
This is a repository copy of On the existence and uniqueness of equilibria in meshed DC 
microgrids with CPLs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186659/

Version: Accepted Version

Proceedings Paper:
Braitor, A.-C. orcid.org/0000-0002-7666-0457 and Konstantopoulos, G.C. (2022) On the 
existence and uniqueness of equilibria in meshed DC microgrids with CPLs. In: 
Proceedings of 2022 30th Mediterranean Conference on Control and Automation (MED). 
2022 30th Mediterranean Conference on Control and Automation (MED), 28 Jun - 01 Jul 
2022, Vouliagmeni, Greece. Institute of Electrical and Electronics Engineers (IEEE) , pp. 
1030-1035. ISBN 9781665406741 

https://doi.org/10.1109/MED54222.2022.9837210

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



On the existence and uniqueness of equilibria in meshed DC microgrids

with CPLs

Andrei-Constantin Braitor and George C. Konstantopoulos

Abstract— In this paper, we analyse the existence and
uniqueness of equilibria of constant power loads (CPLs) in
meshed DC microgrid architectures. Given the CPLs’ nonlinear
characteristic and negative impedance behaviour, they are
commonly known to introduce a destabilising effect into
the system, effect intuitively coined as negative impedance
instability. In the present approach, we start by deriving the
characteristic polynomial from the power balance equation
aiming to observe the nature of the CPLs voltage solutions,
and assess their feasibility. Then, the algebraic expression is
transformed into a problem of existence and uniqueness of
a fixed point, and further tested by means of contraction
mapping theory. A sufficient condition for the sources’ voltage
references is obtained to guarantee the existence and uniqueness
of equilibria. This provides a useful guidance in selecting the
voltage references in the control design process. A numerical
investigation on a meshed DC microgrid is carried out to verify
the acquired sufficient condition and its underlying developed
theory.

I. INTRODUCTION

Given the direct current nature of renewable energy

generation and increasing number of DC end consumers,

DC microgrids have started to stand out as a solution for

rapid integration of green energy resources into the existing

grid, as they can forgo some AC/DC and DC/AC conversion

steps [1]. The consumers are often connected to the DC bus

through power electronics interfaced circuits, behaving as

constant power loads. when the coupling power converter

response is fast. This occurrence is not uncommon, as similar

behaviour has also been encountered in tightly regulated

electric motors and downstream power converters operating

in distribution feeders in conventional grid networks [2].

The V-I characteristic of the CPLs is depicted in Fig. 1,

where one can notice that the rate of change (slope) between

voltage and current is negative (∆V/∆i < 0), while

the instantaneous value of the impedance always remains

positive (V/i > 0). However, increasing the constant power

of the CPLs causes a potential drop in the CPL voltage,

while the current will increase to satisfy the power demand.

The problem arises when the load voltage becomes less than

the voltage value of the stable point. If the system does

not have proper control in place to prevent it, the voltage
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will continue to drop until zero, while the current will go to

infinity [3]. In simple terms, the challenges that CPLs impose

stem from their power conditioning at the load side, and

the nonlinearity introduced into the power balance dynamics

could result in voltage collapse [4]–[6] when the power of

the CPLs increases above a certain level.

Therefore, the existence of a steady-state behaviour, that

is in the form of CPLs’ voltage equilibria, is critical for

the normal and safe operation of DC microgrids. This

requirement, however, is not a straightforward challenge to

take on analytically and it has posed considerable difficulties.

A. Literature review

CPLs have been extensively studied in the literature (see

[3], [7], [8] and the references within), with a more or

less comprehensive characterisation of their equilibria. The

challenges related with the existence of voltage equilibria

in microgrid systems that include CPLs have been reported

previously in DC microgrids and distribution level grid

applications [9]–[11]. The existence of the solutions is

generally ensured upon compliance with a certain inequality

condition for the system voltage, and it has been reported in

the literature either when having a single or multiple CPLs

[12], [13].

Constant impedance, current and power (ZIP) loads

have been considered in [14], where an approximate

characterisation of the high-voltage of the CPLs is given

when the demanded power is "small". In [15] the high-

voltage solution of CPLs is chosen based on the argument

that the high-voltage is the feasible choice. The selection

of the high-voltage solution in [16]–[18] is guaranteed
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Fig. 1. Constant power load I-V characteristic



by the employment of a current-limiting control approach.

Nevertheless, selecting the CPLs feasible voltage solution,

without any pre-determined assumptions or control strategy

in place, is currently lacking the supporting theoretical

analysis.

