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Abstract—In this paper a hierarchical control scheme is
proposed for distributed operation of DC Microgrids (MGs)
consisting of multiple Distributed Energy Resources (DERs) and
local loads with an inherent overvoltage protection for each unit.
At the primary control level, the recently proposed state-limiting
PI (sl-PI) controller is employed to ensure bounded converter
capacitor voltage at all times. At the supervisory control level a
non-iterative distributed two-layer MPC approach is proposed,
where the system is driven to economic targets calculated
according to the load demand. We show the existence of bounds
on the voltage dynamics based on ultimate boundedness theory
by an appropriate choice of the tuning parameters. Asymptotic
stability of the closed loop dynamics is analytically proven and
conditions for the recursive feasibility of the supervisory con-
troller are provided based on the inherent robustness properties
of nominal MPC. Simulation results are provided to demonstrate
the boundedness properties and economic regulation of the
proposed control scheme, as well as satisfaction of the operation
constraints.

Keywords—Hierarchical Microgrid Control, Distributed Con-
trol, Economic Operation, Nonlinear Control

I. INTRODUCTION

During the past decades a surge in the penetration of

renewable energy sources (RES) has resulted in a paradigm

shift of network operation. The concept of DC MG is a key

element of this, as it allows the energy to be distributed directly

to consumers and avoid unnecessary AC to DC, and vice versa,

conversions [1]. Traditionally, the primary control strategy in

DC MGs relies on introducing a virtual resistance at the output

of each DER unit, also known as the droop control method [2],

[3]. The main disadvantage of droop control is an introduction

of an offset from the rated value, which creates the necessity

of an additional control level to improve the power sharing,

thus reducing unnecessary transmission lines currents [4].

There have been several studies that propose to shift the

voltage reference to a desired value by introducing an addi-

tional term inside the droop expression. In [5], the proposed

method includes a ”voltage-shifting” term that reduces voltage

deviations from the reference value. This term is calculated as

the output of a proportional-integral (PI) controller compen-

sating the error between the converter and the grid voltage.

A voltage-shifting term was also used in [6], with the input

to the PI controller being an expression combining local

voltage measurements and the average value of the grid DC

voltage. In many cases, constraints on the system states as

well as an overall economic system operation are required.

This necessitates the adoption of optimal control schemes.

The majority of the current optimal techniques utilise some

form of information exchange among the entire network in

order to calculate the control action, see [7] for a detailed

survey. As MGs are power systems that usually span in

large geographical areas, transmission of high volume of

data in short sampling times is neither practical nor suitable.

Therefore, distributed techniques that only use exchange of

information among neighbouring subsystems are often desired.

Distributed control architectures with neighbour-to-neighbour

communication have been proposed in the literature that

integrate the Tube MPC to introduce robustness to the system,

[8], [9]. The proposed techniques require the computation of

complex constraint sets to ensure the recursive feasibility of

the distributed MPC, which is usually prohibitively difficult in

the presence of nonlinear dynamics.

Aside from voltage regulation and system stability, every

DER unit in a DC MG is required to operate within specific

voltage limits in order to avoid damage to its components.

Different load profiles may result in transients of voltage

which could violate converter limits as the authors of [10],

[11] suggest. Saturated controllers have been shown to lead in

system instability or performance degradation [12]. In light

of these issues, a conventional PI controller is inadequate

to protect the converter components and more sophisticated

control techniques are required.

The contributions of this paper are the following:

• In Section III, we propose a hierarchical control scheme,

that incorporates the recently developed sl-PI controller

[13] as the primary controller for the voltage dynamics.

We leverage on its state limiting properties to establish

a bound on the magnitude of the capacitor voltage, thus

eliminating any potential damage during transients of the

dynamics. Guidelines are provided for tuning the control



parameters to adopt the desired behaviour and achieve

asymptotic stability of the equilibria.

