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Robust Distributed Control for DC Microgrids

with System Constraints

Grigoris Michos, Pablo R. Baldivieso-Monasterios, George C. Konstantopoulos

Abstract—This work proposes a distributed robust control
architecture for meshed DC Microgrid networks. Each in-
terlinking converter is modelled as a network node and is
connected in parallel to a constant power load representing
the network’s power consumption. Each node employs a local
controller consisting of two parts; current regulation based on
a modified version of the state-limiting PI and a distributed
MPC driving the system to desired setpoints. We analytically
prove each controller’s robustness to model variations caused
by changes in both the power demand and the transmitted
information among the subsystems. The concept of positive
invariance sets and the inherent robustness properties of the
nominal MPC are used to prove recursive feasibility of the
optimal control problem and guarantee constraint satisfaction
at all times. The stability proof of the cascaded node dynamics is
based upon the emerging properties of both the state limiting PI
and the distributed MPC design. Demonstration of the results
is given in a simulated scenario.

Index Terms—Network systems, Distributed control, optimal
control, Microgrids, optimal control.

I. INTRODUCTION

The concept of a MicroGrid (MG) brought a paradigm

change to the architecture of conventional power networks

[1]. The traditionally centralised structure shifted to geo-

graphically decentralised clusters, that are able to operate

both isolated, known as islanded mode, and in a grid-

connected setting. The MG structure can be found in both

AC and DC architectures, however in many cases the use of

a DC structure is often preferred because it provides higher

efficiency and reliability, e.g. in High-Voltage-Direct-Current

networks, aircrafts and transportation vehicles [2].

In this context, the MG attempts to integrate a variety

of different energy sources, consumption and storage units

into a network system that can be controlled by a local

controller. In order to bring the network operation to de-

sired levels and achieve homogeneous operation, the energy

sources are interlinked with converters that regulate their

respective output current and voltage, as well as achieve the

conversion to DC output in the case of an AC source. The

common control strategy that has been widely used in the
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literature is the adoption of the droop control method. In

its most basic form, it operates as a static output resistance

that achieves proportional power sharing and stable steady

state operation [3]. In many cases, the system is required to

operate within a predefined range in order to prevent high

transients from damaging the electronic components. This

overvoltage and overcurrent protection can be achieved by

employing saturation devices, however it has been shown that

this leads to performance degradation and may cause loss of

stability [4]. Furthermore, droop control methods often result

in poor power sharing among the nodes and unnecessary

power losses caused by circulating currents.

In light of these issues, MPC and other optimisation tech-

niques have been employed in order to include the operational

constrains in the control design procedure and improve the

system performance, see [5]. Despite the fact that an MG rep-

resents a smaller part of the overall power network, it follows

similar control principles with a Large-Scale system. Cen-

tralised techniques may reduce the reliability and resilience of

the system to faults, as an all-to-all communication network

requires transmission of large volume of information in very

short times. In order to address these issues, in this paper

we investigate the problem of designing a distributed control

architecture that reduces the communication network to a

neighbour-to-neighbour structure. Distributed MPC architec-

tures have previously been proposed in the literature, see [6]

for a detailed survey. Notably, the authors of [7] propose a

method that bounds the subsystem interactions influenced by

the Tube-MPC approach [8]. The main differences with the

approaches presented in the literature is the extension to a

nonlinear setting and dealing with strong system coupling;

the latter prohibits the use of a Tube-based method to

deal with the system interactions. We show that using the

proposed control scheme, system robustness to both load

and transmitted information variations can be achieved, while

asymptotic stability of the cascaded dynamics and constraint

satisfaction for the uncertain system are guaranteed. More

specifically, Section II presents the problem formulation,

Section III proposes a system decomposition of the uncertain

dynamics and describes the control design of each dynamical

component. We analytically show the recursive feasibility of

the optimal control problem (OCP), as well as prove the

stability of the cascaded dynamics in Section IV, and finally

Section V demonstrates the closed loop system operation in

a simulated scenario.



Fig. 1. Network topology of a meshed islanded MicroGrid.

A. Notation

A MG can be seen as an undirected graph G = (M, E)
where the set of nodes M represent a collection of power

converters and local loads; the set of edges E ⊆ M × M
defining the MG topology is characterised by the node-edge

matrix B ∈ R
|E|×|M| which for edge ε = (i, j) ∈ E involving

nodes i and j can be defined as [B]ei = 1 if node i is the

source of e ∈ E , and [B]ej = −1 if node j is its sink, and

zero otherwise.

