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Simple Summary: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma.
Even with the improvements in the treatment of DLBCL, around a quarter of patients will experience
recurrence. The aim of this single centre retrospective study was to predict which patients would
have recurrence within 2 years of their treatment using machine learning techniques based on
radiomics extracted from the staging PET/CT images. Our study demonstrated that in our dataset of
229 patients (training data = 183, test data = 46) that a combined radiomic and clinical based model
performed better than a simple model based on metabolic tumour volume, and that it had a good
predictive ability which was maintained when tested on an unseen test set.

Abstract: Background: Approximately 30% of patients with diffuse large B-cell lymphoma (DLBCL)
will have recurrence. The aim of this study was to develop a radiomic based model derived from
baseline PET/CT to predict 2-year event free survival (2-EFS). Methods: Patients with DLBCL treated
with R-CHOP chemotherapy undergoing pre-treatment PET/CT between January 2008 and January
2018 were included. The dataset was split into training and internal unseen test sets (ratio 80:20). A
logistic regression model using metabolic tumour volume (MTV) and six different machine learning
classifiers created from clinical and radiomic features derived from the baseline PET/CT were trained
and tuned using four-fold cross validation. The model with the highest mean validation receiver
operator characteristic (ROC) curve area under the curve (AUC) was tested on the unseen test set.
Results: 229 DLBCL patients met the inclusion criteria with 62 (27%) having 2-EFS events. The
training cohort had 183 patients with 46 patients in the unseen test cohort. The model with the
highest mean validation AUC combined clinical and radiomic features in a ridge regression model
with a mean validation AUC of 0.75 ± 0.06 and a test AUC of 0.73. Conclusions: Radiomics based
models demonstrate promise in predicting outcomes in DLBCL patients.

Keywords: diffuse large B-cell lymphoma; lymphoma; predictive modelling; radiomics;
machine learning
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1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the commonest subtype of non-Hodgkin
lymphoma (NHL), accounting for approximately 30–40% of adult cases [1]. The gold stan-
dard treatment is immunochemotherapy with rituximab, cyclophosphamide, doxorubicin
hydrochloride, vincristine (Oncovin) and prednisolone (RCHOP) [2]. Radiotherapy can be
added if there is bulky or residual disease. Prophylactic intrathecal methotrexate or intra-
venous treatment with chemotherapy that crosses the blood-brain barrier may be included if
there is high risk for central nervous system (CNS) involvement [3]. Even with current ther-
apy regimes, approximately 20–30% of patients will recur following treatment [4,5]. Staging
and response assessment is performed using 2-deoxy-2-[fluorine18]-fluoro-D-glucose (FDG)
positron emission tomography/computed tomography (PET/CT). Treatment stratification
based on mid-treatment (interim) PET/CT is commonly used in the management of pa-
tients with Hodgkin lymphoma but is less established in DLBCL due to the reduced ability
to accurately predict treatment outcome in this lymphoma subtype mid-treatment [6,7].
There is increasing interest in the use of PET/CT derived metrics for treatment stratification
at baseline in lymphoma to improve patient outcome. A number of groups have explored
the potential utility of baseline metabolic tumour volume (MTV) for predicting event
free survival (EFS) with promising results, but this has yet to be adopted clinically [8–17].
Others have explored the potential utility of radiomic features extracted from PET/CT for
modelling purposes [8,18]. Initial results are promising, however, the published studies
with relatively small numbers of patients are heterogenous

This aim of this study was to develop and test models combining baseline clinical
information and radiomic features extracted from PET/CT imaging in DLBCL patients to
predict 2-year EFS (2-EFS) using data from our tertiary centre. The secondary aim was to
compare model performance to the predictive ability of baseline MTV.

2. Materials and Methods

The transparent reporting of a multivariable prediction model for individual prognosis
or diagnosis (TRIPOD) guidelines were adhered to as part of this study
(Supplementary Material).