• In Section IV, we propose a non iterative distributed

two layer supervisory control scheme. For this task,

the inherent robustness properties of nominal MPC are

exploited, contrary to many linear approaches that utilise

some form of Tube MPC. This eliminates the need to

calculating complex constraint sets, which can proven to

be an arduous task in a nonlinear setting. The upper layer

of the proposed scheme computes admissible steady state

targets by solving an optimisation problem that represents

the economic criteria of the steady state operation. The

lower layer computes a control action in a receding

horizon manner that minimises the deviation of the state

from the targets.The operation constraints of the system

take the form of coupled polytopic constraints.

• In Section V, we provide a stability analysis of the

closed loop system. Section VI provides the recursive

feasibility analysis of the proposed supervisory controller

with respect to time-varying information exchanges based

on the preview information paradigm of [14].
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Fig. 1. Generic Meshed DC MG Topology.

A. Notation

A polytope A ⊂ R
n with complexity nc is characterised by

A = {x ∈ R
n : Px ≤ q} with P ∈ R

nc×n and q ∈ R
nc . For

x ∈ R
n, [cosx] = diag(cosx1, . . . , cosxn). The N element

sequence is a = {a(0), . . . , a(N − 1)}. A MG can be seen as

a graph G = (M, E) where the set of nodes M represent a

collection of power converters and local loads; the set of edges

E ⊆ M×M defining the MG topology is characterised by the

node-edge matrix B ∈ R
|E|×|M| which for edge e = (i, j) ∈ E

involving nodes i and j can be defined as [B]ei = 1 if node i

is the source of e ∈ E , and [B]ej = −1 if node j is its sink,

and zero otherwise.

II. PROBLEM FORMULATION

Consider a DC MG with a set of nodes M = {1, . . . , nx},

see Fig.1, where each node i ∈ M represents a DER unit

connected to the MG via a DC/DC converter and supplying

a local load. The capacitor voltage dynamics of node i ∈ M
are given by Kirchoff’s laws as:

Ci

dVi

dt
= ιref

i − ιi, (1)

Vi

ιi

ιref
i Ci RL,i

Fig. 2. DC/DC converter connected to a local load and the local bus.

where Vi is the converter voltage, ιi is the output current,

and Ci is the converter output capacitance. It is a common

assumption in the literature, see [15], [16] and [17], to consider

a faster inner current loop where the inductor current is

considered constant to a steady state value ιref
i , thus simplifying

the voltage dynamics analysis. The simplified interlinking

DC/DC converter is depicted in Fig.2. The output current ιi
can be expressed as a combination of load and line currents

ιi =
Vi

RL,i

+
∑

j∈Ni

Vi − Vj

Rij

, (2)

where Ni = {j ∈ M|Yij 6= 0, i 6= j} is the set of neighbours

of the ith node and Y = L + D is the network admittance

matrix with L = B⊤YEB being the Laplacian matrix of the

graph, YE the line admittances, and D = diag
{

1

RL,i

}

the

node shunt admittance.

III. PRIMARY CONTROL

In this section the primary voltage control will be presented.

In addition, with the use of ultimate boundedness theory we

will establish bounds on the voltage dynamics provided the

initial state is within the bounded region. The control input of

eq.(1) takes the form

ιref
i = −kp,iVi +Misin(σi),

dσi

dt
=

kI,i

Mi

(V̄ − Vi −miιi + ηi)cos(σi),
(3)

with kp,i,Mi, kI,i being tuning parameters and V̄ the rated

voltage. This is a modified version of the sl-PI, introduced in

[13], that includes the droop control expression Vi = V̄ −miιi,

with mi being the droop control coefficient. Additionally,

a voltage shifting term ηi is supplied by the supervisory

controller. The closed loop voltage dynamics are

Ci

dVi

dt
= −kp,iVi +Misin(σi)−

Vi

RL,i

−
∑

j∈Ni

Vi − Vj

Rij

,

dσi

dt
=

kI,i

Mi

(V̄ − Vi −miιi + ηi)cos(σi).

(4)

Our first result follows,

Proposition 1: For each node i ∈ M, if

|Vi(0)| ≤ V max =
Mi

kp,i
(5)

then |Vi(t)| ≤ V max
i ,∀t > 0.



Proof 1: We invoke the C1 energy function of the capacitor

Wi(Vi) =
1

2
CiV

2
i with time derivative,

dWi(Vi)

dt
= −kp,iV

2
i + ViMisin(σi) + Viιi,

≤ −kp,iV
2
i + |Vi|Mi + Viιi.

