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ABSTRACT
Zombie states are a recently introduced formalism to describe coupled coherent fermionic states that address the fermionic sign problem
in a computationally tractable manner. Previously, it has been shown that Zombie states with fractional occupations of spin orbitals obeyed
the correct fermionic creation and annihilation algebra and presented results for real-time evolution [D. V. Shalashilin, J. Chem. Phys. 148,
194109 (2018)]. In this work, we extend and build on this formalism by developing efficient algorithms for evaluating the Hamiltonian and
other operators between Zombie states and address their normalization. We also show how imaginary time propagation can be used to find the
ground state of a system. We also present a biasing method, for setting up a basis set of random Zombie states, that allows much smaller basis
sizes to be used while still accurately describing the electronic structure Hamiltonian and its ground state and describe a technique of wave
function “cleaning” that removes the contributions of configurations with the wrong number of electrons, improving the accuracy further.
We also show how low-lying excited states can be calculated efficiently using a Gram–Schmidt orthogonalization procedure. The proposed
algorithm of imaginary time propagation on biased random grids of Zombie states may present an alternative to the existing quantum Monte
Carlo methods.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0086058

I. INTRODUCTION

The wavefunction of a multi-electron system is usually accu-
rately described by a linear combination of Slater determinants.1
Each Slater determinant represents a specific configuration—how
the available electrons are distributed across spin orbitals. However,
in a system with many electrons and many orbitals, the number of
possible Slater determinants increases rapidly. Even with sensible
approximations and truncation, accurately describing the electronic
structure of a system requires a large number of Slater determi-
nants and with that comes computational cost. Introducing an active
space of a few most important orbitals and few active electrons is
the main method of treating this problem. Active space removes
abruptly all configurations outside of it, but even though the con-
tribution of individual configurations outside of the active space
can be small, their total contribution can be significant. A smooth

transition between active and virtual orbitals in active space meth-
ods can potentially be beneficial. Such a transition can be perhaps
achieved with quantum Monte Carlo (MC) methods. Diffusion MC2

and Green’s function MC3 propagate walkers in continuum space,
which removes the need for a one-electron basis set, but they both
fall foul of the fermionic sign problem caused by the antisymme-
try of the electronic wavefunction. It has been possible to solve this
problem using a fixed node approximation,4 but this has had lim-
ited further work. A more robust approach is to introduce a Monte
Carlo way of selecting the configurations via a random walk in
the manifold of Slater Determinants. Full Configuration Interaction
Quantum Monte Carlo (FCIQMC), developed by Alavi and co-
workers, works by using a long-time propagation in imaginary time
and random walkers to stochastically describe the full configuration
interaction wavefunction (FCI).5,6 The method does not converge
to the bosonic solution5 and obtains the fermionic ground state
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without a fixed node approximation. FCIQMC has been successful
at obtaining FCI results for large systems that were not previously
possible, including the neutral and cationic elements from Li to
Mg.5–9 A similar method is Monte Carlo Configuration Interaction
(MCCI), developed by Greer,10,11 which originally was applied to the
single point energy of water10 and later used to find the dissociation
energy of water and Hartree–Fock (HF).12 Like FCIQMC, MCCI
uses a Monte Carlo procedure to build a compact wavefunction con-
taining the important configurations intended to give accuracy close
to FCI results. Coe et al. continued to develop MCCI and showed
that it can generate potential energy curves, approaching levels of
chemical accuracy, for a range of small molecules, including N2 and
CH4.12 MCCI was then extended to include natural orbitals and
second-order perturbation theory, which, particularity, at longer
bond lengths was shown to improve the accuracy and convergence
time of calculated energies.13 MCCI has also been used to simu-
late multipole moments achieving good accuracy when compared
to FCI values.14 MCCI also showed good accuracy when compared
to FCIQMC when calculating ionization energies while only requir-
ing a relatively small number of basis functions when compared to
the FCI space.14 The method has also been extended to include state-
averaging to allow computation of excited states, which was shown
to be effective for both H3 and LiF.15

However, when used as part of a molecular dynamics simu-
lation, the computational cost of electronic structure calculations,
especially Monte Carlo methods, is still significant. Hence, finding
methods with acceptable cost of electronic structure calculations,
which at the same time would not neglect configurations that nor-
mally would be outside of the active space, is of great benefit. In
a recent paper,16 we introduced the idea of Zombie States (ZSs),
which potentially can combine the ideas of randomness and active
space. Zombie states have the possibility of an electron in every
orbital in a superposition of “dead” and “alive” states16 so that the
occupation of an orbital is fractional. This allows multiple Slater
determinant configurations to be described by a single ZS. How-
ever, ZSs may not have a well-defined number of electrons such
that there is a nonzero probability of the state containing a wrong
number of electrons. But, a small superposition of ZSs might be
able to describe a wave function with the required number of elec-
trons accurately, and the hope is that a smaller basis set size could be
used, reducing the computational cost while maintaining acceptable
accuracy.

ZSs can be viewed as fermionic Coherent States (CSs) of a two-
level system. Previously, coherent states of the harmonic oscillator
have been used to describe bosonic systems in second quantiza-
tion with the help of Herman-Kluck17 and coupled coherent states
propagation methods18 and also with generalized coherent states.19

Second quantization Hamiltonians look like those of coupled oscilla-
tors with the difference that the oscillators represent the amplitudes
and populations of the orbitals occupied by Bosons. Following the
idea of these methods, it seems reasonable to try to treat fermions
on a similar level. The complication here is that the elements of
Grassmann algebra enter into the standard definition of a fermionic
coherent state:20 ∣ηj⟩ = a(∣0j⟩ + ηj∣1j⟩), where ∣1j⟩ and ∣0j⟩ are the jth
orbital in its occupied and unoccupied vacuum states, respectively; a
is a normalization factor; and ηj is an element of Grassmann algebra.
The necessity of Grassmann algebra makes computation difficult but
is required to maintain the correct permutation antisymmetry of the

multi-electron fermionic coherent states as well as the anticommu-
tation of creation and annihilation operators. Zombie states were
shown16 to be capable of describing fermionic coherent states while
removing the need for Grassmann algebra and the use of Wick’s
theorem, which are normally required to evaluate matrix elements
between fermionic coherent states.21

Earlier work16 gave a mathematical treatment of the ZSs’
second quantization for fermions, and creation and annihilation
operators were defined with the use of a simple sign change rule,
which replaces Grassmann algebra. These results were verified by the
reproduction of full configuration interaction1 electronic energies
for Li2 and LiH via diagonalization of the electronic structure Hamil-
tonian in the complete basis of randomly selected ZSs. It was also
shown that Zombie states can be used for real time propagation of
the electronic wave function. A Fourier transform of real-time Zom-
bie state evolution also has reproduced the exact electronic energy
levels in the above-mentioned molecules. Both methods are, how-
ever, not very efficient and could be used only as a demonstration
that Zombie states’ mathematics was correct. It is therefore nec-
essary to develop better ZS-based methods for finding low-lying
state electronic energies in molecules, which are most important in
chemistry. In this vein, it is necessary to improve upon the naïve
algorithms initially presented to increase efficiency; computation of
the Hamiltonian in the original article16 had O(M5) scaling, which
can be reduced. This also follows for other key operators. Bosonic
coherent states can be defined as an eigenstate of the annihilation
operator, whereas the only eigenstate of the annihilation operator
for a fermionic coherent state is the vacuum. Thus, we also seek
to provide an alternative formalism for Zombie states in the lan-
guage of second quantization that allows Zombie states to be created
from a vacuum state. In this paper, we will present the theoretical
advancement in the formalism of Zombie states, deriving a stronger
normalization condition. Efficient algorithms for key operators are
then given utilizing scaled algorithms and sensible manipulations of
the program to greatly reduce the computation time of the Hamil-
tonian as well as other properties, such as spin and the number of
electrons.

Furthermore, imaginary time propagation is validated as an
effective method for finding the ground-state energies of states of
real fermionic systems, capable of reproducing full CI (in a trun-
cated basis),1 in this case for Li2. We also show how a biasing
method can be used to create a small basis of Zombie states, which
with imaginary time evolution can find low-lying state energies. To
further improve the accuracy, we show how the procedure called
“cleaning” removes the contribution of unwanted numbers of elec-
trons and improves the accuracy of electronic energy. We also make
an attempt to create a method for finding excited states. It has
previously been shown that a Gram–Schmidt procedure can be
applied to orthogonalize higher energy states against lower lying
ones while adding minimal computational cost.22 We apply a sim-
ilar Gram–Schmidt procedure to imaginary time propagation of
ZSs too, showing that low-lying excited states can be found in this
manner.

This article is structured as follows: a brief recap of the orig-
inal Zombie state formulation is given followed by the algebraic
developments; the algorithmic improvements for the two-electron
Hamiltonian are detailed; results for imaginary time evolution of Li2
for various basis sets and finally results for imaginary time evolution
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for excited states of Li2 using Gram–Schmidt orthogonalization are
given.

II. THEORY
A. Original formulation

Zombie states16 are coherent antisymmetrized superpositions
of “dead” and “alive” electronic states. Considering the single mth
spin orbital, a coherent state is

∣ζ(a1m, a0m)⟩ = a1m∣1m⟩ + a0m∣0m⟩, (1)

where ∣1m⟩ corresponds to there being an electron in spin orbital m
and ∣0m⟩ corresponds to the mth spin orbital being empty, consistent
with the conventional electronic structure notation.

