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Abstract
Objectives Radiomics is a promising avenue in non-invasive characterisation of diffuse glioma. Clinical translation is
hampered by lack of reproducibility across centres and difficulty in standardising image intensity in MRI datasets. The
study aim was to perform a systematic review of different methods of MRI intensity standardisation prior to radiomic
feature extraction.
Methods MEDLINE, EMBASE, and SCOPUS were searched for articles meeting the following eligibility criteria: MRI
radiomic studies where one method of intensity normalisation was compared with another or no normalisation, and original
research concerning patients diagnosed with diffuse gliomas. Using PRISMA criteria, data were extracted from short-listed
studies including number of patients, MRI sequences, validation status, radiomics software, method of segmentation, and
intensity standardisation. QUADAS-2 was used for quality appraisal.
Results After duplicate removal, 741 results were returned from database and reference searches and, from these, 12 papers
were eligible. Due to a lack of common pre-processing and different analyses, a narrative synthesis was sought. Three
different intensity standardisation techniques have been studied: histogram matching (5/12), limiting or rescaling signal
intensity (8/12), and deep learning (1/12)—only two papers compared different methods. From these studies, histogram
matching produced the more reliable features compared to other methods of altering MRI signal intensity.
Conclusion Multiple methods of intensity standardisation have been described in the literature without clear consensus. Further
research that directly compares different methods of intensity standardisation on glioma MRI datasets is required.
Key Points
• Intensity standardisation is a key pre-processing step in the development of robust radiomic signatures to evaluate diffuse
glioma.

• A minority of studies compared the impact of two or more methods.
• Further research is required to directly compare multiple methods of MRI intensity standardisation on glioma datasets.
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Abbreviations
BraTs Brain tumour image segmentation benchmark
CycleGAN Cycle-consistent adversarial network
FLAIR Fluid-attenuated inversion recovery
GBM Glioblastoma
GLCM Grey-level co-occurrence matrices
HSASR Histogram specification with automated

selection of reference frames
HS-GS Histogram specification-grid search
ICC Intraclass correlation coefficient
IDH1 Isocitrate dehydrogenase 1
MGMT - O6-methylguanine-DNA methyltransferase
mpMRI Multiparametric MRI
OS Overall survival
PRISMA Preferred Reporting Items for Systematic

Reviews and Meta-Analysis
QUADAS-2 Quality Assessment of Diagnostic Accuracy

Studies 2
ROI Region of interest
SPM12 Statistical Parametric Mapping 12
T1Gd T1-weighted gadolinium enhanced
T1W T1-weighted
T2W T2-weighted
TCIA The Cancer Imaging Archive
VOI Volume of interest

Introduction

Adult-type diffuse gliomas are a varied group of highly inva-
sive and heterogenous brain tumours (Fig. 1), with an annual
US incidence of 5–6/100,000 and glioblastoma (GBM, the
most aggressive glioma) accounting for nearly 50% [1].
Despite maximal safe resection of enhancing tumour, and ad-
juvant therapy with concomitant temozolomide chemotherapy
and 60 Grey in 30 fractions of radiotherapy, followed by 6
cycles of temozolomide (‘Stupp protocol’), median overall
survival of patients with GBM remains poor at 12–15 months
[2, 3].

MultiparametricMRI (mpMRI), with its excellent soft tissue
contrast, is frequently used to characterise these tumours [4].
Growing interest in using artificial intelligence (AI) to augment
information provided by MRI includes, but is not limited to,
non-invasive prediction of cytogenetic alterations, distinguish-
ing treatment effects from pseudoprogression, and distinguish-
ing infiltrative non-enhancing tumour from oedema [5].

Radiomics is a quantitative analytic method of extracting
mineable data from medical imaging, and machine learning is
typically used to correlate radiomic features and patient-
specific data relating to prognosis and/or outcome [6].
Quantitative assessment of the whole tumour volume and sur-
rounding tissues is attractive in the study of a heterogenous
disease, which is hampering current treatment strategies [5].