To ensure the voltage is bounded we define two cases; (a)

Viιi ≤ 0 and (b) Viιi > 0. If (a) holds, then

dWi(Vi)

dt
≤ −kp,iV

2
i + |Vi|Mi.

Using [18, Theorem 4.18], it can be seen that for |Vi(0)| ≤
Mi

kp,i
the solution of the voltage dynamics Vi(t) is ultimate

bounded with ultimate bound Mi

kp,i
for every t ≥ 0, i.e.

|Vi(t)| ≤
Mi

kp,i
, ∀t ≥ 0.

In the case of (b), then due to the structure of the network,

at least one j ∈ M converter should feed the ith load and

thus Vj ≥ Vi. Then, similarly from case (a), Vi ≤ Vj ≤
V max. For more details, see [15, Section 3A]. Therefore the

tuning parameters Mi and kp,i can be chosen to establish an

appropriate converter voltage bound V max = Mi

kp,i
.

IV. DISTRIBUTED SUPERVISORY CONTROL

The aim of the supervisory control is to drive the system

state trajectories to meet the economic criteria while satisfying

the operation constraints. To achieve this, the supervisory volt-

age regulation consists of two layers; an upper layer providing

the target steady state values and a lower layer minimising

the deviation from the targets in an optimal manner. Each

sampling time k ∈ N, every ith local node transmits its voltage

Vi(k) measurement to its neighbours j ∈ Ni and the two

optimisation problems are solved to provide an input ηi to the

local primary controller.

A. Upper Layer

The equilibrium pair of the voltage dynamics (V eq
i , σ

eq
i )

can be described by,

V
eq
i =

[

1 +miYii

]−1[

V̄ + ηi −miwi

]

, (6)

σ
eq
i = arcsin

[

M−1

i

(

(kp,i + Yii)V
eq
i + wi

)

]

, (7)

with wi =
∑

j∈Ni
YijVj representing the transmitted informa-

tion. The upper layer solves a quadratic programming problem

formulated as,

(V t
i , η

t
i) = arg min

Vi,ηi

ℓeco(Vi, V̄ )

s.t.

Vi =
V̄ + ηi −miwi

1 +miYii

,

Vi ∈ Si,

(8)

where the optimal solution pair zti = (V t
i , η

t
i) is the target that

is supplied to the lower layer, ℓeco is a quadratic function, Si

is a polytopic constraint representing a collection of operation

and economic constraints.

B. Lower Layer

The lower layer consists of local distributed nonlinear

MPCs, where each MPC-i is designed to drive the system

to the local target zti provided by the upper layer. A receding

horizon approach is adopted, where, at each sampling instant

k, a finite horizon optimal control problem is solved to calcu-

late an optimal control sequence ηo
i . The first element of this

sequence is used as an input to the system, ηi(k) = ηoi (0|k). In

order to accommodate a distributed approach, the transmitted

information is included in the predictions of each MPC-i in the

form of a N -length disturbance sequence of equal elements

wi(k) = {wi(0|k) = wi(k), wi(1|k) = wi(k), . . . , wi(N −
1|k) = wi(k)}. The same information is used to parametrise

the operation state constraints Xi(wi), formed as polytopic

bounded regions of the line currents connected to the ith

node. In addition, there are in place uncoupled polytopic input

constraints Ui. Each local MPC-i solves

P o
i (Vi,ηi, z

t
i ,wi) =

min
ηi

N−1
∑

n=0

ℓ(Vi(n)− V t
i , ηi(n)− ηti)

s.t.

Vi(0) = Vi(k)

(V +

i (n), σ+

i (n)) =

Hi(Vi(n|k), σi(n|k), ηi(n|k), wi(n|k)),
∀n ∈ [0, N − 1]

(Vi, ηi) ∈ Xi(wi(n|k))× Ui, ∀n ∈ [0, N − 1]

Vi(N) = xf,i.

