkways.       

 Products: Since the main aim of a warehouse is to store products, their related activities can determine its performance. Therefore, the products 

related activities are considered to be the sub-criteria of such a criterion, as summarized in Table 1. A set of sub-sub-criteria are related to the 

products’ sub-criteria. For example, “Labelling system” comprises of four sub-sub-criteria, namely, identification of products, identification of 

movable containers, ease of use, and the labels’ attributes.      
 Processes: Ten warehouse processes can, in general, be identified, as listed in Table 1. Each process, as a sub-criterion, comprises of several 

measures, as sub-sub-criteria, that need to be assessed (Kłodawski et al., 2017). For example, the “Receiving process” has four sub-sub-criterion, 

namely, adequate receiving protocol, documenting the information, procedures and forms to deal with non-conforming items and returns, and 

health and safety instructions.   

 Warehouse Management System: An effective warehouse management system can support and control the related warehouse activities and 

resources. Such a system can be evaluated by its three main sub-criteria, which can be evaluated by several sub-sub-criteria. For instance, “ability 
to interface” has several sub-sub-criteria including its ability to interact with the enterprise resource planning system.  

 Energy Efficiency: Since efficient use of energy can significantly reduce warehouse cost, it can determine the warehouse performance 

(Kozyrakis, 2013). Its effect on the performance can be determined by the two main sub-criteria mentioned in Table 1. The “Use of an efficient 

energy system” has, for example, a variety of sub-sub-criteria that include energy-saving equipment such as movement sensors and timers, and 

the levels of heating and air conditioning. 

 Ethics: In general, code of ethics and conduct affect a warehouse performance, enterprises as well as the world economy (Murphy & Poist, 

2002).   Such codes towards employees, enterprises, customers and the nation need to be defined and evaluated in the warehouses assessment 

scheme.      

 Safety: It has been proven that the number of accidents in warehouses is more than that for any other facilities (de Koster et al., 2011) . This is 

the main reason behind the stringent health and safety rules in warehouses as they can affect their performance. Safety, as a criterion, consists of 

three sub-criteria, as mentioned in Table 1, where each one comprises of several sub-sub-criteria. For example, “Hazard codes” criterion includes 
chemical hazards (e.g. chemical materials) and physical hazards (e.g. flammable products).  

 Quality Management System: Although it has not been well cited in the literature (Lee et al., 2013), a quality management system has been 

utilized to improve warehouses related activities and logistics. Such a system is assessed by four sub-criteria, each of them is assessed by several 

sub-sub-criteria. For instance, “Internal audit” can be evaluated by its frequency and performance measures used.            

 Human Resources System: Effective human resources that include staff experience and knowledge can significantly affect a warehouse 

performance. Therefore, human resources planning and the staff training can, in general, be used as sub-criteria to assess it. For instance, staff 

training can include training plan, records of the training and suggested improvements. 
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Table 1 -The defined criteria and their sub-criteria. 

Criteria  Sub-criteria  

Facilities 

 Location 

 Number of locations  

 Layout 

 Work conditions and workplace environment  

 Security  

Material handling equipment 

 Optimal material handling system 

 Periodical tests and preventive maintenance 

 Risk assessment and safety training and 

instructions 

Products 

 Labelling system 

 Product traceability 

 Waste management system 

Processes  

 Pre-advice 

 Receiving  

 Checking  

 Put-away 

 Cross-docking  

 Storing 

 Replenishment 

 Picking and packing  

 Dispatching  

 Value-added services  

Warehouse management system 

 All operations  

 Ability to interface  

 Being accessible and protected  

Energy efficiency  
 Use of an efficient energy system  

 Use of solar panels, biomass and wind turbines   

Ethics  
 Code of ethics  

 Code of conduct 

Safety  

 Safe environment  

 Hazard codes  

 Contingency plan 

Quality management system  

 System documentation and control 

 Internal audit  

 Management review  

 Preventive and corrective actions   

Human resources system  
 Training and development 

 Resources planning  

 