We can generalize this to a coherent state, which is a Slater
Determinant of one-electron Zombie states,

∣ζ⟩ = ∣ζ1ζ2 . . . ζM⟩, (2)

and which can be summarized by 2M coefficients,

∣ζ⟩ =
⎡⎢⎢⎢⎢⎢⎣

a11 a12 ⋅ ⋅ ⋅ a1(m−1) a1m a1(m+1) ⋅ ⋅ ⋅ a1M

a01 a02 ⋅ ⋅ ⋅ a0(m−1) a0m a0(m+1) ⋅ ⋅ ⋅ a0M

⎤⎥⎥⎥⎥⎥⎦
. (3)

The notation used here is synonymous with that in Ref. 16, where in
amjj, mj = 0 refers to the mth spin orbital being “dead” (unoccupied)
and mj = 1 refers to the mth spin orbital being “alive” (occupied)
and j refers to the spin orbital number. Note that the Zombie state
contains 2M complex coefficients, where M is the total number of
spin orbitals.

The overlap of two states is

Ωab = ⟨ζ(a)∣ζ(b)⟩ =
M

∏
j=1
∑

mj=0,1
a(a)∗mjj a(b)mjj . (4)

Calculation of this is O(M), where there are M spin orbitals, whether
or not they are occupied.

The action of the creation and annihilation operators on a ZS is
given by

b̂†
m∣ζ(b)⟩ =

⎡⎢⎢⎢⎢⎢⎣

−a(b)11 −a(b)12 ⋅ ⋅ ⋅ −a(b)1(m−1) a(b)0m a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−1) 0 a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
, (5a)

b̂m∣ζ(b)⟩ =
⎡⎢⎢⎢⎢⎢⎣

−a(b)11 −a(b)12 ⋅ ⋅ ⋅ −a(b)1(m−1) 0 a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−1) a(b)1m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
. (5b)

The operators b̂†
m and b̂m not only act on the mth orbital but also

change sign of the amplitudes a1n of alive coefficients for all orbitals
with n < m. If a1m and a0n are given by ones and zeros so that Zom-
bie states represent standard Slater determinants, it is easy to see that
the sign changing rule is equivalent to the so called Wigner–Jordan
rule. As previously shown, all anticommutation relations are as
expected.16 Most straightforwardly, but not very efficiently, matrix
elements ⟨ζ(a)∣Ĥ∣ζ(b)⟩ of the second quantized electronic struc-
ture Hamiltonian can be computed by sequential application of the
creation and annihilation operators,16

Ĥ = ∑
m,n

hmnb̂†
mb̂n +

1
2∑klmn

b̂†
k b̂†

l Wklnmb̂mb̂n, (6)

to ∣ζ(b)⟩ and overlapping the result with ⟨ζ(a)∣,

Hab = ⟨ζ(a)∣Ĥ∣ζ(b)⟩

= ∑
m,n

hmn⟨ζ(a)∣ζ(b)mn ⟩ +
1
2∑klmn

Wklnm⟨ζ(a)∣ ζ(b)klmn⟩, (7)

where ∣ζ(b)klmn⟩ = b̂†
k b̂†

l b̂mb̂n∣ζ(b)⟩ and ∣ζ(b)mn ⟩ = b†
mb̂n∣ζ(b)mn ⟩; the overlaps

are calculated using Eq. (4).

An electronic wavefunction can be represented as a superposi-
tion of K basis Zombie states,

∣Ψ⟩ =
K

∑
k

dk∣ζ(k)⟩. (8)

and the matrix elements described above now allow usage of the
ansatz equation (8) for propagation or finding quantum states and
their energies. Individual Zombie states generally are not restricted
to a particular number of electrons, but for a wavefunction such
as Eq. (8), a sufficiently large K number of Zombie states with
coefficients dk usually can be chosen such that contributions from
unwanted numbers of electrons cancel out. This is very different
from standard electronic structure methods, where the problem is to
include as many configurations with the right number of electrons as
possible.

A standard Hartree–Fock configuration ∣φ( j)
me ⟩ that corre-

sponds to me electrons can be written as a Zombie state with “binary”
amplitudes of dead and alive states and me ones in the upper row,

∣φ( j)
me ⟩ =

⎡⎢⎢⎢⎢⎢⎣

1 0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 1

0 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎦
, (9)
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and it can be treated just like any other ZS.
In Subsections II B and II C, algebraic and algorithmic

improvements are presented, which allow much more efficient cal-
culation of matrix elements of operators between ZSs and faster
propagation of the wave function equation (8). These sections are
technical: an alternative derivation of Zombie states from the vac-
uum state is presented as is the full method we used to reduce
Hamiltonian scaling. These are important to the ZS methodology
as a whole, but a reader less interested in technical aspects of the
method can go directly to the Sec. II D, where it is shown that
the right electronic energies can be recovered from imaginary time
propagation of the wave function equation (8) with an unrestricted
number of electrons.

B. Algebraic developments
The previous article16 gave the action of creation and annihi-

lation operators for Zombie states and how the Hamiltonian could
be computed for them. Here, we extend the algebraic formalism by
showing how a Zombie state can be created from a vacuum state. We
show how creation and annihilation operators act in this formalism,
as well as computation of the overlap of two Zombie states. Finally,
we derive a stronger condition for normalization of a Zombie state.

From the standard electronic structure theory,1 a given elec-
tronic occupancy can be written as an antisymmetrized Slater
determinant as

∣φ⟩ = ∣m1m2 . . .mM⟩, (10)

where {mi} = 0 if the ith orbital is empty and 1 if occupied, as
detailed in Ref. 23 or, equivalently, in the form of Eq. (9). This is
equivalent to stating in second quantization notation,

∣φ⟩ = ∏
k occ

b̂†
k ∣⟩, (11)

where ∣⟩ is the vacuum state, ensuring here and in what follows that
the creation operators are applied in the reverse order they appear in
the Slater determinant. We could also trivially rewrite Eq. (11) as

∣φ⟩ =
M

∏
j=1
[(1 −mj)Î +mjb̂†

j ]∣⟩. (12)

We now consider a generalized form of Eq. (12),

∣ζ⟩ =
M

∏
j=1
(a0j Î + a1jb̂†

j )∣⟩, (13)

where a0j and a1j are complex scalar coefficients. Clearly, if a1j = mj
and a0j = (1 −mj), then the same Slater determinant electron state
is produced as in Eq. (12).

By inference from Eq. (13), we can define a Zombie operator

ẑj =: a0j Î + a1jb̂†
j , (14)

whose adjoint is

ẑ†
j =: a∗0j Î + a∗1jb̂j, (15)

and commutators and anti-commutators

[ẑj, ẑk] = 2b̂†
j b̂†

ka1ja1k, (16a)

[ẑ†
j , ẑ†

k] = 2b̂jb̂ka∗1ja
∗

1k, (16b)

{ẑj, ẑk} = 2(a0ja0k Î + a1ja0kb̂†
j + a0ja1kb̂†

k), (16c)

{ẑ†
j , ẑk} = 2(a∗0ja0k Î + a∗1ja0kb̂j + a∗0ja1kb̂†

k) (16d)

such that Eq. (13) can be written more concisely as

∣ζ⟩ =
M

∏
j=1

ẑj∣⟩. (17)

Note that ẑj is a function of two complex numbers, so we can write
ẑj ≡ ẑj(a0j, a1j). This shorthand will become useful later.

The idea of defining new operators from linear combinations
of creation and annihilation operators is, of course, nothing new,
the most famous example perhaps being Majorana Fermions, which
are their own antiparticle, defined as

γ1 =
1√
2
(b̂ + b̂ †), (18a)

γ2 =
1√
2i
(b̂ − b̂ †). (18b)

However, Zombie operators are not their own antiparticles. We
now consider the action of creation and annihilation operators on
Zombie operators.

1. Creation and annihilation operators
The action of creation and annihilation operators on a single

Zombie operator is given, for j ≠ k, by

b̂jẑk(a0k, a1k) = b̂j(a0k Î + a1kb̂†
k)

= (a0k Î − a1kb̂†
k)b̂j = ẑk(a0k,−a1k)b̂j, (19a)

b̂†
j ẑk(a0k, a1k) = b̂†

j (a0k Î + a1kb̂†
k)

= (a0k Î − a1kb̂†
k)b̂

†
j = ẑk(a0k,−a1k)b̂†

j , (19b)

and if j = k,

b̂jẑj(a0j, a1j) = b̂j(a0j Î + a1jb̂†
j ) = a0jbj − a1k(1 − b̂†

j b̂j)

= ẑj(a0j,−a1j)b̂j + ẑj(a1j, 0), (20)

b̂†
j ẑj(a0j, a1j) = b̂†

j (a0j Î + a1jb̂†
j ) = a0jb̂†

j = ẑj(0, a0j), (21)

where we use the standard relations1 {b̂j, b̂k} = 0, {b̂†
j , b̂†

k} = 0, and
{b̂j, b̂†

k} = δjk.
Using these results, we can compute the action of the creation

and annihilation operators on a Zombie state, which is defined by
the product of Zombie operators as in Eq. (17),
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b̂j∣ζ⟩ = b̂j

M

∏
k=1

ẑk(a0k, a1k) (22a)

=
⎡⎢⎢⎢⎣

j−1

∏
k=1

ẑk(a0k,−a1k)
⎤⎥⎥⎥⎦
[ẑj(a0j,−a1j)b̂j + ẑj(a1j, 0)]

×
⎡⎢⎢⎢⎢⎣

M

∏
k=j+1

ẑk(a0k, a1k)
⎤⎥⎥⎥⎥⎦
∣⟩ (22b)

=
⎡⎢⎢⎢⎣

j−1

∏
k=1

ẑk(a0k,−a1k)
⎤⎥⎥⎥⎦

ẑj(a1j, 0)
⎡⎢⎢⎢⎢⎣

M

∏
k=j+1

ẑk(a0k, a1k)
⎤⎥⎥⎥⎥⎦
∣⟩, (22c)

where the ẑj(a0j,−a1j)b̂j term vanishes because b̂j tries to destroy an
electron that is not there.