(9)

where H(·) is the discrete version of the closed loop voltage

dynamics (4). A consequence of each local MPC perceiving

the neighbouring voltages as constant for the entire horizon is

that, at sampling instant k, the terminal constraint set Xf,i :=
{xf,i = V t

i } may be outside the state constraint set Xi(wi).
However, similar to [19], we can overcome this by forcing the

states to converge to the closest to the target admissible state.

If the target V t
i at time k is inside the constraint set, then

Xf,i := {xf,i = V t
i }. If not, then the terminal set is replaced

by the closest admissible steady state target, i.e. xf,i = V̂ t
i ,

with D(·) a strictly convex distance function and

V̂ t
i = argmin

Vi

{D(Vi − V t
i )|Vi ∈ Xi(wi)}

V. STABILITY ANALYSIS

For the stability proof of the node voltages, the entire MG

needs to be considered as the node voltage dynamics are

coupled via the MG network. In the following expression, kp,

m, kI , M , C are diagonal matrices with each (i, i) element

being the ith node respective parameter value. Considering a

steady state equilibrium point (V eq, σeq) with vector elements

V
eq
i ∈ (0, V max) and σ

eq
i ∈ (−π

2
, π
2
) the resulting Jacobian

matrix of the system becomes,

J=

[

C−1(−kp − Y ) C−1M [cos(σeq)]
−M−1KI(Inx

+mY )[cos(σeq)] 0nx×nx

]

.



For any positive kp, M chosen to satisfy Proposition 1 and

any kI > 0 the Jacobian matrix eigenvalues have negative real

part and each voltage equilibrium V
eq
i is asymptotically stable

with region of attraction [−kp,i

Mi
,
kp,i

Mi
] × [−π

2
+ δ, π

2
− δ], for

any arbitrary small δ > 0. For further details on the stability

properties of the sl-PI, the reader is referred to [13].

VI. RECURSIVE FEASIBILITY OF THE SUPERVISORY

CONTROLLER

In this section we show the recursive feasibility of each

MPC-i. We utilise the inherent robustness properties of nom-

inal MPC in order to demonstrate the robustness of the pro-

posed control scheme to errors caused by small perturbations

of the transmitted information between sampling instances.

In order to simplify the analysis, we employ the discrete

time model of the nominal system, that is given by the

Euler discretisation as V +

i = H(Vi, f(Vi, ηi, wi)) = Vi +
∆Tf(Vi, ηi, wi), where ∆T is the sampling period. It is

noted that the evolution of the uncertain system, is given by

V +

i = Vi +∆Tf(Vi, ηi, w
+

i ).
Assumption 1: The value function P o

i is class-K continuous

on the bounded sets and satisfies
∣

∣P o
i (z1)− P o

i (z2)
∣

∣ ≤ F(|z1 − z2|),
with F a class-K function.

This assumption is satisfied for positive closed and compact

constraint sets, continuous and convex dynamics over the con-

straint set and convex continuous cost; for a detailed analysis

see [20]. A characterisation of the model error induced by

changes in the disturbance sequences between two consecutive

sample times k, is obtained by,
∣

∣

∣
w+

i −wi

∣

∣

∣
=

∣

∣

∣
w+

i − wi

∣

∣

∣
|1c| ,

where c = N . This leads to

∣

∣

∣
w+

i −wi

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

j∈Ni

Yij(V
+

j − Vj)

∣

∣

∣

∣

∣

∣

√
c,

which, using the discrete model, results in

∣

∣

∣
w+

i −wi

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

j∈Ni

Yij∆Tfj(Vj , ηj , wj)

∣

∣

∣

∣

∣

∣

√
c.

Finally as fj(Vj , ηj , wj) is bounded by the MPC-j, i.e. there

exists Bj such that fj(Vj , ηj , wj) ≤ Bj , then a bound can

be derived on the error δwi between the elements of the two

consecutive disturbance sequences as

|δwi| ≤ λi,

with λi = ∆T
∑

j∈Ni

∣

∣Yij

∣

∣

∣

∣Bj

∣

∣

√
c.

Assumption 2: The maximum disturbance error δwi satisfies

λi ≤ F−1((ρ− γ)β),

with ρ ∈ (γ, 1), γ ∈ (0, 1) and positive constant β such

that it defines a level set of the value function Ωβ =
{Vi|P o

i (Vi,wi) ≤ βi}.