II. PROBLEM FORMULATION

We consider the problem of controlling a meshed DC

Micro-Grid with interlinking buck converters, see Fig.1. We

model the Micro-Grid as a connected undirected graph with

|M| number of nodes. Each node represents a DC/DC buck

converter integrating a distributed energy resource (DER) unit

into the network, see Fig.2. The output voltage of the DER

unit is modelled as the source of the buck converter. The

consumer is modelled as a constant power load (CPL), repre-

sented by a current source in parallel to the output capacitor.

Utilizing the Kirchoff’s laws, the local node dynamics of

each subsystem are

Li

dii
dt

= uiEi − vi, (1a)

Ci

dvi
dt

= ii − io,i, (1b)

where Li is the converter inductance, Ci the output ca-

pacitance, ui the duty ratio of the switching element, Ei

the input voltage, io,i is the output current, and (ii, vi) the

converter current and node voltage respectively. Let the set

Ni = {j ∈ M : Lij 6= 0, i 6= j} denote the neighbours of

the ith node, i.e. the nodes of the network where there exists

a direct line connecting the two nodes. One can define the

incidence matrix of the network B ∈ R
n×m, where the each

column denotes an edge εij ∈ E . In addition, let R ∈ R
m×m

be a diagonal matrix denoting the line resistances, i.e. the

graph’s edge weights, then R−1 is the line admittance matrix.

The topology of the network is then described through the

Laplacian matrix L = B⊤R−1B. The output current io,i in

(1b) is shared between the local load and the network, given

as the sum of the load current and the edge line current

connected to the ith node, i.e.

io,i = iL,i + iT,i =
Pi

vi
+ Liivi −

∑

j∈Ni

Lijvj

where Pi is the local power demand. It is evident that there

exists a strong coupling between neighbouring subsystems.

Ei

LiiL,i

Pi

vi
Ci

io,ivi

Fig. 2. Node circuit modelled as a DC/DC Buck converter connected in
parallel to a local constant power load and the local bus.

To adopt an overvoltage and overcurrent protection, each

subsystem is subjected to voltage and current constraints

represented by the sets Xi and Xc,i respectively. By decom-

posing the load current as the summation of a nominal load

P̄i and the deviation from that load, i.e. iL,i = (P̄i+δPi)/vi,
the system uncertainty can be reduced to wi =

δPi

vi
. Hence,

we can re-write (1b) as

Ci

dvi
dt

= ii −
P̄i

vi
− Liivi −

∑

j∈Ni

Lijvj + wi.

where for Di(Pi, vi) = P̄i

vi
and bounded load variations

δPi ∈ δPi, the disturbance is bounded within Wi =
Di(δPi,Xi). In order to ensure regularity of the optimal

control problem developed later, we adopt the following

assumption.

Assumption 1. The sets Xi, Xc,i, δPi are compact and Xc,i,

δPi include the origin in their nonempty interior.

III. CONTROL DESIGN

This section describes the control design procedure for

each local subsystem of the form (1). In order to simplify the

analysis, we invoke a common assumption in the literature;

the converter states are operating in different time scales,

i.e. the converter current has converged and is considered

constant in the analysis of the node voltage, see for example

[9] or [10]. This enables a separate analysis for each dynamic

component.

A. Converter Current Regulation

We start by designing the converter current controller. In

order to bound the current trajectories within Xc,i, we employ

a modified version of the state-limiting PI, first introduced in

[11]. We formulate the duty ratio as

ui =(vi − kp,iii +Miσi)/Ei

Miσ̇i =kI,i(1− σ2
i )(̂ii − ii).

(2)

where kp,i, kI,i,Mi are tuning parameters, σ is an integrator

state, and îi is the reference current. Substituting to (1a)

results in the closed loop dynamic behaviour

Li

dii
dt

= −kp,iii +Miσi (3)

In the following proposition we show that an appropriate

choice of tuning parameters results in the desired property.



Proposition 1 (Boundedness of the node current). The set

Ci = [−Imax,i, Imax,i] × [−1, 1] ⊆ Xc,i with Imax,i = Mi

kp,i
is

control invariant for the converter current dynamics (3).