3.2. Warehouses Assessment 

A warehouse can be assessed by assigning a value that represents the performance for each question mentioned in the audit checklist. The value assigned 

depends on the scale used. In this research work, a scale of 0 to 100 was employed. By using the audit checklist, 45 warehouses dealing with various types 

of products were assessed. The performance values of the defined criteria for these warehouses are provided in Appendix A. Since the products that a 

warehouse deals with significantly affect the assessment of the criteria, the product types were considered in the implementation of the proposed integrated 

assessment algorithm. Therefore, products should be classified into a number of classes that need to be taken into account during the implementation of the 

assessment algorithm. In this research paper, NICE classification that contains 34 classes, each class consists of a list of goods ordered alphabetically is used  

(WIPO, 2020).  

The criterion performance values for five warehouses, as examples, are shown in Figure 3. It is apparent that such values (e.g. the values of the “Quality 

Management System” and “Products” criteria) vary significantly among the warehouses assessed. In addition, it is shown that the values of the “Energy 

Efficiency” criterion were lower for most warehouses when compared to other criteria. This can be attributed to the fact that green warehouse strategies are 

in the development stage.  
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Figure 3- Examples of the warehouses assessed. 

4. Results and Discussion  

4.1.  Implementation and Results   

To determine the performance score of the warehouses assessed, the proposed integrated assessment algorithm is implemented. Figure 4 shows the 

flowchart of the warehouse assessment using the integrated algorithm. Once the criteria, sub-criteria were defined and the warehouses were evaluated, as 

discussed in Section 3, the criterion performance values for the warehouses assessed were transformed into comparability sequences by the grey relational 

step. Since the performance values of the criteria are preferred to be as large as possible, the LTB equation presented in (1) was utilized. For instance, the 

comparability sequence of the “Facilities” criterion for Warehouse 1 presented in Figure 3, as an example, was calculated as follows: x11 = 53.1 − 6.2100 − 6.2 = 0.5 

where 6.2 and 100 are the minimum and maximum performance values for the “Facilities” criterion, and 53.1 is the performance value of such a criterion 

for Warehouse 1. In a similar manner, the comparability sequences of the defined criteria were determined as presented in Table 2. It is noticeable that the 

comparability sequence of the “Warehouse Management System” criterion was the highest. Since none of the 45 warehouses has comparability sequences 

of 1, a reference sequence whose comparability sequences of the 10 criteria are 1 was defined. It is worth mentioning that such a reference, which is used 

only for comparison purposes, represents an ideal warehouse (i.e. best practice) that may not exist in real life. The grey relational coefficients were then 

calculated. For instance, the grey relational coefficient of the “Facilities” criterion for Warehouse 1 presented above in Figure 3 was determined as follows:   { ∆ij= |1 − 0.5| = 0.5λ(x01, x11) = 0 + 0.5 × 10.5 + 0.5 × 1 = 0.5 

where ∆min and ∆max are 0 and 1, respectively. In this research work, the distinguishing coefficient was selected to be 0.5. In a similar manner, the grey 

relational coefficients for the defined criteria were determined as presented in Table 2. The grey relational grades for the 45 warehouses were then estimated. 

It is worth mentioning that NICE classification was utilized at this stage so that the various product classes can have different weights for the defined criteria.  

The weight values of the criteria for each product class were optimized by employing the DEA paradigm. The CCR model, as the most common one, 

was utilized in this research work where each warehouse was considered as a DMU. The DEA paradigm aimed at maximizing the relative efficiency (θ) of 
a DMU by maximizing its outputs and minimizing its inputs. Therefore, the difference values between the maximum value of the scale selected (i.e. a value 

of 100) and the criterion performance values were considered as inputs, whereas the grey relational grade was considered as an output. Thus, the DEA 