It also follows that

b̂†
j ∣ζ⟩ = b̂†

j

M

∏
k=1

ẑk(a0k, a1k) (23a)

=
⎡⎢⎢⎢⎣

j−1

∏
k=1

ẑk(a0k,−a1k)
⎤⎥⎥⎥⎦

ẑj(0, a0j)
⎡⎢⎢⎢⎢⎣

M

∏
k=j+1

ẑk(a0k, a1k)
⎤⎥⎥⎥⎥⎦
∣⟩. (23b)

However, Eqs. (22c) and (23b) themselves describe Zombie states
with changed coefficients to those of ∣ζ⟩. The Zombie states they
refer to agree exactly with the sign-changing rules presented in
the original Zombie states paper, though through more convoluted
algebra.

These results can equivalently be stated in terms of the {anjj}
coefficients. As ∣ζ⟩ is a function of the Zombie coefficients {anjj} = a,
we can write ∣ζ⟩ ≡ ∣ζ(a)⟩. Then, let ∣ζ( j)(a( j))⟩ = b̂j∣ζ(a)⟩. We then
see that

a( j)
0k =

⎧⎪⎪⎨⎪⎪⎩

a0k, k ≠ j,
a1k, k = j,

(24a)

a( j)
1k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−a1k, k < j,
0, k = j,
a1k, k > j.

(24b)

If ∣ζ( j)(a( j))⟩ = b̂†
j ∣ζ(a)⟩,

a( j)
0k =

⎧⎪⎪⎨⎪⎪⎩

a0k, k ≠ j,
0, k = j,

(25a)

a( j)
1k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−a1k, k < j,
a0k, k = j,
a1k, k > j,

(25b)

again in exact agreement with the earlier results.

2. Overlap of two Zombie states
We can use this formalism to compute the overlap of two Zom-

bie states, ⟨ζ(a)∣ ζ(b)⟩, where both the bra and ket are formed from
the action of M Zombie operators as in Eq. (17). We consider a
computation recursively, noting that the vacuum state is normalized,
namely, ⟨∣⟩ = 1, and defining

∣ζ(b)j ⟩ =
M

∏
k=j

ẑk∣⟩ (26)

such that

∣ζ(b)1 ⟩ ≡ ∣ζ
(b)⟩, (27a)

∣ζ(b)M+1⟩ ≡ ∣⟩. (27b)

We, therefore, have

⟨ζ(a)j ∣ζ
(b)
j ⟩ = ⟨ζ

(a)
j+1 ∣ẑ

(a)∗
j ẑ(b)j ∣ζ

(b)
j+1⟩ (28a)

= ⟨ζ(a)j+1 ∣a
(a)∗
0j a(b)0j Î + a(a)∗0j a(b)1j b̂†

j + a(a)∗1j a(b)0j b̂j

+ a(a)∗1j a(b)1j b̂jb̂†
j ∣ζ
(b)
j+1⟩ (28b)

= (a(a)∗0j a(b)0j + a(a)∗1j a(b)1j )⟨ζ
(a)
j+1 ∣ζ

(b)
j+1⟩. (28c)

The second term in Eq. (28b) is of the form ⟨ζ(a)j+1 ∣b̂
†
j ∣ζ
(b)
j+1 ⟩, and since

neither ⟨ζ(a)j+1 ∣ nor ∣ζ(b)j+1 ⟩ contain any contributions from electron j,

b̂†
j acting to the left will try to destroy an electron that is not there,

giving zero. Similar arguments show why the third term in Eq. (28b)
vanishes and why the fourth term survives.

Combining Eqs. (26)–(28) gives

⟨ζ(a)∣ζ(b)⟩ =
M

∏
j=1
(a(a)∗0j a(b)0j + a(a)∗1j a(b)1j ), (29)

which is identical to Eq. (4), which was obtained by different
algebraic means in the original Zombie paper.16

3. Normalization
Clearly, if we wish a Zombie state (the product of M Zombie

operators) to be normalized, then the RHS of Eq. (29) must equal
unity when ∣ζ(a)⟩ = ∣ζ(b)⟩. However, we may want to consider a
more general case, where we may not necessarily have wavefunctions
formed from a fixed M number of Zombie operators but a variable
number of Zombie operators.

Algebraically, if we require

M

∏
j=1
∣a(a)0j ∣

2 + ∣a(a)1j ∣
2 = 1, (30)
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this will ensure that ⟨ζ(a)∣ζ(a)⟩ ≡ ⟨ζ(a)1 ∣ζ
(a)
1 ⟩ = 1, but what if we

further require

⟨ζ(a)j ∣ζ
(a)
j ⟩ = 1 (31)

for all j, 1 ≤ j ≤M.
This problem can also be solved recursively, since triv-

ially ⟨ζ(a)M+1∣ζ
(a)
M+1⟩ ≡ ⟨∣⟩ = 1. For ⟨ζ(a)M ∣ζ

(a)
M ⟩ = 1, from Eq. (28),

it is required that ∣a(a)0M ∣
2 + ∣a(a)1M ∣

2 = 1. However, from Eq. (26),
⟨ζ(a)j ∣ζ

(a)
j ⟩ = (∣a

(a)
0j ∣

2 + ∣a(a)1j ∣
2)⟨ζ(a)j+1 ∣ζ

(a)
j+1⟩, and so for Eq. (31) to be

true for all j, we require

∣a(a)0j ∣
2 + ∣a(a)1j ∣

2 = 1 ∀j. (32)

Note that Eq. (32) is a stronger criterion than Eq. (30), i.e., satisfying
Eq. (32) will ensure that Eq. (30) is satisfied, but not the other way
around.

Equation (32) might correspond to normalization of a “one
dimensional” ZS. This normalization is equivalent to the normal-
ization used when introducing quantum superposition sampling to
the multiconfigurational Ehrenfest method presented in Ref. 24.

In the event that the Zombie state is real (useful for imaginary
time propagation to find stationary states), then a simple choice to
satisfy Eq. (32) is

a(a)0j = cos(θj), a(a)1j = sin(θj), (33)

where θj is a real number such that 0 ≤ θj < 2π. This means that a
real, normalized Zombie state can be completely described by M real
{θj} values. This can be generalized to complex states24 with

a(a)0j = cos(θj), a(a)1j = sin(θj)eiϕj , (34)

where ϕj is drawn from the interval 0 ≤ ϕj < 2π.

C. Algorithmic developments
Here, we consider how to efficiently compute the action of

the Hamiltonian and other operators on a Zombie state. We show
how the electronic Hamiltonian matrix elements with Zombie states
⟨ζ(a)∣Ĥ∣ζ(b)⟩ can be calculated more efficiently. First, we show how
a more efficient algorithm with a smaller prefactor can calculate
matrix elements faster, and second, we will present an algorithm
with O(M4) scaling as opposed to the O(M5) scaling of the naïve
algorithm used in the initial paper16 described above.

1. Reduced prefactor Hamiltonian algorithms
The bottleneck in the computation of FCI states and energies,

in general, is evaluation of the two-electron Hamiltonian

Ĥ2 =
1
2∑i,j,k,l
⟨ij∣kl⟩b̂†

i b̂†
j b̂lb̂k. (35)

It was previously shown16 that the two-electron part of Eq. (6) can
be evaluated as

⟨ζ(a)∣Ĥ2∣ζ(b)⟩ =
1
2

M

∑
ijkl
⟨ij∣kl⟩⟨ζ(a)∣ζ(b)ijlk ⟩, (36)

where ∣ζ(b)ijlk ⟩ = b†
i b̂†

j b̂lb̂k∣ζ(b)⟩. This can be solved with iterative
applications of the creation and annihilation operators, meaning
that the original algorithm, therefore, requires M4 terms to be eval-
uated to solve Eq. (36). Each term has four creation/annihilation
operators [each of which is ∼ O(M) due to the sign changing rule]
and one overlap computation, which is O(M) as

Ωab = ⟨ζ(a)∣ζ(b)⟩ =
M

∏
m=1
∑

nm=0,1
a(a)∗nmm a(b)nmm. (37)

Consequently, naïve evaluation of Eq. (6) requires M4 creation/
annihilation operations and is O(M5) overall.

Many of the two-electron integrals are zero by spin sym-
metry, i.e., ⟨ij∣kl⟩ = 0 unless σ(i) = σ(k) and σ( j) = σ(l), where
σ(i) is the spin of spin orbital i. One method for accelerating
the naïve algorithm is by evaluating only ∣ζ(b)ijlk ⟩ = b†

i b̂†
j b̂lb̂k∣ζ(b)⟩ if

⟨ij∣kl⟩ ≠ 0 on spin symmetry grounds. When applied to the restricted
Hartree–Fock (RHF) calculation, this simple code modification gave
nearly a four times speed up when calculating a matrix element
between two ten-orbital ZSs. This is roughly to be expected since
three quarters of the two-electron integrals are zero from spin
symmetry.