Proof. We begin by showing the boundedness of the integra-

tor dynamics. For each individual component σi(0) ∈ [−1, 1],
we assume there is a time τ2 such that |σi(τ2)| > 1. By

continuity of the dynamics, there exists a time τ1 such that

|σ(τ1)| = 1. By defining a function Eσ,i = 1

2
σ2
i with

Ėσ,i = σi
kI,i

Mi
(1 − σ2

i )(̂ii − i) it is seen that at |σi| = 1

we have Ėσ,i = 0 and therefore the state trajectory cannot

escape the circle |σi| = 1. This leads to a contradiction, and

we conclude |σi| ≤ 1.

We consider the energy function of the inductor Ec,i =
1

2
Lii

2
i with time derivative

Ėc,i = −kp,ii
2
i + iiMiσi ≤ −kp,i|ii|

2 + |ii|Mi.

Following [12, Theorem 4.18], given ii(0) ≤
Mi

kp,i
, then the

solution of the system ii(t) is ultimately bounded with bound

Imax,i =
Mi

kp,i
.

B. Node Voltage Regulation

The second part of the control design is the voltage

regulation. The time-scale separation allows the use of the

reference current îi as a control input to the voltage loop.

In the following, we propose a procedure to compute îi,
such that the dynamical behaviour of the voltage is always

constrained within the voltage constraint set Xi = {vi ∈
R : vi ≤ vi ≤ v̄i}. In addition, we enforce the reference

current to be generated within the bounded range specified

in Proposition 1, by adopting an input control set Ui ⊆
[−Imax,i, Imax,i]. This prevents possible saturation functions,

and thus discontinuities, emerging in the equilibrium point

mapping of the closed loop system.

We propose a non-iterative, non-cooperative distributed

control architecture that introduces robustness of the system

to uncertainties caused by variations in the load δPi and the

interaction term. We begin by writing the uncertain system

Ci

dvi
dt

= îi −
P̄i

vi
− Liivi −

∑

j∈Ni

Lijvj + wi, (4)

and define a nominal system

Ci

dzi
dt

= ηi −
P̄i

zi
− Liizi + di, (5)

where di = −
∑

j∈Ni
Lijzj . The evolution of the error

between the nominal and the uncertain state ei = vi − zi
is formulated as,

Ciėi = −Liiei+
P̄i

zi(zi + ei)
ei−

∑

j∈Ni

Lijej−Kiei+wi, (6)

where we have substituted for îi = ηi −Kiei. The resulting

error subsystem has two inputs, the nominal voltage zi and

the disturbance wi. In the following, we will exploit the

boundedness of both external inputs in order to show that the

error dynamics are restricted within a robust positive invariant

set, when an appropriate choice of an initial state is made.

Proposition 2 (Robust positive invariance of error dynamics).

For a uniformly bounded nominal voltage zi(t) with zi ≤
zi ≤ z̄i and bounded disturbance wi ∈ Wi, if

Ki >
P̄

z2
,

then the dynamics (6) are contained in a robustly positive

invariant set Si.

Proof. We begin by considering the overall nominal part of

the error system in order to exploit the Laplacian properties

of the dynamics,

Cė = −Le+ diag

{

P̄i

zi(zi + ei)

}

e−Ke

where C,K are diagonal positive definite matrices. We need

to establish conditions such that this system is asymptotically

stable, while considering z as a bounded input to the system.

Using the Taylor expansion around an equilibrium point

(0, ẑ), the Jacobian matrix is computed as,

J = C−1



−L+ diag

{

P̄i

ẑ2i

}

−K





where we need J ≺ 0 in order to show asymptotic stability

of the nominal dynamics. We note that the Laplacian matrix

L eigenvalues satisfy λ1 = 0 < λ2 ≤ · · · ≤ λn. By

using the fact that λmax(−L) = 0 in combination with the

diagonal structure of the latter two summands, we can deduce

a sufficient condition for J ≺ 0 in the scalar form

Ki >
P̄i

ẑ2i
.

The right hand side of the above inequality is maximised at

ẑi = zi > 0, thus a substitution to the above with zi results

in the required condition. Since w ∈ W, the system has a

local-ISS property, where there exists a constant a > 0 such

that ė ≤ ae + w and the error is bounded in S = a−1
W.

Hence, for each i ∈ M, the node error voltage is contained

in the respective projection of S , or simply ei(t) ∈ Si. This

completes the proof.

We can now formulate the nominal control policy that

guarantees boundedness and asymptotic stability of the nom-

inal voltage dynamics. We adopt a parametrisation of

ηi = νoi −Kη,izi. (7)

The first term is the first element of a control sequence ν
o
i

generated by solving a finite receding horizon (RC) OCP.