optimization model that was used to determine the performance of DMU1 representing Warehouse 1 is as follows:   Maxθ = 0.45υ1Subject to:                            46.9τ1 + 78.2τ2…+ 63.8τs = 1υ1γ1r ≤ τ1ƞ1r +⋯+ τsƞsr r = 1,… ,45τ1, … , τs ≥ 0υ1, … , υq ≥ 0
 

where the parameters are as defined above. The DEA mathematical model was solved using the optimization toolbox on MATLAB (R2018b). The overall 

performance score of Warehouse 1 is 0.4. In a similar manner, the overall scores of the 45 warehouses were also calculated. It is worth mentioning that the 

overall performance scores were in the range of 0.22 to 0.81.  
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Figure 4- The flowchart of the warehouse assessment scheme based on the integrated algorithm.    
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Table 2- The performance values and the GRA values for Warehouse 1. 

 

The IT2FLS paradigm was then developed to map the criterion performance values to the overall performance score. Therefore, the data set of the 45 

warehouses were divided into two sets, namely, the training set that contains the data for 36 warehouses and the testing set that contains the data for 9 

warehouses. The former was utilized to allow the IT2FLS to learn the relationships between the performance values of the defined criteria, as inputs, and 

the overall performance score. Such relationships are usually presented as informative rules (i.e. fuzzy If-Then rules). The latter was used to test the IT2FLS 

generalization capabilities. It is worth mentioning that various numbers of rules in the range of 1 to 20 were tested, the one that was finally chosen was the 

one that resulted in the minimum error. For a specific number of rules, the IT2FLS parameters (i.e. the means and the standard deviation of each set) were 

initialized using a clustering algorithm. In this research work, the interval type-2 fuzzy clustering algorithm proposed in (Rubio & Castillo, 2013) was 

employed. Once the IT2FLS parameters were initialized, they were optimized using the steepest descent algorithm with the well-known back-propagation 

network.  

 

 

Figure 5- The performance of the IT2FLS for (a) Training and (b) Testing sets. 

The performance of the IT2FLS by using 10 rules is shown in Figure 5. The error values measured via the RMSE for the training and testing sets are 

0.037 and 0.040, respectively. The coefficient of determination (R2) for the training and testing sets are 0.94 and 0.93, respectively. It is noticeable that the 

majority of the predicted points lay within a 90% confidence interval. It is worth emphasizing that the rules for the IT2FLS were initialized by initializing 

their parameters (i.e. mean and standard deviation for each input) using the clustering algorithm based on the data of the 45 warehouses provided in Appendix 

A. The parameters of such rules were then optimized using the steepest descent algorithm leading to the optimized rules that were then represented 

linguistically. A rule, as an example, out of a total of 10 is presented in Figure 6. The shaded area in such a figure presents the footprint of uncertainty. In 

order to represent the linguistic form of the defined rules, a criteria linguistic scale that consists of four levels: “Opportunities for improvements”, “Major 

  
Facilities 

Material 

Handling 

Equipment 

Products Process 

Warehouse 

Management 

System 

Energy 

Efficiency 

Code of 

Ethics 
Safety 

Quality 

Management 

System 

Human 

Resources 

System 

Performance value  53.1 21.8 26.5 32.8 78.3 20.7 13.0 47.2 27.5 36.3 

Comparability 

sequence 
0.50 0.22 0.26 0.32 0.78 0.26 0.07 0.46 0.25 0.26 

Reference sequence  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

∆1j 0.50 0.78 0.74 0.68 0.22 0.74 0.93 0.54 0.75 0.74 

Grey relational 

coefficient 
0.50 0.39 0.40 0.42 0.69 0.40 0.35 0.48 0.40 0.40 

DEA inputs  46.9 78.2 73.5 67.2 21.7 79.3 87.0 52.8 72.5 63.8 
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non-conformance”, “Minor non-conformance” and “Conforms”, was utilized in this research paper. Because it is a common scale used in various 

standardization schemes, such a linguistic scale was employed in the development of the proposed warehouse assessment scheme. Thus, the linguistic form 

of the rule is also presented in Figure 6. 