A general approach of analysing the existence of solutions

of the power-balance equation is to transform the nonlinear

equation solvability problem into the existence problem of a

fixed point for a derived function [4], [19]–[21]. Constructing

regions described by norm-like constraints for the existence

of a solution within a given distance of the nominal solution,

by means of Brouwer’s fixed point theorem, has been

proposed in [19]. Equivalent results and sufficient conditions

have also been reported in [4], [20]. A less conservative

sufficient condition based on Tarski’s fixed-point theorem

is derived in [21] by constructing an increasing fractional

mapping. An extensive study on the existence and stability

of equilibria in DC microgrids with CPLs has been carried

out in [22] by using the properties of M -matrices.

Regardless of control strategy and network configuration,

the existence and uniqueness equilibrium points of CPLs are

vital prerequisites for the operation of microgrid systems,

which is why the choice should be based on formal proofs.

B. Main contributions

In this paper, the scope revolves around analysing the

existence and uniqueness of high-voltage equilibria of CPLs.

This work is complementary to existing studies in the

literature, but also unique in the sense that it proposes an

approach to guarantee both existence and uniqueness of the

high-voltage solution of a second order polynomial in a

feasible set, pending a straightforward condition.

The main contributions of this paper are highlighted

below:

1) By carefully deriving the CPLs power balance

equation, the existence and uniqueness of the

high-voltage solution (equilibrium) is rigorously

demonstrated by means of complete normed linear

(Banach) spaces and contraction mapping theory.

2) A sufficient condition for selecting the reference

voltage Vref in DC microgrids with CPLs is obtained

to guide the control design and likewise ensure a safe

and reliable microgrid operation.

3) A numerical case-study is being carried out to test the

developed condition and gain additional insights.

The remainder of this section introduces useful notations

and theoretical preliminaries, while the rest of the paper

is organised in the following manner. Section 2 describes

the meshed microgrid model network, while the constant

power loads model is detailed in Section 3, where the

characteristic polynomial and the voltage solutions are also

brought to attention. In Section 4, the proof of existence

and uniqueness of the high-voltage equilibria is presented in

the form of a theorem. Finally, a numerical case-study has

been investigated in Section 5 to test the sufficient condition

and assess the feasible solution set, followed by conclusions

being drawn in Section 6.
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Fig. 2. Meshed DC microgrid network with source and load nodes (i∈
{1, . . . , nS}, j∈{nS + 1, . . . , n})

C. Notation and preliminaries

1) Vectors and matrices

Let 1n ∈ R
n, 0n ∈ R

n and 1n×n ∈ R
n×n,

0n×n ∈ R
n×n be the n-dimensional vectors and

square matrices of all 1’s and 0’s, respectively. Given

an n-tuple sequence (x1, . . . , xn), let x ∈ R
n be the

associated vector and [x] ∈ R
n×n the diagonal matrix

whose diagonal terms are the elements of vector x. If

A and B are matrices then blkdiag{A B} represents

the block-diagonal matrix having A and B as diagonal

block entries. In particular, if they have the same

number of columns, then col (A B) denotes the matrix

[A B]
T

.

2) Contraction mapping

Definition 1. (Infinite norm) The infinite norm of a

vector x, denoted ||x||∞, is defined as the scalar equal

to the maximum of the absolute value of all vector

entries, i.e.

||x||∞ = max|xi|.

Definition 2. (Banach space) A normed linear space

X is a Banach space if every Cauchy sequence in X
converges to a vector in X .

Theorem 1. (Contraction mapping theorem) With X
a Banach space, let S be a closed subset of X and T
a mapping that maps S into S. If

∥T (x)− T (y) ∥∞ ≤ γ∥x− y∥∞, ∀ x, y ∈ S,

with 0 ≤ γ < 1, then there exists a unique vector

x∗ ∈ S that satisfies x∗ = T (x∗).

Proof. Presented in [23, Appx.B].