This distributed MPC problem Pi(zi, di) consists of

Jo(zi, νi, z
r
i , ν

r
i , di) =

min
νi

∫ tf

t0

ℓi(zi − zri , νi − νri )dt+ Jf,i(zi(tf )− zri ) (8)



subject to the constraints,

zi(0) = zi

Ciżi = νi −Kη,izi −
P̄i

zi
− Liizi + di,

(zi, νi) ∈ Zi × Ui, zf,i ∈ Zf,i,

(9)

where (zri , ν
r
i ) is a desired setpoint pair. The constraint

sets of the nominal problem are ”tighter” versions of the

original constraint sets Xi and Ui respectively. These have

been parametrised using the robust invariant set of the error

dynamics as Zi = Xi ⊖ Si and Ui = Ui ⊖ Si ⊕ Kη,iZi,

thus effectively constraining the uncertain system operation

within the respective original constraint sets. Furthermore,

we invoke the following standard assumptions, see [13], that

will assist in establishing recursive feasibility of (8).

Assumption 2. For each node i ∈ M, the sets Xi, Ui

are compact and ℓi : Zi × Ui → Ri is a positive definite,

continuous function.

Assumption 3. For each node i ∈ M, the terminal cost

function satisfies

Jf,i(z
∗
i ) + ℓ(z∗, ν∗) ≤ Jf,i(zi), ∀ ∈ Zi

Assumption 4. For each node i ∈ M, the terminal set Zf,i

is control invariant for the nominal dynamics (5).

The second term of (7) counteracts the steady state nega-

tive impedance effect of the CPL and assists in establishing

asymptotic stability of the terminal dynamics, i.e. beyond the

horizon [0, T ].

Proposition 3 (Stability of the terminal dynamics). Consid-

ering an equilibrium ẑi of the nominal voltage dynamics (5),

if

Kη,i >
P̄

ẑ2i

then ẑi is stable for the terminal dynamics with t ∈ (T,∞).

We omit the proof as it similar to the one of Proposition

2.

IV. RECURSIVE FEASIBILITY AND STABILITY ANALYSIS

This section provides an analysis of the recursive feasi-

bility properties of the RC-OCP, followed by an analysis on

the stability properties of the cascaded system dynamics. The

state decomposition of the previous section has resulted in

the cascaded dynamics

Li

dii
dt

= −kp,iii +Miσi (10a)

Mi

dσi

dt
= kI,i(1− σ2

i )(ν
0
i (z)−Kη,izi −Kiei − ii) (10b)

Ci

dzi
dt

= ν0i (zi)−Kη,izi −
P̄i

zi
− Liizi + di, (10c)

Ci

dei
dt

= −Liiei +
Pi

zi(zi + ei)
ei −

∑

j∈Ni

Lijej −Kei + wi,

(10d)

where ej , di are piecewise constant signals as a result of the

communication structure we have adopted. This is outlined

in the following assumption.

Assumption 5 (Communication framework). At each sam-

pling instant t, each node receives the voltages vj , zj from its

neighbouring nodes j ∈ Ni and assumes vj , zj = constant

until t+ δ, with δ > 0 acting as a sampling interval.

First, we analyse the recursive feasibility properties of Pi,

which by applying Assumptions 2-4 meets all the require-

ments outlined in [13] with a small caveat; the interaction

term is included in the optimisation problem, however its

dynamic behaviour is restricted to a piecewise change over

the sampling intervals. At each time t the local OCP con-

structs di(t) and solves the optimisation problem considering

a constant interaction, i.e. di(t) = d̄i,t over the horizon

T , ignoring possible future changes in the interaction signal.

Then, at time t+ δ, the OCP constructs the new interaction

term di(t + δ) = d̄i,t+δ and solves the problem with

prediction horizon [t+ δ, t+ δ + T ].

Let the feasibility set of the OCP at time t+ δ be defined

as ZT+1

i (di) := {vi ∈ Zi : ∃νi ∈ Ui, x(t) ∈ ZT
i (di)}.

The fact that d̄i,t − d̄i,t+δ 6= 0 can ”brake” the nesting

property of the feasibility sets ZT
i ⊇ ZT−1

i ⊇ · · · ⊇ Zf,i

and thus result in the loss of the recursive feasibility property,

see [14]. Nevertheless, similar to [15], we can exploit the

inherent robustness properties of the nominal MPC and

impose conditions on the variations of the interaction signal

between sampling times. This will allow us to preserve the

recursive feasibility property of the OCP. We start by the

simple case, where the interaction term remains unchanged

between sampling times, i.e. d̄i,t − d̄i,t+δ = 0.