2.1. Patient Selection

Radiological and clinical databases were retrospectively reviewed to identify patients
who underwent baseline PET/CT for DLBCL at our institution between January 2008 and
January 2018. A cut-off of January 2018 was chosen to allow a minimum of 2 years follow
up without interference or confounding factors introduced by the COVID-19 pandemic.
Patients were excluded if they did not have DLBCL, were under 16 years of age, had no
measurable disease on PET/CT, had hepatic involvement, had a concurrent malignancy,
were not treated with R-CHOP or if the images were degraded or incomplete. A 2-EFS
event was defined as disease progression, recurrence or death from any cause within the
2-year follow up period.

2.2. PET/CT Acquisition

All imaging was performed as part of routine clinical practice. Patients fasted for
6 h prior to administration of intravenous Fluorine-18 FDG (4 MBq/kg). PET acquisition
and reconstruction parameters for the four scanners used at our institution are detailed in
Table 1. Attenuation correction was performed using a low-dose unenhanced diagnostic
CT component acquired using the following settings: 3.75 mm slice thickness; pitch 6;
140 kV; 80 mAs.



Cancers 2022, 14, 1711 3 of 13

Table 1. Reconstruction parameters for the different scanners used.

Scanner Voxel Size in mm (x, y, z) Matrix Reconstruction Scatter Correction Randoms Correction

Philips Gemini TF64 4 × 4 × 4 144 or 169 BLOB-OS-TF SS-Simul DLYD

GE Healthcare
Discovery 690 3.65 × 3.65 × 3.27 192 VPFX Model based Singles

GE Healthcare
Discovery 710 3.65 × 3.65 × 3.27 192 VPFX Model based Singles

GE Healthcare STE 4.6875 × 4.6875 × 3.27 128 OSEM Convolution
subtraction Singles

BLOB-OS-TF = an ordered subset iterative TOF reconstruction algorithm using blobs instead of voxels;
DLYD = delayed event subtraction; OSEM = ordered subsets expectation maximisation; SS-Simul = single-scatter
simulation; VPFX = Vue Point FX (OSEM including point spread function and time of flight).

2.3. Image Segmentation

All PET/CT images were reviewed and contoured using a specialised multimodality
imaging software package (RTx v1.8.2, Mirada Medical, Oxford, UK). FDG-positive disease
segmentation was performed by either a clinical radiologist with six years’ experience
or a research radiographer with two years’ experience. Contours were then reviewed by
dual-certified Radiology and Nuclear Medicine Physicians with >15 years’ experience of
oncological PET/CT interpretation. Any discrepancies were agreed by consensus.

Two different semi-automated segmentation techniques were used. The first applied a
fixed standardised uptake value (SUV) threshold of 4.0, and the second used a threshold
derived from 1.5 times mean liver SUV. The 4.0 SUV threshold was selected based on previ-
ous work assessing different segmentation techniques in a cohort of DLBCL patients by
Burggraaff et al. which found it had a higher interobserver reliability [19] and requires less
adaption than techniques such as 41% SUVmax. The 1.5 times mean liver SUV threshold
was chosen as an adaptive threshold technique which has been used in different cancer
types [20,21], and allows for adaptive thresholding which takes into consideration back-
ground SUV uptake which can vary between individuals. Mean liver SUV was calculated
by placing a 110 cm3 spherical region of interest (ROI) in the right lobe of the liver. The
PET image contour was translated to the CT component of the study with the contours
matched to soft tissue with a value of −10 to 100 Hounsfield units (HU). Contours were
saved and exported as digital imaging and communications in medicine (DICOM) radio-
therapy (RT) structures. Both the images and contours were converted to Neuroimaging
Informatics Technology Initiative (NIfTI) files using the python library Simple ITK (v2.0.2)
(https://simpleitk.org/, accessed on 1 December 2021).