Figure 7 presents two examples of response surfaces of the warehouse performance using two criteria at a time. It is apparent that the warehouse performance, 

as a function of the defined criteria such as “Code of Ethics”, “Human Resources System” and “Processes”, is a highly non-linear function. Furthermore, 

the warehouse performance reached a saturation level with a value of 0.56 when the “Human Resources System” reached the maximum values of the scale. 

In addition, it is apparent that the increase in such a criterion can increase the warehouse performance by approximately 6%. Likewise, when the “Human 
Resources System” and “Processes” performance values were in the range of 0 to 50, the warehouse performance was better than it when the “Human 
Resources System” and “Processes” performance values were in the ranges of 0 to 50 and 50 to 100, respectively. Such a decrease in the warehouse 

performance value, which is less than 1%, can be attributed to the interaction among all the defined criteria which cannot be represented in a three-

dimensional plot. Such a behaviour was also noticeable when the performance value of the “Code of Ethics” was in the range of 70 to 100.  
 

   

Figure 6 - An example of a rule for the overall warehouse performance. 

 

Figure 7 - The response surface of the warehouse performance with two criteria: (a) Code of Ethics and Human Resources System, and (b) 

Processes and Human Resources System. 

 

4.2.  Comparative Studies   

For comparison purposes, various MCDM paradigms were implemented. In addition to the fuzzy AHP (FAHP), fuzzy ANP (FANP) and fuzzy DEA (FDEA), 

as commonly used paradigms, IRN-WASPAS (Pamucar et al., 2019) and CRITIC-WASPAS with interval type-2 fuzzy sets (Keshavarz Ghorabaee et al., 

2017), as recently presented algorithms, were employed to estimate the performance values for ten newly warehouses. Table 3 shows examples of the results 

obtained for three warehouses that performed differently. It is apparent that the performance values of the three warehouses estimated using the FAHP and 

the FANP were very close. This can be attributed to that the ANP algorithm is considered to be the general form of the AHP algorithm. Such algorithms 

depend on the calculation of the relative weights that rely on a considerable number of pairwise comparisons. To illustrate, the number of pairwise 

comparisons that were required to estimate the relative weight values of the main criteria is 44 ones. It is also noticeable in Table 3 that the performance 

values of the warehouses performing well and unsatisfactory were overestimated and underestimated, respectively, when the FDEA was used, this being 

due to that the FDEA determines the relative efficiencies of the warehouses with respect to the most efficient one. Likewise, overestimation of the 

performance values of the warehouses performing unsatisfactorily when the IRN-WASPAS and CRITIC-WASPAS were also noticeable. In addition, when 

new warehouses need to be assessed by such algorithms, one needs to recalculate all the parameters of these algorithms, such a step is considered to be 
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computationally expensive. For instance, a more efficient warehouse needs to be considered in the FDEA and a survey needs to be re-conducted to determine 

the relative weight values in the FAHP and FANP every time period. However, the integrated paradigm was able to estimate the performance of new 

warehouses using the developed IT2FLS without the need to recalculate the algorithm parameters. In addition, the presented algorithm provided a linguistic 

understanding of the relationships between the warehouse performance and the defined criteria. Such an understanding was represented in the form of the 

If-Then rules. Since the IT2FLS, as a computationally expensive algorithm, and T1FLS can both deal with uncertainties at different levels, this raises the 

question of whether the performance of proposed integrated algorithm can be obtained when the T1FLS is used instead of the IT2FLS. Therefore, the T1FLS 

was integrated with the GRA and the DEA to develop an MCDM algorithm. Thus, the T1FLS was utilized to map the criterion performance values to the 

overall performance score obtained by the DEA as summarized in Figure 4 and explained in Section 4.1. In order to develop the T1FLS, the data set of the 

45 warehouses were divided into two sets, namely, the training set (36 warehouses) and the testing set (9 warehouses). Various numbers of rules in the range 

of 1 to 20 were tested, the one that was finally chosen was the one that resulted in the minimum error. For 12 rules, the performance values of the T1FLS 

measured via the RMSE for the training and testing sets were 0.042 and 0.045, respectively. In addition, the values of the R2 for the training and testing sets 

were 0.89 and 0.88, respectively. It is noticeable that the performance values of the IT2FLS (i.e. RMSE (training, testing) = [0.037, 0.040] and R2 (training, 

testing) = [0.94, 0.93]) were better than that of the T1FLS. This can be attributed the ability of the IT2FLS in handling the uncertainties more efficiently 

when compared to it is counterpart T1FLS. 