Many radiomic studies evaluating types of diffuse glioma aim
to predict prognosis [7], non-invasively diagnose genetic and
molecular changes [8] (which play a key role in diagnosis,
prognosis, and management), and distinguish between treat-
ment effects and tumour progression [9].

Despite its promise, radiomics has largely been limited to
small retrospective proof-of-principle studies, without suffi-
cient evidence to support translation into radiological practice
[10]. MRI-based radiomics is limited by the non-biological,
scanner-dependent variation in image signal intensity
[11–14]. MR intensity does not map easily to a physical tissue
property, in contrast to CT, and shows variation between
timepoints, vendors, magnetic field strengths, and acquisition
settings [15–18]. Radiomic features are highly sensitive to the
values of the signal intensities in the image, and non-
biological alteration must be removed. Therefore, MRI signal
intensity must be standardised, i.e. the range and distribution
of voxel intensity must be similar across patients, prior to
radiomic analysis to ensure that the results are reproducible
[11]. Despite this, there is a lack of consensus as to the optimal
method when characterising diffuse glioma. Although not a
specific diagnosis, diffuse glioma is a useful grouping, as they
often share the same radiomics pipeline and are a commonly
studied group of related tumours [13, 16]. We aim to perform
a systematic review of the literature examining the efficacy of
different MRI intensity standardisation procedures prior to the
extraction of radiomic features in the setting of adult-type
diffuse glioma.

Materials and methods

Search strategy and selection criteria

This systematic review was undertaken according to the
‘Preferred Reporting Items for Systematic Reviews and
Meta-Analysis’ (PRISMA) statement. A search of
MEDLINE, EMBASE, and SCOPUS databases was perform-
ed on 5 October 2021 using the following concepts, linked by
the “AND” operator, including synonymous terms that were
linked with the “OR” operator: (1) MRI, (2) radiomics, (3)
intensity standardisation, and (4) glioma. No limit was placed
on the date, language, location, or type of study. Exclusion
criteria were the following: non-human based, not regarding
adult-type diffuse gliomas, non-original research, non-MR
radiomics, no mention of intensity standardisation, or no as-
sessment of the effect of intensity standardisation (compared
to another method or to no standardisation). After removing
duplicates, articles were screened based on titles and abstract,
and subsequently the full text. References in the included ar-
ticles were manually reviewed. Full search strategy, method-
ology, and PRISMA checklist are available in the supplemen-
tary files.
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Quality assessment

Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) was used to assess the risk of bias [19].
QUADAS-2 was used because the objective was to evaluate
performance of any given intensity standardisation method,
when compared to either no standardisation or another meth-
od. QUADAS-2 assesses four domains: (1) patient
selection—description of how patients were recruited such
as inclusion and exclusion criteria; (2) index test—how the
index test was conducted and interpreted; (3) reference
standard—how the reference test was conducted and
interpreted; and (4) flow and timing—patients that did not
have the index or reference test or were excluded from final
analysis. Each domain was assessed for risk of bias and the
first three domains were also assessed for applicability and
categorised as either low risk, high risk, or unclear. The index

test was taken to be the intensity standardisation method under
investigation, and the reference test was either no
standardisation or an alternative method used as a comparator.
Two reviewers (F.M., K.F.) independently reviewed each
study and any disagreement resolved by consensus.

Results

Search results

After duplicate removal, 741 results were returned from data-
base searches (Fig. 2). Following title and abstract screening,
full-text screening was undertaken for 60 articles. Twelve ar-
ticles meeting the inclusion criteria were included in the re-
view. Two studies by Florez et al [20, 21] were included
separately as one used only radiomic features from a fluid-

Fig. 1 MR imaging in three
different examples of adult-type
diffuse gliomas
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attenuated inversion recovery (FLAIR) sequence [21] and the
other used a radiomics extracted from a combination of MRI
sequences [20], and this may have an impact upon the results
of any intensity standardisation process.