Furthermore, it is also possible to loop only over combinations
of {ijkl} already known to be nonzero by altering the loops over
orbitals such that only nonzero (by spin) ∣ζ(b)ijlk ⟩ are considered in
the first place. This produces a comparable, albeit slightly larger time
improvement, ignoring zero two-electron integrals.

In an attempt, to accelerate the code further, we note that
computing the action of M4 creation and annihilation operators
is expensive and look to evaluate fewer of them. Re-examining
Eqs. (35) and (36), we see

⟨ζ(a)∣Ĥ2∣ζ(b)⟩ =
1
2

M

∑
ijkl
⟨ij∣kl⟩⟨ζ(a)ij ∣ζ

(b)
lk ⟩, (38)

where

⟨ζ(a)ij ∣ = ⟨ζ
(a)∣b̂†

i b̂†
j =(b̂ jb̂ i∣ζ(a)⟩)

†
, (39)

∣ζ(b)lk ⟩ = b̂lb̂k∣ζ(b)⟩. (40)

We can then compute {∣ζ(a)ij ⟩}∀i, j and {∣ζ(b)lk ⟩}∀l, k, which requires

M2 creation and annihilation operator applications, while overall the
Hamiltonian evaluation is O(M5). Having precomputed {∣ζ(a)ij ⟩}
and {∣ζ(b)lk ⟩}, we can then evaluate Eq. (38).

From the definition of the overlap integral in Eq. (4), we see that
if both the dead and alive Zombie amplitudes are zero for a given
state, i.e., for the mth spin orbital,

∣ζ(c)⟩ =
⎡⎢⎢⎢⎢⎢⎣

a(c)11 a(c)12 ⋅ ⋅ ⋅ a(c)1(m−1) 0 a(c)1(m+1) ⋅ ⋅ ⋅ a(c)1M

a(b)01 a(c)02 ⋅ ⋅ ⋅ a(c)0(m−1) 0 a(c)1(m+1) ⋅ ⋅ ⋅ a(c)0M

⎤⎥⎥⎥⎥⎥⎦
,

(41)
then the overlap of this state with any other state will be zero. Fur-
thermore, since the Zombie creation and annihilation operators only
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move the dead and alive amplitudes within a spin orbital, and not
between spin orbitals, ∣ζ(c)⟩ will continue to have zero overlap with
any other state even after application of creation and annihilation
operators. Consequently, if a state such as ∣ζ(c)⟩ is itself generated by
application of creation and annihilation operators, it will not con-
tribute to the two-electron Hamiltonian and so does not need to be
considered in further calculations.

We know that16

b̂∣ζ⟩ ≡ b̂
⎡⎢⎢⎢⎢⎢⎣

a1

a0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0

a1

⎤⎥⎥⎥⎥⎥⎦
. (42)

Consequently, if a1 = 0, application of b̂ returns a vanishing state
that will have no overlap with any other. This is a rephrasing, in
Zombie terms, of the well-known result from electronic structure
theory that trying to annihilate an electron, which is not there will
return zero. Applied to calculation of the two-electron Hamiltonian,
let us consider ∣ζ(a)ij ⟩ = b̂jb̂i∣ζ(a)⟩. If a(a)1i = 0, then b̂i∣ζ(a)⟩ returns a
vanishing state and will contribute nothing to the two-electron cal-
culation, even after application of b̂j. If b̂i∣ζ(a)⟩ =: ∣ζ(a)i ⟩ is nonzero,

then if a(a)1j = 0, the Zombie state vanishes. Consequently, when
looping over orbital indices in Eq. (38), if the application of a given
annihilation operator would return a vanishing state (which can be
determined from a(a)1i = 0) and similarly for j, l, k, then the all further
calculation for that creation/annihilation operator can be discarded.

In addition, considering the overlap calculation equation (4)
and rewriting it as

Ωab = ⟨ζ(a)∣ζ(b)⟩ =
M

∏
m=1

a(a)∗0 m a(b)0 m + a(a)∗1 m a(b)1 m, (43)

we see that if any of the a(a)∗0 m a(b)0 m + a(a)∗1 m a(b)1 m terms are zero, then
Ωab = 0. This means that calculation can be terminated as soon as
one of the terms is zero and the overlap returned as zero, without
having to compute any remaining terms. These improvements gave
a similar time improvement to previous changes when working with
ten orbitals; however, the time improvement was approximately half
as good when calculating a matrix element with 50 orbitals. Full
details of the algorithmic code racing can be found in Sec. 1.1 of the
supplementary material. All of these algorithms still have (approx-
imate) fifth order scaling, i.e., O(M5), although with a much lower
prefactor than earlier versions.

2. Lower-scaling Hamiltonian algorithm
It is, however, possible to reduce the scaling of the two-electron

Hamiltonian from O(M5) to O(M4). We first note that evaluation
of the two-electron Hamiltonian could be written as

⟨ζ(a)∣Ĥ2∣ζ(b)⟩ =
1
2

M

∑
ijkl
⟨ij∣kl⟩⟨ζ(a)ij ∣b̂l∣ζ(b)k ⟩. (44)

We have previously shown that ⟨ζ(a)ij ∣ can be calculated in 𝒪 (M3)
and ∣ζ(b)k ⟩ in 𝒪 (M2), and these can be calculated separately. Using

previous methods, even with the calculation improvements, to eval-
uate ⟨ζ(a)ij ∣b̂l∣ζ(b)k ⟩ ∀i, j, k, l requires 𝒪 (M3) for looping over i, j, k,
then an 𝒪 (M) for summing over l, and then another 𝒪 (M) for
evaluating the overlap, making O(M5) overall. We, therefore, con-
sider how to evaluate ⟨ζ(a)ij ∣b̂l∣ζ(b)k ⟩ for a specific set of i, j, k, but over
all values of l, in 𝒪 (M) operations, such that the overall algorithm
would be 𝒪 (M4).

We start by simplifying our notation to ⟨ζ(a)∣b̂l∣ζ(b)⟩, which
yields

⟨ζ(a)∣b̂l∣ζ(b)⟩ = (
l−1

∏
i=1

a(a)∗0i a(b)0i − a(a)∗1i a(b)1i ) ⋅ a
(a)∗
0l a(b)1l

⋅
⎛
⎝

M

∏
j=l+1

a(a)∗0j a(b)0j + a(a)∗1j a(b)1j
⎞
⎠

. (45)

Note the minus sign in the first product caused by the action of the
annihilation operator. We then define

si = a(a)∗0i a(b)1i , (46a)

ei = a(a)∗0i a(b)0i − a(a)∗1i a(b)1i , (46b)

fi = a(a)∗0i a(b)0i + a(a)∗1i a(b)1i . (46c)

These can all trivially be calculated in 𝒪 (M) steps. We also define

gl =
l

∏
i=1

ei, (47a)

hl =
M

∏
i=l

fi, (47b)

which can be calculated recursively in 𝒪 (M) steps. Then,

⟨ζ(a)∣b̂l∣ζ(b)⟩ = gl−1slhl+1, (48)

which can also be found in 𝒪 (M) steps.
The reduced scaling improves calculation of two-electron

matrix elements over 20 times for ten orbitals calculation and over
100 times with 50 orbital calculations compared to the naïve cal-
culation. Further details are given in Table 4 in the supplementary
material. In the case of 50 orbitals, the scaled algorithm does incur
a larger peak memory usage, requiring ∼414% more memory for the
calculation. However, the fastest algorithm still only needs 2 MB
of memory and so the speed increase is worth the relatively larger
memory requirement.

We have also developed an algorithm to calculate the number
operator, which scales linearly with the number of orbitals in the sys-
tem. Using a similar method, we also show how to reduce the scaling
of the algorithms used to calculate Sz , Ŝ2

z and total spin. Details of
these two algorithms are presented in Appendixes A and B.
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D. Imaginary time evolution, wave function cleaning,
biasing, and excited state calculation

Imaginary time propagation, i.e., solution of the Schrödinger
equation in imaginary time,

− d
dβ
∣Ψ⟩ = Ĥ∣Ψ⟩, (49)

is commonly used to find the ground state of a quantum mechani-
cal system.5,6,22 Many methods of quantum Monte Carlo exploit it in
electronic structure theory. For example, a random walk in the Fock
space of Slater determinants has been shown to be a beautiful tech-
nique to solve Eq. (49) and to avoid the wave function node problem,
which otherwise makes quantum Monte Carlo for fermions diffi-
cult. In this section, we will show that a small randomly selected set
of Zombie states can provide an accurate description of the ground
state of a molecule.