Table 3- Examples of three warehouses assessed using various algorithms. 

 

5. Conclusion 

A new integrated assessment algorithm was proposed to develop a warehouse assessment scheme. Such an integrated algorithm integrated three paradigms, 

namely, Grey Relational Analysis (GRA), Data Envelopment Analysis (DEA) and the Interval Type-2 Fuzzy Logic System (IT2FLS). Once the criteria 

were defined and warehouses were assessed according to these criteria, the GRA was utilized to estimate the grey relational grade. The DEA was, then, 

employed to estimate the efficiency scores. Such a step was followed by mapping the assessed values of the criteria to the efficiency score using the IT2FLS. 

New warehouses can then be assessed without re-performing the calculations of the GRA and the DEA. Validated on 45 warehouses, the proposed integrated 

algorithm was able to (i) successfully evaluate warehouses using the defined criteria; (ii) handle the uncertainties during the assessment process; (iii) compare 

the warehouses with the best practice; and (iv) provide users with a linguistic understanding of the effect of the defined criteria on the warehouse 

performance. In addition, the integrated assessment algorithm is considered to be a promising development not only for warehouses and third-party logistics 

providers, but also for those areas where decisions need to be made when conflicting criteria need to be considered. In the future, it is worth considering the 

dynamic nature of the business environment by incorporating a dynamic IT2FLS in the proposed integrated algorithm. In addition, it is advantageous to 

consider different interrelationship values between the identified criteria.  
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Table A.1 – The performance values of the criteria for 45 warehouses. 