Proposition 4. Suppose Assumptions 1-4 hold and di(t) =
di(t+ δ), then zi(t) ∈ ZT

i (di) implies zi(t+ δ) ∈ ZT
i (d

+

i ).

Proof. Consider the solution of the problem at time

t with resulting state and control predicted trajectories

zoi
(

[t, t+ T ], di
)

and νoi
(

[t, t+ T ], di
)

respectively. Due to

fact that the terminal set Zf, is control invariant, combined

with the fact that di(t) = di(t+δ), the resulting predicted tra-

jectories zoi

(

[t+ δ, t+ δ + T ], d+i

)

and νoi

(

[t, t+ T ], d+i

)

are the tails of those at time t with zoi

(

t+ δ + T, d+i

)

=

zf,i. Therefore, we can conclude that the OCP at time

t + δ is feasible and thus the nesting property holds, i.e.

ZT
i (di) ⊇ ZT−δ

i (d+i ).

The next step is to prove recursive feasibility when the

interaction signal is permitted to change over the sampling

intervals. To this aim we invoke the following assumption on

the continuity of the value function of (8).

Assumption 6 (K-continuity of the value function). For each

node i ∈ M, the value function Jo
i (·) satisfies,

∣

∣Jo
i (z1)− Jo

i (z2)
∣

∣ ≤ F(|z1 − z2|)

where F is a class-K function.



We also require to bound the interaction variations over

the sampling intervals as in the following assumption.

Assumption 7 (Bounded interaction signal variations). For

each node i ∈ M, the signal variation δdi = d+i −di satisfies,

δdi ≤ F−1((ρi − γi)βi)

where γi ∈ (0, 1), ρi ∈ (γ, 1) and βi > 0 such that it

defines a level set of the value function Ωβ,i(di) = {zi ∈
ZT

i (di) : Jo
i (di) ≤ βi}.

We are now in place to show the recursive feasibility of

the proposed distributed controller using the next theorem.

Theorem 1 (Recursive feasibility of the distributed con-

troller). Suppose Assumptions 1-7 hold. If zi(t) ∈ ZT
i (di),

then this implies that at time t + δ the state satisfies

zi(t+ δ) ∈ ZT
i (d

+

i ).

Proof. Suppose that zi ∈ Ωα,i(di) for any αi ≥ βi ≥ 0 that

satisfies Ωα,i(di) ⊆ ZT
i (di). Then, using Proposition 4 the

value function satisfies the monotonic descend property, i.e.

,

Jo
i (z

+

i , di) ≤ γiJ
o
i (zi, di).

In addition, using Assumption 6 we obtain

Jo
i (z

+

i , d
+

i )− Jo
i (z

+

i , di) ≤ F

(

∣

∣

∣d+i − di

∣

∣

∣

)

Using the boundedness of the interaction signal variations

from Assumption 7,

Jo
i (z

+

i , d
+

i ) ≤ Jo
i (z

+

i , di) + ((ρi − γi)βi)

≤ γJo
i (zi, di) + ((ρi − γi)βi)

≤ γαi + ((ρi − γi)αi)

≤ ρiαi

< αi.

Therefore, the state at the next sampling interval satisfies

z+i ∈ Ωα,i(di) and as a result Ωα,i(di) is invariant for the

nominal dynamics with z+i ∈ ZT
i (d

+

i ).

We conclude this section by proving the stability of

the cascaded dynamics using the driving/driven subsystem

principle [16]. According to this, asymptotic stability of the

cascaded dynamics follows from asymptotic stability of the

driving subsystem and boundedness of the driven dynamics.

We start by showing asymptotic stability of the current

dynamics.

Theorem 2 (Stability of the current dynamics). For every

node i ∈ M, the C1 function Wi : R× R → R,

Wi(ii, σi) =
1

2
Li(ii − îi)

2 +
M2

i −Mikp,iîi
kI,i

ln
1

1− σ2
i

+

+
Mikp,iîi
kI,i

ln
1

1 + σi

, (11)

is a Lyapunov function for the system (10a), (10b), and the

system is asymptotically stable with equilibrium point îi.
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Fig. 3. Network topology of a meshed islanded MicroGrid.