1. Imaginary time algorithm
Consider a wavefunction ∣Ψ⟩ that can be expanded in the basis

of K Zombie states ∣ζ(k)⟩, where K ≤ 2M , and which are normalized
but not necessarily orthogonal,

∣Ψ⟩ =
K

∑
k

dk∣ζ(k)⟩. (50)

Then, applying the identity matrix from Ref. 25 for a nonorthogonal
basis set∑l,k∣ζ l)⟩Ω−1

lk ⟨ζ(k)∣ and using the reasoning from Ref. 26, we
yield

∑
k

∂dk

∂β
⟨ζ(l)∣ζ(k)⟩ = −∑

k
⟨ζ(l)∣Ĥ∣ζ(k)⟩dk, (51)

which can be rearranged in matrix notation as

ḋ = −Ω−1Hd. (52)

Note how the inverse overlap matrix with the elements Ωlk

= ⟨ζ(l)∣ζ(k)⟩ is required and how the algebra developed for bosonic
coherent states is being applied to fermionic ZSs.26

2. Cleaning
The propagation of Eq. (52) relaxes the wave function to the

lowest energy state of the system.27 As occupations of ZS spin
orbitals are fractional Zombie states, their linear combinations are
not restricted to a particular number of electrons. However, they
can be projected onto a Fock Space with a given number of elec-
trons. The identity operator can be written as a sum of me electron
identities Îme ,

Î = ∑
me=0,M

Îme , (53)

where the identity covering the Fock Space with me electrons is

Îme = ∑
j
∣φ( j)

me ⟩⟨φ
( j)
me ∣, (54)

where the sum in j is over all Fock configurations φ( j)
me , with me being

number of electrons, which can be viewed as Zombie states with
“binary” amplitudes 1 and 0 and me being unit amplitudes of alive
electrons on me occupied spin orbitals.

Then, the superposition of Zombie states in Eq. (8) or Eq. (50)
can be projected onto Fock Space of me electrons as

∣Ψme⟩ = Îme ∣Ψ⟩ = ∑
j

cj∣φ( j)
me ⟩, (55)

where

cj = ∑
k=1,Nzs

dk⟨φ( j)∣ζ(k)⟩. (56)

The energy of the me contribution and its norm can then be
calculated as

Eme = ∑
ji

c∗i cj⟨φ(i)me ∣Ĥ∣φ
( j)
me ⟩ (57)

and

Nme = ∑
j

c∗j cj, (58)

respectively. The sum of energies of all me contributions is equal to
the energy of the whole Zombie wave function Eq. (8) and all me
norms add up to 1, i.e.,

⟨Ψ∣Ĥ∣Ψ⟩ = ∑
me

Eme (59)

and

∑
me

Nme = 1. (60)

For a completely converged Zombie wave function, the energy and
norm of all me other than the right number of electrons ne will be
zero, but if convergence is incomplete, the energy of the converged
me wave function ∣Ψc⟩ can be estimated as

⟨Ψc∣Ĥ∣Ψc⟩ ≈ Eme/Nme (61)

by division of the me energy by the me norm. Cleaning is effec-
tively the same as the projection-after-variation method presented
in Refs. 28 and 29. The only difference being the ZS wave function is
multiconfigurational opposed to a single determinant function.

3. Biased bases
In this section, we will consider various ways of how a basis set

of ZSs can be chosen to solve Eq. (52). The best choice (in theory)
would be a complete set of 2M Slater determinants ∣φ( j)

me ⟩ cover-
ing all possible electron occupancies from 0 to M electrons in M
spin orbitals. Diagonalization of the Hamiltonian matrix in this basis
gives all possible energy levels as it contains all possible combina-
tions, from 0 to M electrons, placed in M spin orbitals. A basis of
randomly selected 2M ZSs ∣ζ(k)⟩ is also complete and is capable of
yielding correct quantum energies and wave functions. However, for
efficient calculation, the basis set must be as small as possible. We
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employ a biased basis that sits between the two extremes of complete
order and randomness. In complete active space self-consistent field
(CASSCF) calculations,30 electrons and orbitals are split into three
groups: inactive, active, and virtual. From this, we have designed a
biasing method to set up a ZS basis. Inactive, or core electrons, are
low lying and are always (at least in a CASSCF calculation) to be
occupied; the active orbitals can either be occupied or unoccupied
and virtual orbitals are always empty. We take this idea of split-
ting electrons into different groups and then exploit the fractional
occupation of a Zombie state. This allows orbitals to be set as com-
pletely “alive” (or “dead”) while also biasing orbitals to be more or
less “dead” or “alive.” It should be noted that though we are using
the ideas of splitting electrons into different types from CASSCF,
this does not make ZS an SCF method any more than using HF
energies as a starting point. Amplitudes for Zombie states can be
randomly chosen from normal distributions centered around either
completely “alive” or completely “dead” values and the distributions’
width set according to its activity level. To satisfy the normaliza-
tion condition given by Eq. (32), in this paper, only one Zombie
amplitude (dead or alive) is generated using the normal distribu-
tion and the other is set using Eq. (33). Hence, the low-lying core
electrons have “alive” amplitudes set to one, although a very narrow
Gaussian could also be employed, which corresponds to a normal
distribution width of zero giving a δ function with a1j = 1 and a0j = 0.
The active electron normal distributions can be centered to favor
either completely alive or dead amplitudes; the point where cen-
tering changes from “alive” to “dead” naturally changes with each
system. Thinner distributions are used for orbitals at either end of
the active electron/orbital group and wider distributions are used for
orbitals where the chance, or not, of occupation is relatively equal.
Virtual orbitals would have “dead” coefficients set to 1. However,
again, narrow distribution near completely “dead” amplitudes can
be employed.

4. Excited states
As previously stated, the aim of developing Zombie states is

so it can be implemented in no-adiabatic molecular dynamics sim-
ulations and so it would be useful to compute low-lying excited
states with the low computational expense that Zombie states could
provide. It has previously been shown that a Gram–Schmidt orthog-
onalization procedure can be combined with full configuration
interaction quantum Monte Carlo22 and was found to add little extra
computational cost while allowing multiple low-energy states to be
studied. We will apply the same process here combining imaginary
time propagation and Gram–Schmidt. Generally, Gram–Schmidt
orthogonalization, for any set of vectors, is defined by

uk = vk −
k−1

∑
j=1

projuj
(vk) (62)

with the projection operator

proju(v) =
⟨u, v⟩
⟨u, u⟩ . (63)

In this implementation, the k lowest states of interest are arbitrar-
ily set, creating dk vectors that are not necessarily orthogonal. The
vectors are then each orthogonalized,

d′k = dk −
k−1

∑
j=1

projd′j
(dk), (64)

where d′k denotes an orthogonalized vector, and they are then nor-
malized. Each state d′k is then put into the differential equation
equivalent to Eq. (52),

ḋk = −Ω−1Hd′k. (65)

A single time step is taken, and a new set of dk(β + Δβ) = d′k(β)
+ ḋk(β)Δβ is then found. The process then repeats: vectors are
orthogonalized using the Gram–Schmidt process and normalized
and a time step is taken.

III. RESULTS
Here, we will demonstrate that imaginary time propagation

is an effective and efficient method for finding ground state ener-
gies using a Slater determinant basis as a point of reference. Earlier
work16 used Li2 to verify the theoretical basis of Zombie states, and
so here we too will use Li2 as an example system. PyScf31 (version
1.7.6) using a 6-31G∗∗ basis and the D∞h symmetry group has been
used to calculate one and two-electron integrals. These are then con-
verted from spatial to spin orbitals, in this case, five spatial molecular
orbitals (and therefore ten spin orbitals). A Hamiltonian for the sys-
tem is computed, using the Hamiltonian detailed in Sec. II C 2,
with the specified ZSs. The full code used can be found in Ref. 32
All calculations are carried out in atomic units so energies are in
Hartrees.

A. Ground-state imaginary time propagation
The first trivial case considered is a complete basis of Slater

determinant ∣φ( j)
me ⟩ Zombie states. Li2 consists of ten spin orbitals,

which gives a full basis a size of 210 = 1024 basis functions. In Fig. 1,
the six-electron restricted Hartree–Fock (RHF) determinant is used

FIG. 1. Imaginary time propagation starting with the six-electron restricted
Hartree–Fock Slater determinant using a complete Slater determinant basis
(dashed red line) and a complete random basis (solid orange line). Both results
tend to neutral ground sate energy of Li2 found by diagonalizing the Slater
determinant Hamiltonian, shown as a gray dotted line.
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FIG. 2. Imaginary time propagation starting with the six-electron restricted
Hartree–Fock Slater determinant and using a reduced random basis of 200 Zom-
bie sates. The neutral ground sate energy of Li2 found by diagonalizing the Slater
determinant Hamiltonian is also shown in gray.

FIG. 3. Energy (top) and norm (bottom) distribution for each number of electrons
for a basis set of 200 randomly generated Zombie states. Only a fraction of the
final wave function belongs to the Fock space on ne = 6 electrons.

TABLE I. The center μ and width σ of the normal distributions used to generate θj for
the jth electron of each Zombie state when creating a biased basis.

Figure

j-th electron μ/2π σ/2π

1, 2, 3, 4 0.25 0
5, 6 0.25 0.175
7, 8 0 0.351
9, 10 0 0.120

as a starting point and imaginary time evolution gives the neutral
ground state energy of Li2. A full sized basis of 210 = 1024 randomly
generated basis functions ∣ζ(k)⟩ was also tested. Random Zombie
states are generated by randomly generating θ, between 0 and 2π,
for each orbital, and the dead and alive coefficients are then found
by calculating a1 = cos(θ) and a0 = sin(θ), respectively. The ran-
dom basis is made up of Zombie states consisting of superposition
of “dead” and “alive” electrons compared to the Slater determinant
basis, which is entirely binary. The initial vector is a superposition
of random Zombie states, which is chosen to be equal to the RHF
determinant, and that propagation of this using imaginary time evo-
lution (solid line in Fig. 1) matches the result obtained by using the
Slater Determinant basis. The final energy of each state obtained
through imaginary time propagation is verified by comparison to the
eigenvalues found by diagonalizing the complete Slater determinant
Hamiltonian.