II. DC MICROGRID MODEL

The DC micro-grid modelled in Fig. 2, induces an

undirected connected graph G = (V, E), with V ∈ I being

the set of vertices, represented by bus nodes, and E ⊆ V×V
the set of edges, representing interconnecting lines in the

microgrid, here assumed resistive. The set of nodes V is

divided in two subsets; the sources subset nS , and the loads



subset nL, such that n = nS + nL. Then, the vectors of

currents and voltages at each node of G can be denoted

as i = col (iS iL) ∈ R
n and V = col (VS VL) ∈ R

n,

with iS = col (i1, . . . , inS
), iL = col

(
inS+1

, . . . , in
)
, and

VS = col (V1, . . . , VnS
), VL = col

(
VnS+1

, . . . , Vn

)
. The

current-voltage relation will be given by i = Y V , as follows
[

iS
iL

]

=

[
YSS YSL

YLS YLL

][
VS

VL

]

(1)

Note that matrices YSS and YLL are symmetric, with YLL

having, as we have shown in a previous work [24], the

following expression

YLL = YLN + [VL]
−2

[P ] (2)

where matrix [VL]
−2

[P ] represents the equivalent

conductance of the CPLs. One can infer that matrices

YSS and YLN are positive-definite1, as they are submatrices

of the conductance matrix without the CPLs, i.e.

LY = Y − blkdiag{0nS×nS
[VL]

−2
[P ]}. The row-

sums of matrix LY are null, that is

YSS1nS
+ YSL1nL

= 0nS
(3)

YLN1nL
+ YLS1nS

= 0nL
(4)

since the network induces a connected and undirected graph

G, whose corresponding Laplacian matrix is symmetric and

balanced (LY 1n = 0n).

III. CONSTANT POWER LOADS

For the constant power loads, the power balance equation

in vector-form is expressed as

[VL] iL = −P (5)

where P = col (PnL+1, . . . , Pn) is constant and represents

the requested power at each load node. Note that, since the

CPL current direction is opposite to the reference direction

(as seen in Fig. 2), the negative sign appears on the right

side of equation (5).

By combining equations (1) and (5), one obtains

YLSVS + YLLVL = − [VL]
−1

P, (6)

or, equivalently,

[VL]YLSVS + [VL]YLLVL + P = 0nL
. (7)

It is clear that VL has two solutions given by the roots

of the above polynomial. The low-voltage and high-voltage

solutions have also been reported in [15], with the feasible

solution being the high-voltage.

Remark 1. In [15] the high voltage solution has been chosen

based on the feasibility argument. In [16], [17] the high-

voltage solution was shown to be feasible by using a current-

limiting approach that can also ensure that the output current

|iS | ≤ imax when having boost converters. However, so

far, the argument to support this claim seems insufficiently

supported by rigorous theoretical proofs.

1This statement is more or less obvious, nonetheless, it can be trivially
proven using Cauchy’s interlacing theorem.

Moreover, following Remark 1, the existence and

uniqueness of the high-voltage solution equilibria, is a

necessary prerequisite for a reliable DC microgrid operation.

By substituting matrix YLL from (2) in equation (6), the

latter becomes

[VL]YLSVS + [VL]YLNVL + 2P = 0nL
, (8)

and by left-multiplying (8) with Y −1
LN [VL]

−1, it yields

Y −1
LNYLSVS + VL + 2Y −1

LN [VL]
−1

P = 0nL
. (9)

Consider the following theorem.

Theorem 2. For a connected DC microgrid configuration,

the following statement holds

Y −1
LNYLS = −Q, (10)

where Q ∈ R
nL×nS is a matrix with row-sums equal to 1.

Proof. One could equivalently prove the rewritten equation

(10), which is

YLNQ+ YLS = 0nL×nS
. (11)

By right-multiplication with vector 1nS
, one gets

YLNQ1nS
+ YLS1nS

= 0nL×nS
. (12)

Notice that Q1nS
= 1nL

, and based on the row-sum identity

(4), equation (12) holds. Thus, statement (10) is proven. The

proof is complete.

Hence, by virtue of Theorem 2, equation (9) becomes

VL = QVS − 2Y −1
LN [VL]

−1
P. (13)

Remark 2. In a dynamical system VL and/or iL are

state variables or state-dependent variables. Hence, as

the solutions of the polynomial would also represent the

equilibria of the system, the terms solutions and equilibria

are used interchangeably throughout the entirety of this

paper.

IV. EXISTENCE AND UNIQUENESS OF EQUILIBRIA

Prior to presenting the main result, let us make the

following assumption.

Assumption 1. At steady state, the source voltages VS are

assumed to be equal to their respective reference values

VS,ref = [Vref,1 . . . Vref,nS
]
T

. To make the subsequent

analysis more straightforward, one can assume, without loss

of generality and without influencing the analysis and the

end results, same value for all entries of the reference voltage

vector, i.e. Vref1nS
.