First we establish the recursive feasibility of eq.(9) under

unchanging disturbances, i.e. when δwi = 0 the state remains

within the respective feasible set XN (wi) = {Vi ∈ Xi(wi) :
Ui(Vi,wi)}, with Ui(Vi,wi) the set of admissible control

sequences.

Proposition 2: Let Assumption 1 hold. If w+

i = wi and the

terminal set Xf,i is control invariant for the system H(·), then

Vi ∈ XN (wi) implies V +

i ∈ XN+1(w
+

i ).
Proof 2: For a fixed disturbance, i.e. w+

i = wi, the candi-

date state and control sequences V i(V
+

i ,w+

i ), ηi(V
+

i ,w+

i )
at time k+1 are the tails of the optimal sequences V i(Vi,wi),
ηi(Vi,wi) at time k, with the addition of the terminal state as

the last element, i.e.,

V i(V
+

i ,w+

i ) = {V o
i (1|Vi,wi), V

o
i (2|Vi,wi), . . . ,

V o
i (N − 1|Vi,wi), xf,i},

ηi(V
+

i ,w+

i ) = {ηoi (1|Vi,wi), η
o
i (2|Vi,wi), . . . ,

ηoi (N − 1|Vi,wi), η
o
i (N − 1|Vi,wi)}.

Exploiting the properties of the primary dynamics, the terminal

set Xf,i = {xf,i} is control invariant for the system, as shown

in Section V. Therefore, the sequences are feasible and the

problem is recursively feasible with XN (wi) ⊆ XN+1(w
+

i ).
This leads to the next proposition, showing the preservation

of the monotonic decent of the cost function, when the distur-

bance sequence wi is permitted to change between sampling

times.

Proposition 3: Let Vi ∈ Ωα(wi) = {V |P o
i (V,wi) ≤ α} ⊆

XN (wi) for some α ≥ β > 0. The set Ωα(wi) is robust

positive invariant for V +

i = H(Vi, ηi, wi + δwi) and Vi ∈
Ωα(wi) implies V +

i ∈ Ωα(w
+

i ).
Proof 3: Using Proposition 2, the value function under the

proposed MPC satisfies the monotonic decent property

P o
i (H(Vi, ηi, wi),wi) ≤ γP o

i (Vi,wi),

for all x ∈ XN (wi). When δwi 6= 0, Assumption 1 allows for

the following expression to hold

P o
i (H(Vi, ηi, wi + δwi))− P o

i (H(Vi, ηi, wi))

≤ F(|wi + δwi − wi|).
From Assumption 2,

P o
i (H(Vi, ηi, wi + δwi)) ≤ P o

i (H(Vi, ηi, wi)) + F(λi)

≤ γP o
i (Vi,wi) + (ρ− γ)β

≤ γα+ ρα− γα

< α

The system state remains within Ωα(wi), therefore all future

states satisfy V + ∈ Ωα(w
+

i ) ⊆ XN (w+

i ).
Let Xij = Xi×Xj . The preservation of the monotonic decent

property in combination with the admissibility of the terminal

constraint leads to Corollary 1.

Corollary 1: If (Vi, Vj) ∈ Bξ ⊆ Xij , with Bξ a ball of radius

ξ ≥ 0, the Cartesian product of the neighbouring nodes one-

step forward reachable sets is within the coupled constraint set,



i.e. Ri × Rj ⊆ Xij with Ri(Vi(k),wi) = {H(Vi, ηi, wi) ∈
R

n : ηi ∈ Ui(Vi,wi)} and the problem remains feasible for

all future times.

VII. SIMULATIONS
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Fig. 3. A network diagram of four converters connected in a circle and each
to a local load.