When a reduced basis of 200 random Zombie states is used as
seen in Fig. 2, the basis set is no longer capable of reproducing the
ground state energy. The reduced basis is created by selecting 200
basis functions ∣ζ(k)⟩ at random from the complete random basis

FIG. 4. Occupational probability plotted against orbital number for five spin orbitals.
The first four spin orbitals are set exactly as occupied, and the rest are set using
the Gaussian described in Table I. The average probability is shown by a cross,
and one standard deviation either side is the bar.
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FIG. 5. Imaginary time propagation for two biased bases each made up of 63
biased Zombie state basis functions and then a Zombie state set either to the six
electron restricted Hartree–Fock determinant (orange bottom line) or the seven
electron open-shell restricted Hartree–Fock determinant (red top line). The basis
with six electron determinant evolves to the Li2 neutral ground state, and the
basis with seven electrons evolves to the higher Li−2 anion ground state. The
corresponding energies, obtained by diagonalizing the complete Slater determi-
nant basis, are also shown as horizontal lines. The details of how each electron is
biased are summarized in Table I.

previously used. The energy obtained via imaginary time propaga-
tion, in this smaller basis, no longer matches the value found by diag-
onalizing the Slater determinant basis. However, the cleaned energy
provides a much better estimate of the ground state energy. For a
poorly selected basis, the distribution of energy and norm over pos-
sible electronic numbers me is shown in Fig. 3, which demonstrates
that only a fraction (≈ 17.5%) of the final wave function belongs to
the right Fock space on ne = 6 electrons. The highest fraction of the

FIG. 6. Imaginary time propagation for basis sets containing 50, 30, and 10 basis
functions, the first being the six electron restricted Hartree–Fock determinant and
the rest being biased Zombie state basis functions. The details of how each elec-
tron is biased are summarized in Table I. The eigenvalue for the Li2 ground state
obtained by diagonalizing the Slater determinant basis is given, as the solid hor-
izontal line, for comparison. The cleaned energies, found by E(6e)/N(6e), are
shown as dashed lines.

norm (≈ 40%) belongs to the 7e Fock space. The cleaned energy
E(6e)/N(6e) = −14.598 267 is somewhat above the FCI energy of
the 6e ground state (−14.871 914), but the cleaned energy of the 7e
Fock Space E(7e)/N(7e) = −14.750 162 is approaching the 7e FCI
(−14.858 062) energy. Thus, the randomly selected basis has, by
chance, been set up in favor of the anion.

The electronic structure of the Li2 is not completely random
and unknown, so it is sensible to exploit this. A biased random basis
set of the Zombie states was generated using the biasing regime pre-
viously described. Equation (34) was used to ensure that the “dead”
and “alive” coefficients were normalized, values θj were randomly
generated using a normal distribution centered at 1

2 π for electrons
“alive” in the restricted Hartree–Fock Slater determinant [j = 1 . . . 6]
and centered around 0 for the “dead” electrons. The width, σ, of the
normal distributions used to bias each electron is summarized in
Table I, and these values are used to create the biased bases in all sub-
sequent results. There are six electrons in the neutral Li2 molecule
and four core inactive electrons that are set as always “alive.” Figure 4
schematically shows how this biasing method is applied: the first two

FIG. 7. Energy (top) and norm (bottom) distribution for each number of electrons
for a basis set of 30 biased Zombie states, the first being set as the six elec-
tron restricted Hartree–Fock determinant. The majority of the final wave function
belongs to the Fock space on ne = 6 electrons.
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spatial orbitals (first four spin orbitals) are set to always be occu-
pied with the final three spatial orbitals (last six spin orbitals) having
fractional occupancy.

Figure 5 also demonstrates that ZS propagation can yield the
ground state of the Li−2 anion. A 64 biased Zombie state basis was
generated, but the first basis function was set as the seven electron
open-shell restricted Hartree–Fock Zombie state and the remain-
ing 63 Zombie states generated using the same biasing method as
before. Similarly, the first Zombie state can be set to the six-electron
restricted Hartree–Fock Zombie state. It can be seen in Fig. 5 that
depending on the choice of the initial condition, the same ZS prop-
agation can lead the ground state of neutral molecule and its anion.
Figure 6 shows the result of the propagation using the basis of 10,
30, and 50 random basis ZS functions together with their improved
energies obtained by cleaning. The first basis function in each basis
set is the six electron restricted Hartree–Fock determinant to ensure
each evolution starts at the same energy. As expected, the energies
for these smaller biased bases are not as accurate as obtained using
the “complete” 64 basis function Hamiltonian. However, the biasing
method is considerably more accurate when a directly comparing
random and biased bases of the same size.

Figure 7 shows the distribution of energy and norm over the
Fock spaces with me electrons for the case of 30 BFs. Almost all
norm is in the 6e Fock space, but even in this case, cleaning improves
the energy and brings it closer to the full CI result. Figure 5 shows
that a basis of 64 randomly selected basis functions is complete and
yields the exact result even without cleaning.

B. Low-lying excited states
Gram–Schmidt orthogonalization was then applied to the com-

plete random basis and is shown in Fig. 8. Four separate states were
computed, all of which were initially set to arbitrary vectors. The
Gram–Schmidt process was applied and then each state was prop-
agated in imaginary time with Gram–Schmidt orthogonalization

FIG. 8. Imaginary time propagation using Gram–Schmidt orthogonalization and
the complete random basis for Li2. The final energies of each state correspond
accordingly: State 1 is the neutral ground state, states 2 and 3 are the degenerate
anion states, and state 4 is the first neutral excited state. These values equal
the eigenvalues obtained by diagonalizing the complete Slater determinant basis,
which have been shown with the dashed lines.

FIG. 9. Imaginary time propagation using Gram –chmidt orthogonalization and the
64 Zombie state biased basis functions for Li2. The final energies of each state
correspond accordingly: State 1 is the neutral ground state, states 2 and 3 are
the anion ground state, and state 4 is the first excited state. These values equal
the eigenvalues obtained by diagonalizing the complete Slater determinant basis,
which have been shown with the dashed lines.

applied after every time step. It can be seen in Fig. 8 that the first
state is the neutral ground state, the second and third states are the
degenerate anion ground states (degenerate as Ms can be ±1/2), and
the fourth is the first neutral excited state for Li2. All of these val-
ues match the corresponding eigenvalues found by diagonalizing the
complete Slater determinant basis.

The same Gram–Schmidt process was then applied to four
states using a 64 Zombie state biased Hamiltonian. The imaginary
time propagation of these four states can be seen in Fig. 9. As
with complete random basis propagating in imaginary time with
Gram–Schmidt produces the lowest neutral state, the degenerate
anion ground states, and the first excited energy, which are also
shown on both figures as dashed lines.

IV. CONCLUSIONS
The findings of this paper are broad but substantially advance

Zombie states as a potential method for simulating electronic struc-
ture and dynamics. While previously shown to be numerically
consistent, the alternative formalism of Zombie states, presented
here, builds from the vacuum state using creation and annihilation
operators to create Zombie states. This forms a clearer link between
Zombie states and more traditional electronic structure theory. This
new formulation also leads to a stricter normalization condition,
which not only demonstrated how ideas from bosonic systems can
be translated to fermionic systems but was key in the implemen-
tation of the biasing method used. A key facet of a practicable
modern methods is efficient algorithms for the calculation of the
Hamiltonian and other operators. In this paper, we have presented
algorithms that greatly improve on the naïve algorithms for the
number operator, spin operators (Ŝz and Ŝ 2), and the two-electron
Hamiltonian. A scaled algorithm for the two-electron Hamiltonian
is presented and reduces computational cost significantly. Compu-
tationally inexpensive calculation of important system properties is
obviously very important for any subsequent work. However, this
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also sets up an easily replicable method for reducing the scaling of
any algorithms that may be developed in subsequent work. All of
the algorithms follow a similar method using the action of creation
and annihilation operators to obtain recursion relations, which lead
to lower-scaling algorithms.

We have also shown that using imaginary time propagation
on a system of Zombie states, it is possible to find the lowest-lying
state of that system. A complete basis of Slater determinants and
a basis of complete random Zombie states were shown to give the
exact same ground state energies for Li2. Imaginary time propa-
gation removes the need for long real-time evolution and Fourier
transforms. Reducing the size of the random basis resulted in the
ground state energy obtained no longer matching the benchmark
set by the complete Slater determinant basis. However, this prob-
lem is overcome by the use of the biasing method, where we use
the ideas of CASSCF30 (or CASCI) by splitting orbitals into inactive,
active, and virtual types and then biasing individual orbitals in the
active space. The lowest four spin orbitals were set as core orbitals
and so always “alive,” leaving two electrons to fill the remaining six
spin orbitals, such that there were 26 = 64 Slater Determinants in a
complete basis set for this active space and any more basis functions
would lead to linear dependencies and a singularities in the over-
lap matrix. However, with 64 biased Zombie state basis functions, it
was possible to produce, with imaginary time evolution, energy lev-
els that matched the 16 times larger Slater determinant basis. We
also showed that with a single Zombie state changed to a speci-
fied restricted Hartree–Fock determinant, it was possible to find a
specific energy level with imaginary time propagation. It should be
noted that the result of converged imaginary time propagation does
not give the correct number of electrons or spin. However, applying
cleaning, by construction, does recover this information. Reducing
the number of biased Zombie states gives less accurate energy levels;
however, when compared to imaginary time propagation for ran-
dom bases of the same size, the biased bases are considerably better.
In some respects, the accuracy of calculations with 64 basis func-
tions is not a great surprise from a chemistry viewpoint, since the
lowest four electrons are in 1s orbitals and, therefore, tightly bound
to the lithium nuclei. It would be energetically very costly to excite
these electrons (compared to the 2s electrons), and they are therefore
expected to remain core 1s in any low-lying states. Clearly, the use of
Zombie states is not giving new scientific insight into the electronic
structure of Li2, but we have demonstrated that ZS can reproduce
results with a reduced basis in an efficient manner.