2.4. Feature Extraction

Feature extraction was performed using PyRadiomics (v2.2.0) (https://pyradiomics.
readthedocs.io/en/latest/index.html, accessed on 1 December 2021). Both the CT and
PET images were resampled to a uniform voxel size of 2 mm3. Radiomic features were
extracted from the entire segmented disease for each patient. A fixed bin width of 2.5 HU
was used for the CT component. Two different bin-widths were used when extracting the
radiomic features from the PET component. The first being derived by finding the contour
with the maximum range of SUVs and dividing this by 130, the second being derived by
dividing the maximum range by 64. This methodology was based on previous work by
Orlhac et al. and on PyRadiomics documentation [22]. The first and second order features
were extracted from both the PET and CT components. Further higher order features were
explored by extracting the first and second order features following application of wavelet,
log-sigma, square, square root, logarithm, exponential, gradient and local binary pattern
(lbp)-3D filters to the images. All the features extracted and the filters applied are detailed in
Table S1. The mathematical definition of each of the radiomic features can be found within
the PyRadiomics documentation [23]. PyRadiomics deviates from the image biomarker
standardisation initiative (IBSI) by applying a fixed bin width from 0 and not the minimum

https://simpleitk.org/
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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segmentation value, and the calculation of first order kurtosis being +3 [24,25]. Otherwise,
PyRadiomics adheres to IBSI guidelines. Patient age, disease stage and sex were also
included as clinical features in the models. Disease stage and sex were dummy encoded
using Pandas (v1.2.4) (https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2
.4.html, accessed on 1 December 2021). This resulted in a total of 3935 features extracted
per patient. ComBat harmonisation was applied to account for the different scanners
used within the study (https://github.com/Jfortin1/ComBatHarmonization, accessed on
1 December 2021) [26].

2.5. Machine Learning

The dataset was split into a training and test set stratified around 2-EFS, disease
stage, age and sex with an 80:20 split using scikit-learn (v0.24.2) (https://scikit-learn.org/
stable/whats_new/v0.24.html, accessed on 1 December 2021). Concordance between the
demographics of the training and test groups was assessed using a t-test for continuous
data and a χ2 test for categorical data. A p-value of <0.05 was regarded as significant.
Continuous data was normalised using a standard scaler (scikit-learn v0.24.2) which was
trained and fit on the training set and subsequently applied to the test set. Highly correlated
features were removed from the training and test sets if they had a Pearson coefficient
over 0.8. This reduced the number of features from 3935 down to 130 for each patient.

Six different machine learning (ML) classifiers were used: logistic regression with lasso,
ridge and elasticnet penalties, support vector machine (SVM), random forest and k-nearest
neighbour. A maximum number of five features were included within each model, apart
from in the lasso and elasticnet models where these classifiers determined the optimum
number of features. To avoid false discoveries (Type 1 errors), a maximum number of five
features was chosen guided by the rule of 1 feature per 10 events within the training set.
Feature selection for the remaining models was performed using three different methods:
a forward wrapper method (mlxtend 0.18.0), a univariate analysis method (scikit-learn
v0.24.2), and a recursive feature extraction method (where applicable) (scikitlearn v0.24.2).
Each method was used to create a list of features from two to the maximum five features
which were to be explored in the training phase. The features selected were based on the
highest mean receiver operating characteristic (ROC) curve area under the curve (AUC) in
a four-fold stratified cross validation with 25 repeats.

Training of the ML models and the tuning of hyperparameters was performed using
a grid search with a stratified four-fold cross validation stratified around 2-EFS with
25 repeats. The list of hyperparameters explored within the grid search are detailed in
Table S2. Features and hyperparameters with the highest mean validation AUC which
was within 0.05 of the mean training AUC were selected. A 0.05 cut-off was chosen to
try and minimise selection of an overfitted model. The model which had the highest
mean validation AUC overall was tested once on the unseen test set. The Youden index
was used to discover the optimum cut-off value from the ROC curve and the accuracy,
sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV)
were calculated from this for the unseen test set. The pipeline for patient inclusion, feature
selection and predictive model creation and testing is depicted in Figure 1.