Remark 3. It is clear that this is a sensible assumption

to make. By keeping different voltage references one would

eventually get QVS,ref which would be equal to a vector

with the average values of the voltage references as entries

(i.e. QVS,ref = V S,ref ), since matrix Q has unit row-sums.

But, for simplicity one assumes same voltage reference. A

trivial control design can be put in place and guarantee

steady-state voltage regulation such that VS = Vref1nS
(see



for instance [25]); hence satisfying Assumption 1. However,

since control design does not fall within the scope of this

paper, the presence of Assumption 1 is required.

Thus, when VS = Vref1nS
, the following vector relation

is obtained QVS = QVref1nS
= Vref1nL

, yielding the

modified equation (13) as follows

VL = Vref1nL
− 2Y −1

LN [VL]
−1

P. (14)

Next, consider the function T : S → S defined as

T (VL) = Vref1nL
− 2Y −1

LN [VL]
−1

P. (15)

According to Theorem 1, if there exists a non-empty compact

set S such that T (VL) is a contraction mapping, then there

exists a unique VL ∈ S such that T (VL) = VL. Following

this latter argument, one can obtain a sufficient condition for

the existence and uniqueness of equilibria in equation (9).

Theorem 3. Consider
Vref√

2
< V ∗ < Vref and define

S = {VL

∣
∣|VL − V ∗| ≤ ρV ∗}. Equation (9) admits a unique

solution in S if the following condition is satisfied

Vref >
2

1− ρ

√

||Y −1
LNP ||∞, (16)

for any selection 1
2 ≤ ρ < 1.

Proof. By virtue of Theorem 1, when T (VL) is both a

self-mapping and a contraction mapping in S, function (15)

admits a unique solution in S.

One starts by proving T (VL) is self-mapping, that is

T (VL) ∈ S for any VL ∈ S, i.e.

∥T (VL) ∥∞ ≤ (1 + ρ)V ∗. (17)

Given V ∗ ∈
(

Vref√
2
, Vref

)

, |VL| ≤ (1 + ρ)V ∗, and if

condition (16) is satisfied, it yields

∥T (VL)− Vref1nL
∥∞ ≤

2∥Y −1
LNP∥∞

min{VL}

≤
(1− ρ)

2
V 2
ref

2 (1− ρ)V ∗
≤

(1− ρ)
2
V ∗2

(1− ρ)V ∗
≤ (1− ρ)V ∗ (18)

According to inequality (17), the above needs to satisfy

(1− ρ)V ∗ ≤ (1 + ρ)V ∗ − Vref

≤ (1 + ρ)V ∗ − V ∗ ≤ ρV ∗, (19)

which is always ensured given ρ ∈
[
1
2 , 1

)
, thus, T (VL) is

self-mapping. The first part of the proof is accomplished.

To show that function T (VL) is also a contraction

mapping over S, let VX , VY ∈ S and consider

∥T (VX)− T (VY ) ∥∞

≤ −
2min{Y −1

LNP}

∥VX∥∞
+

2∥Y −1
LNP∥∞

min{VY }

≤2∥Y −1
LNP∥∞∥[VX ]

−1
1nL

∥∞∥[VY ]
−1

1nL
∥∞||VX− VY ||∞

(20)

1

2

3

4 5

6

7

R14

R45

R46 R56

R57

R27

R37

Fig. 3. Considered case-study DC microgrid network with seven source
and load nodes

Since VX , VY ∈ S, the following inequalities are obtained

{

∥ [VX ]
−1

1nL
∥∞ ≤ 1

(1−ρ)V ∗

∥ [VY ]
−1

1nL
∥∞ ≤ 1

(1−ρ)V ∗

(21)

By combining (20)-(21), it yields

||T (VX)− T (VY ) || ≤
2||Y −1

LNP ||∞

(1− ρ)
2
V ∗2

︸ ︷︷ ︸

γ

||VX − VY ||. (22)

Note that, since V ∗ >
Vref√

2
and based on condition (16),

the following inequality takes place

γ =
2||Y −1

LNP ||∞

(1− ρ)
2
V ∗2

<
4||Y −1

LNP ||∞

(1− ρ)
2
V 2
ref

< 1. (23)

With the term γ < 1, and by virtue of Theorem 1, function

T (VL) is also a contraction mapping in S. Thus, there exists

a unique solution VL ∈ S such that T (VL) = VL. The proof

of the theorem is completed.