It is worth noting that 64 basis functions is less than the 210
configurations possible with six electrons in ten spin orbitals but far
more than the 15 possible configurations possible when the first four
electrons are fixed, and the remaining two can be arranged across
six spin orbitals. Thus, introduction of Zombie states with non-
integer occupations of orbitals for a small system has not decreased
the required number of basis functions but, in fact, increased them.
This is not surprising as the basis of Zombie States describes multi-
electronic states with all possible numbers of electrons from no
electrons at all to electrons occupying all spin orbitals. For systems
with small active space, such as Li2, the price of not sticking to
the right number of electrons outweighs the benefit of bringing in
other excited electronic configurations, which may be disregarded
by active space methods. However, as can be seen from the Fig. 6,
a small ZS basis accounts for some correlation energy. For larger

systems, where the active space is large, this may be an affordable
way of taking electron correlation into account. The exponential
scaling of required configurations is a common problem in elec-
tronic structure calculations, but ZS should reduce this, with ade-
quate biasing, with each ZS containing many configurations. As ZSs
are made up of superpositions of many electronic configurations,
we expect that a manageable number of them will be required to
describe larger systems. Therefore, future work will focus on apply-
ing Zombie states to much larger systems that traditionally require
extremely large basis sets, such as N2,6 to obtain FCI values while
using significantly smaller ZS basis sets. We envisage that this work
will require the application of sampling techniques previously devel-
oped for bosonic systems,33 which when applied to Zombie states
should aid in converging results and address the possibility of choos-
ing a linear combination of Zombie states such that the overall
wavefunction is an eigenstate of the number operator.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of the code racing for
all of the algorithms presented. There is also detail of the code used
to generate the electron integrals using PySCF.
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APPENDIX A: NUMBER OPERATOR

Although the observable properties of a Zombie state can be
formally computed exactly by iterative application of creation and
annihilation operators followed by computation of the overlap of the
resultant states,16 this usually is not an efficient calculation. Here, we
present algorithms for the commonly used properties of electronic
states, such as the number of electrons, and their spin properties.

If we consider the action of the number operator,

N̂ =
M

∑
m=1

n̂m =
M

∑
m=1

b̂†
mb̂m, (A1)
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where b̂m is the annihilation operator and b̂†
m is the creation operator

for Zombie state m, we see

n̂m∣ζ(b)⟩ =
⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)1(m−1) a(b)1m ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−1) 0 ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
(A2)

such that n̂m effectively “deletes” the coefficient a(b)0m . Note that the
sign switching cancels itself out. It, therefore, appears that acting
with the number operator N̂ is O(M) as the summation is over M
terms.

A comparison of Eqs. (4) and (A1) suggests that comput-
ing the number of electrons represented by any Zombie state, i.e.,
⟨ζ(a)∣N̂∣ζ(b)⟩, would be O(M2) as computing the overlap of two
Zombie states is O(M).

However, it is possible to construct an algorithm, which is only
O(M) by careful consideration of the summation and the product
by adapting an algorithm from Ref. 34. Mathematically, calculation
of the action of the number operator is

⟨ζ(a)∣N̂∣ζ(b)⟩ =
M

∑
l=1
⟨ζ(a)∣n̂l∣ζ(b)⟩

=
M

∑
l=1

⎡⎢⎢⎢⎢⎣

l−1

∏
j=1

a(a)∗1j a(b)1j + a(a)∗0j a(b)0j

⎤⎥⎥⎥⎥⎦
a(a)∗1l a(b)1l

×
⎡⎢⎢⎢⎢⎣

M

∏
j=l+1

a(a)∗1j a(b)1j + a(a)∗0j a(b)0j

⎤⎥⎥⎥⎥⎦
. (A3)

We can define

di = a(a)∗1i a(b)1i (A4)

and use Eq. (46c) to define

gi =
m

∏
i=1

fi. (A5)

This can be used along with Eq. (47b) to find the following recursion
relations:

g1 = f1, (A6a)

gl = gl−1 f l, l = 2, 3, . . . , M, (A6b)

hM = fM , (A6c)

hm = hl+1 f l, l =M − 1, M − 2, . . . , 1. (A6d)

Computation of Eqs. (A4) and (46c) is clearly O(M) and using
the recursion relations and so is computation of {g l} and {hm}.
Inserting the aforementioned equations into Eq. (A3),

⟨ζ(a)∣N̂∣ζ(b)⟩ =
M

∑
l=1

gl−1dlhl+1, (A7)

which is a summation that can also be computed in O(M) steps.
When applied, this new algorithm is significantly faster than the pre-
vious method; increasing the number of orbitals by a factor of 10, the
new algorithm becomes roughly another 10 times faster than the old
one as to be expected from the scaling arguments above. Full details

of this code racing can be found in Table 5 of the supplementary
material.

Since Zombie states are not usually eigenstates of the number
operator, unlike most Slater determinants, the uncertainty in the in
number of electrons can be defined as a standard deviation,

σN =
√
⟨N̂ 2⟩ − ⟨N̂⟩. (A8)

For N̂ 2,

⟨ζ(a)∣N̂ 2∣ζ(b)⟩ =
M

∑
k=1
⟨ζ(a)∣N̂n̂k∣ζ(b)⟩. (A9)

Computing n̂k∣ζ(b)⟩ is trivial (simply delete the “dead” coefficient for

orbital k). We can therefore define ∣ζ(b)k ⟩ = n̂k∣ζ(b)⟩ and compute

⟨ζ(a)∣N̂ 2∣ζ(b)⟩ =
M

∑
k=1
⟨ζ(a)∣N̂∣ζ(b)k ⟩ (A10)

using the known algorithm for computing the number operator, so
this is O(M2) instead of O(M3).

The general idea presented trivially extends to the “Ghost”
operator,

Ĝ =
M

∑
m=1

ŝm ∶=
M

∑
m=1

b̂mb̂†
m, (A11)

which counts how many of the Zombie states are “dead” (unoccu-
pied), as opposed to the number operator that counts how many of
them are alive.

APPENDIX B: SPIN OPERATORS
1. Ŝz operator

Orbitals are defined with the assumption that any used in the
Zombie state calculation are from a restricted calculation such that
for each orbital with spin ∣α⟩ (spin up, ms = +1/2), there exists an
orbital with the same spatial wavefunction but spin component ∣β⟩
(spin down, ms = −1/2). For a system with M spin orbitals, there
will consequently be K spatial orbitals where K =M/2, K ∈ N. We
further define that all spin orbitals with up spin have an odd index
m = 1, 3, . . ., M − 1, and all spin orbitals with down spin have an
even index m = 2, 4, . . . , M such that the kth spatial orbital has ∣α⟩
spin orbital m = 2k − 1 and ∣β⟩ spin orbital m = 2k, k = 1, 2, . . . , K.

Using this numbering convention, in second quantization
notation,

Ŝz =
1
2

K

∑
k=1

n̂2k−1 − n̂2k (B1a)

= 1
2

M

∑
m=1
(−1)m−1n̂m. (B1b)

The optimized number operator is then adapted introducing a
simple sign change rule to calculate Sz in O(M) steps. A comparison
of the naïve algorithm, using creation and annihilation operators,
and the optimized algorithm, co-opting the optimized number oper-
ator equations, can be found in Table 5 of the supplementary
material.
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2. Faster Ŝ2
z computation

Prima facie, computation of Ŝ2
z would be O(M3) using Eq. (B1),

Ŝ2
z =

1
4

M/2

∑
k

M/2

∑
j
(n̂2k−1 − n̂2k)(n̂2j−1 − n̂2j)

= 1
4

M

∑
k

M

∑
j

n̂kn̂j(−1)j+k, (B2)

so there is O(M) for the summation over k, another over j, and
another to evaluate overlap.

However, extending the adapted number operator algorithm
used for Ŝz in 𝒪 (M) calculation to Ŝ2

z is straightforward,

⟨ζ(a)∣Ŝ2
z ∣ζ(b)⟩ =

1
2

M

∑
m
⟨ζ(a)∣Ŝzn̂m∣ζ(b)⟩(−1)m, (B3)

but n̂m∣ζ(b)⟩ gives another Zombie state that we call ∣ζ(b,m)⟩ such
that

⟨ζ(a)∣Ŝ2
z ∣ζ(b)⟩ =

1
2

M

∑
m
⟨ζ(a)∣Ŝz∣ζ(b,m)⟩(−1)m. (B4)

The bra-ket can be evaluated in 𝒪 (M) and, therefore, the action of
the Ŝ2

z operator in 𝒪 (M2).