Given the growing evidence surrounding MTV as a predictor of outcome, two further
logistic regression models were derived from the MTVs using the different segmentation. A
comparison between results from the different cross validation splits between the radiomic
model with the mean highest AUC and the MTV model with the mean higher AUC was
performed using a Wilcoxon signed ranked test.

https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2.4.html
https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.2.4.html
https://github.com/Jfortin1/ComBatHarmonization
https://scikit-learn.org/stable/whats_new/v0.24.html
https://scikit-learn.org/stable/whats_new/v0.24.html
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3. Results

A total of 229 DLBCL patients met the inclusion criteria (136 male, 93 female) with
62 2-EFS events. There were 183 patients within the training cohort and 46 patients in
the unseen test cohort. No statistically significant differences were identified between the
training and test sets (Table 2).

None of the machine learning models created using elasticnet regression, lasso regres-
sion or k-nearest neighbour algorithms had a mean validation AUC within 0.05 of the mean
training AUC. The remaining model results are presented in Tables 3 and 4.
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Table 2. Demographics of the training and testing groups.

Demographic Training Cohort Test Cohort p-Value

Age 67 (IQR = 17) 65 (IQR = 22.5) 0.35

Sex
Male 107 29

0.69Female 76 36

Radiotherapy
Yes 78 20

0.95No 105 26

Stage
One 42 17

0.26
Two 46 6

Three 31 6
Four 64 17

2-EFS Event
Yes 50 12

0.98No 133 34

2-EFS = 2-year event free survival. The p-values were calculated using a t-test for age and a χ2 test for the
remaining demographic features.

Table 3. Mean training and validation scores for the best performing machine learning models using
the 4.0 SUV threshold segmentation technique.

Machine Learning
Model Hyperparameters Features AUC Mean

Training
AUC Mean
Validation

SUVmax/130

Ridge Regression C: 1 × 10−5, penalty: l2,
solver: liblinear

Stage One, PET wavelet-LLH GLSZM Large Area
Emphasis, PET wavelet-HHH GLSZM Grey Level

Non-Uniformity Normalised, PET square 10th
Percentile, PET square GLDM Grey Level

Non-Uniformity

0.75 (0.02) 0.74 (0.07)

Support Vector
Machine

C: 1, gamma:
0.008915428868611115,

kernel: sigmoid

PET wavelet-HHH GLSZM Grey Level
Non-Uniformity Normalised, PET square 10th

Percentile, PET lbp-3D-m1 Interquartile Range, PET
lbp-3D-m1 GLDM Large Dependence Low Grey

Level Emphasis, PET lbp-3D-k 90th Percentile

0.74 (0.02) 0.73 (0.07)

Random Forest

bootstrap: False, max
depth: 1, max features:

log2, min samples leaf: 50,
min samples split: 50, n

estimators: 10

PET original shape Maximum 2D Diameter Column,
MTV, PET original first order Kurtosis, PET original

GLSZM Large Area Emphasis, PET wavelet-LHL
GLCM Correlation, PET wavelet-LHL GLCM Imc2

0.76 (0.02) 0.71 (0.08)

SUVmax/64

Ridge Regression C: 0.001, penalty: l2,
solver: newton-cg

Stage Four, PET original GLSZM Large Area
Emphasis, PET wavelet-HHL GLSZM Small Area
Emphasis, PET wavelet-HHH GLSZM Grey Level

Non-Uniformity Normalised, PET square
10th Percentile

0.77 (0.02) 0.75 (0.06)

Support Vector
Machine

C: 0.1, gamma:
0.07938667031015477,

kernel: rbf

PET original GLDM Large Dependence Low Grey
Level Emphasis, PET wavelet-HHH GLSZM Grey

Level Non-Uniformity Normalised, PET square 10th
Percentile, PET lbp-3D-k 90 Percentile, PET lbp-3D-k

GLSZM Size Zone Non-Uniformity Normalised

0.75 (0.02) 0.72 (0.06)