Remark 4. Assuming the condition in Theorem 3 is satisfied,

one can appropriately select the reference voltage for any
1
2 ≤ ρ < 1. For instance, by choosing ρ = 0.5 and the

nominal voltage V ∗ = Vref , one would get a condition

similar to the ones obtained or put as assumptions in [14]–

[17]. However, considering the nominal voltage equal to the

reference voltage is not a realistic assumption.

V. NUMERICAL TESTING OF THE EQUILIBRIA EXISTENCE

AND UNIQUENESS

The meshed DC microgrid studied in this section is

depicted in Fig. 3, with the system parameters specified in

Table I. The network consists of 7 vertices/ nodes, having 3

source nodes (amber) and 4 load nodes (blue), interconnected

via a resistive network. The corresponding Laplacian matrix

LY looks as expressed below



LY =



















1.125 0 0 −1.125 0 0 0
0 3 0 0 0 0 −3
0 0 1 0 0 0 −1
0 0 0 4.6607 −1.2857 −2.25 0

−1.125 0 0 −1.2857 4.8857 −1.8 −1.8
0 0 0 −2.25 −1.8 4.05 0
0 −3 −1 0 −1.8 0 5.8



















.

With the nominal voltage V ∗ = 45V , the end goal is to

identify graphically the voltage equilibria of the 4 constant

power loads, and to observe the implications of choosing the

reference voltage Vref as specified by the condition given in

Theorem 3, since it must be ensured that V ∗ ∈
(

Vref√
2
, Vref

)

.

If it cannot be guaranteed, then the nominal voltage V ∗ must

be increased to avoid voltage collapse as the power of the

CPLs is too large.

A plot of the voltage polynomials appear in Fig. 4, where

the power of the loads is P = [110 150 95 125] W . By

computing condition (16), one obtains a lower value for

Vref , which requires the voltage reference to satisfy Vref >
55.0182V . Hence, as shown in Fig. 4, to comply with this

condition and also make sure that
Vref√

2
< V ∗, the voltage

reference is selected as Vref = 60V . The set of the high-

voltage solutions is also computed as S = [22.5 67.5] since

one has ρ = 0.5. It can be seen, in Fig. 4, that all high-

voltage solutions are contained in the set S, as expected and

proved in the theoretical sections.

Some key observations and insights that could be helpful

in future testings are worth mentioning here. The developed

theory guarantees the existence and uniqueness of high-

voltage equilibria given the condition is satisfied, but one

needs to keep in mind that

• when choosing the voltage reference Vref to satisfy the

condition in Section 4, one also needs to remember

that the nominal voltage has to be within the following

bounds
Vref√

2
< V ∗ < Vref . If such a Vref does not exist

to satisfy the latter condition as well, then either V ∗

needs to be increased, or the CPLs’ power decreased.

• if the parameter ρ is chosen close to maximum, i.e.

ρ ≈ 1, one might be tempted to think that the solution

set will then include the low-voltage equilibria as well,

since it will get very close to including the zero

value, i.e. S ∈ (0, 2V ∗). However, parameter ρ → 1

TABLE I

NUMERICAL CASE-STUDY PARAMETERS

System Parameters Numerical Values

R14 0.8889Ω
R27 0.3333Ω
R37 1Ω
R45 0.7778Ω
R46 0.4444Ω
R56 0.5556Ω
R57 0.5556Ω
P [110 150 95 125] W
V ∗ 45V
Vref 60V
ρ 0.5

2

ref
V

*
V

ref
V

(16)condition

*
V

S

Fig. 4. Characteristic polynomial plots corresponding to the 4 load nodes,

with a clear marking of the low ( ) and high-voltage ( ) equilibria

will affect condition (16) for the voltage reference,

essentially rendering Vref → ∞.

Still, note that in the preceding sections we obtained a

sufficient condition for the reference voltage. Hence, Vref not

complying with condition (16) does not automatically imply

that the equilibria does not exist, nor that is not unique in a

particular solutions set. However, guaranteeing analytically

that a unique solution exists is a well sought-after result.

VI. CONCLUSIONS

The voltage equilibria of CPLs in DC microgrids is

paramount for the overall system operation, as it is an

essential requirement for safe and stable functioning of

the microgrid network. A sufficient condition has been

developed by means of contraction theory to suitably

select the reference voltage. Complying with the given

condition guarantees the existence and uniqueness of the

high-voltage solution of CPLs. The current findings and

sufficient condition have also been tested to showcase the

validity of the theoretical analysis.

A possible extension of the current work would be to study

the stability of the high-voltage equilibria, which is an active

research pursuit, and several steps in this direction have

already been taken, and more can be found in the literature.
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