Proof. Assuming time scale separation of the dynamics, i.e.

îi = constant, the time derivative of Wi results in

Ẇi = Li

dii
dt

(ii − îi) +
M2

i −Mikp,iîi
2kI,i

2σi

1− σ2
i

dσi

dt

−
Mikp,iîi

kI,i(1 + σi)

dσi

dt

= −kp,i(ii − îi)
2,

where

Ẇi = −kp,i(ii − îi)
2 ≤ 0

for kp,i > 0. Following La Salle’s invariance theorem and

noting that the derivative vanishes only at ii = îi, the

driving subsystem is asymptotically stable with respect to

the equilibrium point îi.

The asymptotic stability of the cascaded dynamics (10)

follows:

Theorem 3 (Asymptotic stability of the cascaded dynamics).

For every i ∈ M, the cascaded dynamics (10) are asymptot-

ically stable with equilibrium set,

Bi := {̂ii, σ̂i, ẑi, êi ∈ R : îi = νoi −Kη,iẑi −Kiêi,

σ̂i = M−1

i kp,iîi, ẑi = zri , êi ∈ Si} (12)

Proof. Asymptotic stability of the driving subsystem follows

from Theorem 2. In addition, the dynamics described by

(10c) are also asymptotically stable, where the proof follows

the common approach of exploiting the recursive feasibility

property of the optimal control problem and using the cost

function as a Lyapunov function for the system [13]. Finally,

boundedness of (10d) follows from Proposition 2. Thus,

according to [16], the cascaded dynamics are asymptotically

stable with equilibrium set Bi.

V. SIMULATIONS

In this section we demonstrate the proposed control

scheme in a simulated scenario of a five node network, see

Fig. 3. We require the nominal voltage to reach given ref-

erences, while satisfying the ”tighter” constraint sets, hence

the true voltage to always remain within Xi. The voltage

evolution is depicted in Fig.4. Both the current trajectories

and generated references satisfy the current constraint set

Xc,i as shown in Fig.5, while Fig.6 provides the current

load deviations δiL,i from the nominal value. The rated

voltage is set to v∗ = 100V . The current loop control

parameters are chosen as kp,i = 600,Mi = 9000 resulting

in a maximum current Imax,i = 15A. The nominal power
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Fig. 4. Voltage and nominal voltage trajectories for Node 1( , ),
Node 2( , ), Node 3( , ), Node 4( , ) and Node
5( , ) respectively. The constrained region is represented with black
solid lines ( ) and the voltage references by black dashed lines ( ).
The voltage trajectories are within the respective Si ( ) at all times.
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Fig. 5. Converter Current trajectories for Node 1( ), Node 2( ),
Node 3( ), Node 4( ) and Node 5( ) respectively.The con-
strained region C is represented by black solid lines ( ) and the current

references îi by black dashed lines ( ).
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Fig. 6. Load current deviation from nominal value for Node 1( ), Node
2( ), Node 3( ), Node 4( ) and Node 5( ) respectively.

demand is P̄i = 500W and we bound the maximum deviation

at |δPi| ≤ 500. We furthermore parametrise the voltage

constraint set as Xi = {vi ∈ R
n : 97.9 ≤ vi ≤ 102.6}.

Finally, we choose the voltage control parameters as Ki = 50
and Kη,i = 2.

VI. CONCLUSIONS

This study proposed a robust distributed control scheme for

meshed DC MGs. Following the conventional approach, we

use a bounded controller for the current regulation, however

the proposed design proactively guarantees boundedness and

smoothness of the current trajectories. We avoid saturated

current references by imposing this as a constraint within

the design of the voltage regulation. The voltage subsystem

is decomposed into a nominal and an error term where it is

initially proven that for a bounded nominal voltage the error

dynamics are bounded in a positive invariant set parametrised

by the disturbance. The nominal voltage is regulated by

an MPC scheme in order to optimally drive the system to

desired setpoints, while ensuring constraint satisfaction at

all times. Using the bounded set of the error dynamics,

we include a modification of the original constraint sets

into the OCP. This guarantees constraint satisfaction of the

uncertain system trajectories at all times. We use the inherent

robustness properties to prove recursive feasibility of the OCP

and construct a proof of the overall system stability based on

the interconnected system theory. Future approaches will aim

to reduce the conservativeness in the choice of the robust

positive invariant set of the error dynamics and generalise

this approach to control affine network systems.
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