Random Forest

bootstrap: True, max
depth: 1, max features:

log2, min samples leaf: 44,
min samples split: 6, n

estimators: 243

PET original shape Maximum 2D Diameter Column,
PET original shape Surface Volume Ratio, PET

original 10th Percentile
0.71 (0.02) 0.69 (0.08)

l2 = Ridge regression penalty, liblinear = A library for large linear classification, GLSZM = grey level size zone
matrix, GLDM = grey level dependence matrix, lbp-3D-m1 = local binary pattern filtered image at level 1,
lbp-3D-k = local binary pattern kurtosis image, GLCM = grey level co-occurrence matrix, rbf = radial
basis function.
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Table 4. Mean training and validation scores for the best performing machine learning models using
the 1.5 times mean liver SUV thresholding segmentation technique.

Machine Learning
Model Hyperparameters Features AUC Mean

Training
AUC Mean
Validation

SUVmax/130

Ridge Regression C: 1 × 10−5, penalty: l2,
solver: saga

Stage Four, Age, PET original GLDM Large
Dependence Low Grey Level Emphasis, PET

original GLSZM Large Area High Grey
Level Emphasis

0.74 (0.03) 0.71 (0.09)

Support Vector
Machine

C: 1, gamma:
0.43727367418726576,

kernel: rbf

PET square 10th Percentile, PET square first
order Energy 0.78 (0.02) 0.73 (0.07)

Random Forest

bootstrap: True, max
depth: 10, max features:

sqrt, min samples leaf: 33,
min samples split: 5, n

estimators: 90

Age, PET original shape Elongation, PET
original shape Least Axis Length, PET original
shape Major Axis Length, PET original shape
Maximum 2D Diameter Column, PET original

shape Mesh Volume

SUVmax/64

Ridge Regression C: 1.0, penalty: l2, solver:
liblinear

Stage Three, Age, PET wavelet-LHL GLCM
Imc1, PET square GLDM Dependence Variance,

PET square GLSZM Small Area Low Grey
Level Emphasis

0.76 (0.02) 0.73 (0.07)

Support Vector
Machine

C: 1, gamma:
0.43727367418726576,

kernel: rbf

PET square first order 10 Percentile, PET square
first order Energy 0.78 (0.02) 0.73 (0.07)

Random Forest

bootstrap: True, max
depth: 10, max features:

log2, min samples leaf: 42,
min samples split: 6, n

estimators: 237

PET original shape Sphericity, PET original
GLSZM Large Area Emphasis 0.70 (0.02) 0.69 (0.07)

l2 = Ridge regression penalty, liblinear = A library for large linear classification, GLSZM = grey level size zone
matrix, GLDM = grey level dependence matrix, lbp-3D-m1 = local binary pattern filtered image at level 1,
lbp-3D-k = local binary pattern kurtosis image, GLCM = grey level co-occurrence matrix, rbf = radial
basis function.

The model within the highest mean validation ROC AUC was the ridge regression
model created using radiomic features extracted from a fixed threshold of 4.0 SUV segmen-
tation using a bin width of the maximum range of SUVs divided by 64. The mean training
AUC was 0.77 ± 0.02, the mean validation AUC was 0.75 ± 0.06 and the AUC when tested
on the unseen dataset was 0.73 (Figure 2). The features selected with their coefficients and
intercept are presented in Table 5. A threshold of 0.5 was chosen and led to an accuracy of
0.70, sensitivity of 0.44, specificity of 0.86, positive predictive value of 0.67, and a negative
predictive value of 0.71. The confusion matrix is presented in Table 6.

The logistic regression model created solely from MTV using the 4.0 SUV fixed thresh-
old segmentation technique had a mean training AUC of 0.66 ± 0.03 and a mean validation
AUC of 0.66 ± 0.08. The logistic regression model derived from MTV using the 1.5 times
mean liver SUV segmentation technique had a mean training AUC of 0.67 ± 0.03 and a
mean validation AUC of 0.67 ± 0.08. There was a statistically significant difference when
comparing the cross validation AUCs for the 100 splits between the highest performing
MTV-based model and the radiomic-based ridge regression model, p < 0.001 (Figure 3).
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Figure 2. ROC Curve of the training and unseen test data AUCs for the model derived using a
4.0 SUV thresholding segmentation technique with a bin width derived from SUVmax/64.