We investigate a network of seven DC/DC converters, each

connected to a local load, as depicted in Fig.3. The capacitor

steady state voltage economic criteria are to operate close to

the rated voltage V̄ = 100V without the converter current

exceeding a maximum value imax = 10A. In addition, the

operation constraints of the system bound the transmission

lines power to their respective bound. A quadratic cost function

with identity matrices as optimisation weights, Q = Inx×nx
,

R = Imη×mη
, is used for the lower layer of the supervisory

control. The aim for each local load is to be solely supplied

from the respective local converter when the converter current

limit can be satisfied, thus reducing the unnecessary line power

losses and voltage deviations from the rated voltage. In the

case of the load requiring more than imax, steady state targets

are computed where the load is fed by neighbouring nodes

while satisfying the economic criteria.

A comparison of the proposed technique is also made with

the widely-used Droop-Voltage scheme, where a PI controller

is used for the voltage regulation and an additional PI in the

supervisory layer penalising deviations from target voltages,

see Fig. 6. The target values for the supervisory layer of the

droop scheme are the voltage targets that are calculated from

the upper control layer of the proposed control scheme.

The system initially is required to satisfy a load demand

of RL = [13 70 80 40 70 80 40], which can be

supplied by each local converter at rated voltage and without

violating the converter current limit. At time t = 1ms the

load changes to RL = [9 70 9 40 70 80 40] and

the voltages are driven to the new targets, with loads RL1,

RL3 being supplied by converters i = 1 and i = 3 and the

neighbours. Then, at time t = 2ms another load change occurs

driving the system to new steady state targets

It is shown that the proposed control scheme is able to

satisfy the operation coupled constraints at all times, see Fig.5,

and drive the voltages to the desired economic targets Fig. 4. In
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Fig. 4. Converter voltage trajectories of Node 1 ( ), Node 2 ( ),
Node 3 ( ), Node 4 ( ), Node 5 ( ), Node 6 ( ), Node 7
( ), and setpoints ( )of all converter subsystems with the use of the
proposed control scheme.
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Fig. 5. Line power trajectories using the proposed control scheme and
the respective boundaries for Line12 ( , ), Line23 ( , ),
Line34 ( , ), Line41 ( , ), Line35 ( , ),
Line56 ( , ), Line47 ( , ).
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Fig. 6. Converter voltage trajectories of Node 1 ( ), Node 2 ( ),
Node 3 ( ), Node 4 ( ), Node 5 ( ), Node 6 ( ), Node 7
( ), and setpoints ( )of all converter subsystems with the use of the
Voltage-Droop control scheme.

comparison, the droop-voltage control scheme violates the line

constraints Fig. 7. Additionally, it can be seen, in Fig.8, that

the proposed control method reduces the total power dissipated

in the transmission lines, when compared to the conventional

approach.

TABLE I
SYSTEM AND CONTROL PARAMETERS

Parameters Values

C[µF ] [.2 .25 .1 .14 .15 .1 .14]

g 200
Mi 6× 103

kI,i 2× 107

mi 0.42
[R12,R23,R34,R14,R35,R56,R47][Ω] [1 1.5 .5 .6 . 5 .6 .5]
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Fig. 7. Line power trajectories using Voltage-Droop control and the respec-
tive boundaries for Line12 ( , ), Line23 ( , ), Line34
( , ), Line41 ( , ), Line35 ( , ), Line56
( , ), Line47 ( , ).
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Fig. 8. Total power dissipated in the lines using the proposed( ) and the
Voltage-Droop ( ) control scheme.

VIII. CONCLUSIONS

In this paper a hierarchical control scheme for DC MGs

with multiple DERs and local loads has been proposed, that

employs the sl-PI controller at the primary level and a two-

layer nonlinear distributed optimal control problem at the

supervisory level. The closed loop system is equipped with

inherent overvoltage protection of each converter. Reducing

voltage deviations from the rated value, coupled constraints

satisfaction, and system economic operation is shown, while

the optimal control problem is guaranteed to remain feasible

at all times.

The aim of this paper was twofold; to introduce state

limiting properties in the system dynamics and to present a

distributed nonlinear MPC approach for islanded DC MGs

that is based on the inherent robustness properties of nominal

MPC. Thus, an alternative is introduced to distributed MPC

that does not require computation of complex constraints sets.

Future research will investigate the effect of nonlinear loads to

the proposed scheme and enlargement of the feasible regions

of the supervisory controller.
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