Warehouses  
 

Facilities 

Material 

Handling 

Equipment 

Products Process 

Warehouse 

Management 

System 

Energy 

Efficiency 

Code 

of 

Ethics 

Safety 

Quality 

Management 

System 

Human 

Resources 

System 

Warehouse 1 53.1 21.8 26.5 32.8 78.3 20.7 13.0 47.2 27.5 36.3 

Warehouse 2 76.3 47.5 92.7 93.9 95.1 26.7 46.5 42.8 46.1 60.0 

Warehouse 3 93.0 87.8 69.6 98.5 64.7 52.1 94.7 94.4 94.8 60.4 

Warehouse 4 36.0 58.0 26.5 18.7 14.7 12.8 23.3 47.2 16.8 36.3 

Warehouse 5 62.2 56.8 37.3 70.7 76.1 52.5 93.9 70.2 60.0 90.8 

Warehouse 6 83.8 0.0 26.5 71.6 97.8 3.3 11.9 23.6 16.1 72.5 

Warehouse 7 41.5 21.8 18.6 41.6 78.3 40.6 6.9 23.6 13.4 36.3 

Warehouse 8 37.6 43.5 26.5 25.9 97.8 32.7 23.3 47.2 32.5 36.3 

Warehouse 9 75.8 31.0 70.5 52.8 95.6 23.6 23.3 86.2 73.3 28.8 

Warehouse 10 75.1 20.7 70.5 51.5 95.6 18.5 23.3 86.2 71.8 14.4 

Warehouse 11 56.5 17.8 74.8 76.8 95.1 52.5 77.6 21.4 18.7 15.0 

Warehouse 12 41.2 31.0 1.1 2.4 4.9 12.6 23.3 25.9 3.7 43.1 

Warehouse 13 50.6 34.4 52.4 58.2 95.6 19.3 17.6 86.2 68.9 57.5 

Warehouse 14 20.0 27.8 81.3 28.0 3.3 13.8 23.3 18.8 7.7 93.3 

Warehouse 15 53.8 40.9 50.4 59.6 40.8 12.9 14.9 75.5 30.8 28.8 

Warehouse 16 38.8 30.8 35.2 40.9 76.1 23.0 77.6 21.4 12.4 30.0 

Warehouse 17 18.1 23.1 18.8 41.2 2.7 3.8 15.5 18.8 4.6 17.5 

Warehouse 18 73.4 81.8 15.0 9.2 15.9 15.0 24.5 45.3 10.2 28.8 

Warehouse 19 57.4 17.1 55.1 36.3 20.1 32.9 28.2 21.7 7.7 14.3 

Warehouse 20 37.4 17.1 49.4 72.0 100.0 23.5 28.2 72.3 68.1 73.8 

Warehouse 21 14.2 11.5 18.8 12.8 23.4 14.9 6.9 10.9 12.9 17.5 

Warehouse 22 39.0 47.8 43.1 35.8 12.7 3.0 40.4 53.6 22.2 72.5 

Warehouse 23 56.9 44.8 31.3 45.1 95.6 10.9 23.3 51.7 37.4 43.1 

Warehouse 24 63.3 27.7 39.9 16.3 12.5 20.9 28.8 24.9 7.3 69.4 

Warehouse 25 94.4 56.4 85.6 89.0 95.1 13.3 77.6 71.3 71.9 45.0 

Warehouse 26 99.7 65.4 61.4 90.0 95.6 38.9 46.5 86.2 84.2 76.7 

Warehouse 27 32.7 20.4 18.6 33.0 6.2 5.7 33.1 18.9 15.0 44.1 

Warehouse 28 56.1 100.0 33.8 62.6 80.4 26.7 95.9 28.4 23.2 50.0 

Warehouse 29 86.7 35.6 100.0 64.9 76.1 26.7 46.5 71.3 66.6 50.0 

Warehouse 30 67.0 41.3 70.5 45.1 76.5 14.5 6.3 86.2 66.9 62.3 

Warehouse 31 36.3 20.1 32.9 28.2 4.9 12.6 23.4 14.9 6.9 86.2 

Warehouse 32 72.0 100.0 100.0 28.2 95.6 19.3 12.7 3.0 40.4 26.7 

Warehouse 33 12.8 23.4 14.9 6.9 6.2 9.2 32.7 20.4 18.6 33.0 

Warehouse 34 35.8 12.7 3.0 40.4 95.1 36.3 76.3 47.5 100.0 100.0 

Warehouse 35 45.1 95.6 10.9 23.3 80.4 72.0 56.1 100.0 33.8 62.6 

Warehouse 36 6.2 33.8 62.6 80.4 5.7 12.8 86.7 35.6 100.0 64.9 

Warehouse 37 95.1 100.0 36.8 76.1 26.7 35.8 80.4 90.0 95.6 23.3 

Warehouse 38 80.4 70.5 45.1 76.5 26.7 45.1 80.4 33.0 76.5 61.1 

Warehouse 39 70.5 6.2 64.9 25.9 97.8 32.7 76.5 100.0 14.5 42.0 

Warehouse 40 32.1 95.1 33.1 52.8 95.6 23.6 87.8 62.6 80.4 56.3 

Warehouse 41 32.9 69.6 46.5 51.5 95.6 18.5 20.1 72.0 95.6 25.9 

Warehouse 42 52.8 62.6 95.9 76.8 95.1 52.5 76.1 24.5 6.2 52.8 

Warehouse 43 52.5 33.1 45.1 2.4 4.9 12.6 12.8 56.9 95.1 56.8 

Warehouse 44 32.8 28.2 65.1 64.9 25.9 27.4 26.7 49.3 80.4 83.8 

Warehouse 45 100.0 87.8 69.6 98.5 64.7 54.1 100.0 100.0 100.0 60.4 

 

 