Table 5. The features selected and their associated coefficients and intercept in the ridge regression
model tested on the unseen test dataset.

Feature Coefficient

Stage Four 0.01153414
PET original GLSZM Large Area Emphasis 0.0161316

PET wavelet-HHL GLSZM Small Area
Emphasis 0.01482446

PET wavelet-HHH GLSZM Grey Level
Non-Uniformity Normalised −0.01923886

PET square 10 Percentile −0.01923886
Intercept −0.01166859

Table 6. Confusion matrix for the threshold of 0.5.

Prediction Negative Positive

Predicted Negative 24 10
Predicted Positive 4 8

Positive = recorded 2-EFS event, Negative = no recorded 2-EFS event, Predicted Positive = predicted to have had
a 2-EFS event, Predicted Negative = predicted to not have had a 2-EFS event.
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logistic regression model.

4. Discussion

Our study found that a prediction model combining clinical and radiomic features
derived from pretreatment PET/CT using a ridge regression model had the highest mean
validation AUC when predicting 2-EFS in DLBCL patients. This model had significantly
higher validation AUCs than those achieved by a model solely derived from MTV and
achieved an AUC of 0.73 on the unseen test set. The radiomic features used within the model
that led to the highest mean validation AUC were extracted from a segmentation derived
from a fixed threshold of 4.0 SUV using a bin-width calculated from the maximum range of
SUVs divided by 64. The model was formed using five features (Stage Four, PET original
GLSZM large area emphasis, PET wavelet-HHL GLSZM Small Area Emphasis, PET wavelet-
HHH GLSZM Grey Level Non-Uniformity normalised, PET square 10th percentile).

The biological correlate of radiomic features and how these relate to the lesion or
disease process can often be overlooked, and can become more complex when image
filtering is involved [27]. Three of the radiomic features included in the best model were
derived from GLSZM which is a matrix formed by the number of connected voxels with
the same grey level intensity. The first was the PET GLSZM Large Area Emphasis, which
is a measure of distribution of large area size zones, and was extracted from the PET data
without any filter applied. This feature is higher in lesions which have a coarser texture
based on the original image. The other two GLZMs are calculated after applying a wavelet
filter. Wavelet filters highlight or suppress certain spatial frequencies within an image.
In PyRadiomics a combination of high and low filters is passed in each of the different
dimensions, which results in eight different decompositions. PET wavelet-HHL GLSZM
Small Area Emphasis is a measure of the distribution of small size zones, which are higher
in lesions with fine textures following the application of the wavelet filter. PET wavelet-
HHH GLSZM Grey Level Non-Uniformity is a measure of the variability of the grey level
intensity within the image. A lower value indicates a higher number of similar SUVs on the
wavelet filtered image. The last radiomic feature included was PET square 10th percentile
which is the 10th percentile value of the SUV after a square of the image SUVs has been
taken and normalised to the original SUV range. Interestingly, none of the CT-derived
radiomic features were selected as part of the best performing radiomic models. This is
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likely due to the transposition of the segmentations from the PET on to the unenhanced CT
including more areas of non-lymphomatous tissue.