3. Total spin
Usually, in electronic structure calculation, one also wants to

know the total spin,1

Ŝ 2 = Ŝ2
x + Ŝ2

y + Ŝ2
z (B5a)

= Ŝ+Ŝ− − Ŝz + Ŝ2
z. (B5b)

We can apply the faster Ŝz and Ŝ2
z algorithms as detailed above.

Ŝ+ and Ŝ− are raising and lowering operators,

Ŝ+ =
Nspa

∑
k=1

ŝ+,k, (B6a)

Ŝ− =
Nspa

∑
k=1

ŝ−,k, (B6b)

ŝ+,k = b̂†
2k−1b̂2k, (B6c)

ŝ−,k = b̂†
2kb̂2k−1, (B6d)

where K is the number of spatial orbitals, viz., K =M/2. We are
numbering the orbitals 1, 2, . . . , K such that the kth spatial orbital
has an alpha spin orbital number 2k − 1 and a beta spin orbital
number 2k.

We then observe the effect of ŝ+,k and ŝ−,k on the wavefunction
(where m = 2k),

ŝ+,k∣ζ(b)⟩ = b̂†
2k−1b̂2k

⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)1(m−1) a(b)1m a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−1) a(b)0m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
(B7a)

= b̂†
2k−1

⎡⎢⎢⎢⎢⎢⎣

−a(b)11 −a(b)12 ⋅ ⋅ ⋅ −a(b)1(m−1) 0 a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−1) a(b)1m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
(B7b)

=
⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)0(m−1) 0 a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ 0 a(b)1m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
(B7c)

and

ŝ−,k∣ζ(b)⟩ = b̂†
2kb̂2k−1

⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)1(m−1) a(b)1m a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−1) a(b)0m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
(B8a)

= b̂†
2k

⎡⎢⎢⎢⎢⎢⎣

−a(b)11 −a(b)12 ⋅ ⋅ ⋅ 0 a(b)1m a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)1(m−1) a(b)0m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
(B8b)

=
⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ 0 a(b)0m a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)1(m−1) 0 a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
. (B8c)
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In both cases, the sign changes cancel each other out exactly.
This means that no sign change is required for evaluating Ŝ+ or Ŝ−,
saving computational cost. However, there are clearly reductions to
be made in the scaling that should reduce the time needed to com-
pute ⟨ζ(a)∣ŝ+,l ŝ−,k∣ζ(b)⟩. The action of ŝ−,k∣ζ(b)⟩ defined by Eq. (B8)

can be defined as ŝ−,k∣ζ(b)⟩ = ∣ζ(c)k ⟩ (where K =M/2 and m = 2l),
which has 𝒪 (M) scaling, and so it is possible to compute

⟨ζ(a)∣Ŝ+Ŝ−∣ζ(b)⟩ =
K

∑
k=1
⟨ζ(a)∣Ŝ+∣ζ(c)k ⟩ =

K

∑
k=1

K

∑
l=1
⟨ζ(a)∣ŝ+,m∣ζ(c)k ⟩

=
K

∑
k=1

⎡⎢⎢⎢⎢⎣

K

∑
l=1

⎡⎢⎢⎢⎢⎣

l−2

∏
j=1

a(a)∗1j a(c)1j + a(a)∗0j a(c)0j

⎤⎥⎥⎥⎥⎦
a(a)∗0(l−1)a

(c)
1(l−1)

⋅ a(a)∗1l a(c)0l ⋅
⎡⎢⎢⎢⎢⎣

M

∏
j=l+1

a(a)∗1j a(c)1j + a(a)∗0j a(c)0j

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
. (B9)

In a similar manner to the scaled Hamiltonian with Eq. (46c)
and the number operator with Eqs. (A5) and (A4), we define

fi = (a(a)∗1i−1 a(c)1i−1 + a(a)∗0i−1 a(c)0i−1) ⋅ (a
(a)∗
1i a(c)1i + a(a)∗0i a(c)0i ), (B10a)

gl =
l

∏
i=1

fi, (B10b)

hl =
K

∏
i=l

fi, (B10c)

di = a(a)∗0(i−1)a
(c)
1(i−1)a

(a)∗
1i a(c)0i , (B10d)

which gives

⟨ζ(a)∣ŝ+l∣ζ(c)k ⟩ = gl−2dlhl+1. (B11)

Overall, this reduces the scaling from 𝒪 (M3) to 𝒪 (M2). This
new algorithm was then used alongside the original speed improve-
ments giving a large time speedup (see Table 8 in the supplementary
material for full details). However, it should be possible to scale the
⟨ζ(a)∣ŝ+ ŝ−∣ζ(b)⟩, removing the need to calculate ∣ζ(c)⟩. We can set
m = 2l and n = 2k and then define

ŝ+,l ŝ−,k∣ζ(b)⟩ = b̂†
2l−1b̂2lb̂

†
2kb̂2k−1

×
⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)1m ⋅ ⋅ ⋅ a(b)1n ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0m ⋅ ⋅ ⋅ a(b)0n ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
,

(B12)

which can have the following outcomes:

ŝ+,l ŝ−,k∣ζ(b)⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ 0 a(b)0n ⋅ ⋅ ⋅ a(b)0(m−1) 0 ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)1(n−1) 0 ⋅ ⋅ ⋅ 0 a(b)1m ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
if 2k < 2l,

⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)0(m−1) 0 ⋅ ⋅ ⋅ 0 a(b)0n ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ 0 a(b)1m ⋅ ⋅ ⋅ a(b)1(n−1) 0 ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
if 2k > 2l,

⎡⎢⎢⎢⎢⎢⎣

a(b)11 a(b)12 ⋅ ⋅ ⋅ a(b)1(m−2) a1(m−1) 0 a(b)1(m+1) ⋅ ⋅ ⋅ a(b)1M

a(b)01 a(b)02 ⋅ ⋅ ⋅ a(b)0(m−2) 0 a0m a(b)0(m+1) ⋅ ⋅ ⋅ a(b)0M

⎤⎥⎥⎥⎥⎥⎦
if 2k = 2l,

(B13)

which gives

⟨ζ(a)∣ŝ+,l ŝ−,k∣ζ(b)⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∏k−2
j=1 a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ]a

(a)∗
0(k−1)a

(b)
1(k−1)a

(a)∗
1k a(b)0k

⋅[∏l−2
j=k+1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ]a

(a)∗
1(l−1)a

(b)
0(l−1)a

(a)∗
0l a(b)1l

⋅[∏M
j=l+1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ] if 2k < 2l,

(B14a)

⟨ζ(a)∣ŝ+,l ŝ−,k∣ζ(b)⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∏l−2
j=1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ]a

(a)∗
1(l−1)a

(b)
0(l−1)a

(a)∗
0l a(b)1l

⋅[∏k−2
j=l+1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ]a

(a)∗
0(k−1)a

(b)
1(k−1)a

(a)∗
1k a(b)0k

⋅[∏M
j=k+1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ] if 2k > 2l,

(B14b)

⟨ζ(a)∣ŝ+,l ŝ−,k∣ζ(b)⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[∏l−2
j=1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ]a

(a)∗
1(l−1)a

(b)
1(l−1)a

(a)∗
0l a(b)0l

⋅[∏M
j=l+1a(a)∗1j a(b)1j + a(a)∗0j a(b)0j ] if 2k = 2l.

(B14c)
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We then have to define the following recursion relations:

fi = (a(a)∗1(i−1)a
(b)
1(i−1) + a(a)∗0(i−1)a

(b)
0(i−1)) ⋅ (a

(a)∗
1(i) a(b)1(i) + a(a)∗0(i) a(b)0(i)),

(B15a)
ci = a(a)∗0(i−1)a

(b)
1(i−1) ⋅ a

(a)∗
1i a(b)0i , (B15b)

di = a(a)∗1(i−1)a
(b)
0(i−1) ⋅ a

(a)∗
0i a(b)1i , (B15c)

si = a(a)∗1(i−1)a
(b)
1(i−1)a

(a)∗
0i a(b)0i . (B15d)

These can all trivially be calculated in 𝒪 (M) steps. We, then, also
define

gl =
l

∏
i=1

fi, (B16a)

hl =
K

∏
i=l

fi, (B16b)

t(l,p) =
p

∏
i=l

fi. (B16c)

Equations (B16a) and (B16b) can be calculated recursively in
𝒪 (M) steps and Eq. (B16c) in 𝒪 (M2). Therefore,

⟨ζ(a)∣Ŝ+Ŝ−∣ζ(b)⟩ =
K−1

∑
k=1

K

∑
l=k+1

gk−1ckt(k+1,l−1)dlhl+1

+
K−1

∑
l=1

K

∑
k=l+1

gl−1dlt(l+1,k−1)ckhk+1

+
K

∑
l=1

gl−1slhl+1. (B17)

The naïve total spin algorithm was made up of three sepa-
rate algorithms Ŝ+Ŝ−, Ŝz , and Ŝ2

z that scaled 𝒪 (M3), 𝒪 (M2), and
𝒪 (M3), respectively. The scaled algorithm reduced the scaling of
each algorithm to 𝒪 (M2), 𝒪 (M) and 𝒪 (M2) respectively. This
scaling improvement resulted in Ŝ 2 for 1000 orbitals being calcu-
lated over 460 times faster than the naïve algorithm; full code racing
details are given in Tables 8 and 9 of the supplementary material.
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