Other studies which have explored the use of radiomic features in outcome prediction
in DLBCL are not always directly comparable [12,28–32]. This is mainly due to differ-
ences in segmentation methodology, modelling techniques and outcome measures between
groups. Aide et al. studied the use of radiomic features in predicting 2-EFS in 132 patients
(training = 105, validation = 27) and found that MTV as well as four second-order met-
rics and five third-order metrics were selected from ROC analyses. However, long-zone
high-grey level emphasis was the only independent predictor when analysed with the
international prognostic index (IPI) and MTV [29]. In our study long-zone high-grey level
emphasis was discarded when checking for multicollinearity. This highlights a potential
issue of radiomic model development when applying a methodology on different datasets.
It may be that the same features would be chosen between the different datasets, but each
method removes the alternate correlated feature and, therefore, appears to create an entirely
new model. Both Zhang et al. and Ceriani et al. used lasso in their cox regression models
to select the most appropriate features [31,32]. Zhang et al. in a study of 152 patients
(training = 100, validation = 52) treated with R-CHOP or R-EPOCH (rituximab, etoposide,
prednisone, vincristine, cyclophosphamide, and doxorubicin) found that a survival model
created with radiomic features and MTV had a validation time dependent ROC AUC of
0.748 (95% CI 0.596–0.886). A model created with radiomic features and metabolic bulk
volume had a validation time dependent ROC AUC 0.759 (95% CI 0.595–0.888). Ceri-
ani et al. reported that a radiomic score derived from a training set of 133 patients and
tested on an external dataset of 107 patients had an AUC of 0.71 in both the test and
validation datasets. The features selected within their cox regression model were GLCM
sum squares, maximum 3D diameter and GLDM grey level variance, GLSZM grey level
non-uniformity normalised.

In our study both lasso and elasticnet methods failed to produce a model that achieved
mean training and validation scores within 0.05 of each other. Even when allowing for
a more generous difference between the training and validation scores, mean validation
scores remained below 0.65. This 0.05 cut-off is arbitrary and was applied to try and
reduce the impact of overfitting on the dataset and allow selection of a potentially more
generalisable model. Despite this, there is still a risk that both training and validation
datasets are overfitted and the model would need external validation on an external dataset.

One of the largest published studies by Decazes et al. in 215 DLBCL patients, explored
use of tumour volume surface ratio and total tumour surface as outcome predictors for
5-year progression free survival (PFS), but found that MTV outperformed both features
with MTV having an AUC of 0.67 [12]. This AUC for MTV is similar to the findings in our
study, with the mean validation AUC for MTV prediction of 2-EFS being 0.66 for the 4.0 SUV
threshold and 0.67 for the 1.5 times liver threshold segmentation techniques, respectively.
Although, there is growing interest in the use of MTV as an imaging biomarker, Adams et al.
reported, in a study of 73 DLBCL patients, that the prognostic ability of MTV does not add
anything to the prognostic ability of the clinical scoring system National Comprehensive
Cancer Network-International Prognostic Index (NCCN-IPI) [33]. Unfortunately, due to
missing clinical data it was not possible to compare IPI performance in our patient cohort.
However, this does highlight the potential impact of confounders on the generalisability of
predictive models. Although, causality is not generally considered in predictive modelling,
its use in future models could allow for greater transparency of a model. The issues of
generalisability may be compounded by learnt biases towards groups of patients in the
training process.

The TRIPOD checklist was completed to increase transparency of model
development [34,35]. However, there are limitations to our study including its retro-
spective nature and uncertainty surrounding the exact timing and recording of recurrence.
Use of 2-EFS partially mitigates against this by allowing a wider window for the relapse to
be recorded, however, it does mean that data which could have been included in a time to
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survival type model is lost. 2-EFS was chosen as the majority of patients relapse within
the first 2 years. Time to event ML models could be used in future studies to reduce the
need to exclude data. The lesions were not re-segmented as part of the study, and therefore,
calculations of inter or intra-reliability, as well as robustness of the features have not been
performed. ComBat harmonization was used to help mitigate against scanner variation
in the extracted feature extraction. However, this limits the ability to apply this model
prospectively to patients not scanned using a protocol used to train the model. Lack of
clinical data surrounding the IPI and cell of origin (COO) information, meant that these
could not be used as direct comparators to radiomic models created.

5. Conclusions

A combined clinical and PET/CT derived radiomics model using ridge regression
demonstrated the highest mean AUC validation (AUC = 0.75) when predicting 2-EFS in
DLBCL patients treated with R-CHOP, which outperformed a model derived solely from
MTV (AUC = 0.67).
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//www.mdpi.com/article/10.3390/cancers14071711/s1, TRIPOD Checklist: Prediction Model Devel-
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