Quality assessment

Risk of bias was assessed for each of the four domains and
applicability assessed for the first three domains outlined
above. Apart from risk of bias in the patient selection domain
and applicability concern for the index test, all other domains
were low risk for all studies (Table 1). Ten studies were
deemed to have unclear risk due to lack of information on
how patients were selected. It was unclear whether institution-
al patients were selected consecutively or randomly or, if pub-
licly available datasets were used, it was unclear whether any
inclusion/exclusion criteria were used to select patients.

For applicability concerns of the index test, two studies
[26, 27] were deemed high risk because it was not possible

to isolate the effects of standardisation from other pre-pro-
cessing. Two studies [24, 30] were low risk in all domains.
Two studies by Florez et al [20, 21] also included patients
with meningioma, but were not thought to be at risk of bias
or an applicability concern as the results for the GBM pa-
tients were presented separately.

Characteristics of included studies

Significant heterogeneity in the pre-processing steps and in
analysis methodology (Table 2) precluded a meta-analysis
and a narrative synthesis is presented.

All studies were retrospective, although two studies [24,
30] utilised prospectively acquired data. Eight included mul-
ticentre data, and for one [27], it was unclear whether data
comprised single or multicentre data. Five studies used a pub-
licly available multicentre dataset from The Cancer Imaging
Archive (TCIA) [29], or competition data from the brain tu-
mour image segmentation benchmark (BraTs) [31] in addition

Fig. 2 PRISMA flowchart
illustrating the study selection for
the systematic review of intensity
normalisation in diffuse glioma
radiomic studies
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to institutional data. One study [27] used only publicly avail-
able data.

The aims of the studies can be divided into two groups:

1. To assess the impact of intensity standardisation on the
robustness and repeatability of radiomic features, and/or

2. To assess the impact of intensity standardisation on a pre-
dictive radiomics model.

Nine studies assessed the impact of intensi ty
standardisation on a predictive model. Five studies assessed
the impact of standardisation on feature robustness (two stud-
ies included both aims). Three groups, Hoebel et al [30], Carré
et al [13], and Orlhac et al [14] used a ‘scan-rescan’method to
test radiomic feature robustness, which involved scanning the
same patient after a short interval at different field strengths
[13, 14] or on the same machine [30]. Two other studies, Um
et al [32] and Reuze et al [26] assessed differences in the
feature distribution between paired scanners or the ability of
a classifier to distinguish patients scanned internally vs exter-
nally [32].

The three main approaches to intensity standardisation can
be categorised as histogram matching, deep-learning, or lim-
iting or rescaling the signal intensities. Most of the included
studies evaluated one method; however, Carré et al [13] and
Hoebel et al [30] used two or more. Further detail on the
approaches is discussed in the upcoming sections.

Histogram matching

Histogram matching involves transforming the signal intensi-
ties of an image to produce a match between the histogram of
the reference and transformed image [25, 33]. The reference

histogram is calculated from mean intensities of training im-
ages, at pre-specified intensity landmarks [33].

Um et al [32] assessed radiomic feature robustness after the
following pre-processing steps: 8-bit rescaling, bias field cor-
rection, histogram matching, and isotropic resampling. A
Random Forest classifier was used to predict whether images
were from internal or external datasets and classification ac-
curacy was measured using the Matthews correlation coeffi-
cient. A value of 1 means perfect prediction and 0 no better
than chance, and therefore no scanner dependency. The value
> 0.2 was taken to mean that images could still retain scanner
dependence. Multiple classes of features were extracted. For
edge features, different filters (Sobel, Laplacian of Gaussian,
Gabor, wavelet) were applied and first-order features extract-
ed. Haralick features were calculated from the grey-level co-
occurrence matrices (GLCM). For baseline images, the
Matthews correlation coefficients were 0.36, 0.22, and 0.39
(measured from the provided bar chart) for Haralick and the
Sobel and Laplacian of Gaussian features, respectively.
Histogram matching significantly decreased these to 0.191,
0.170, and 0.140 respectively (p < 0.01).

Zhao et al [34] used histogram specification-grid search
(HS-GS), and Chen et al [23] used histogram specification
with automated selection of reference frames (HSASR),
which automatically select the training histogram. Zhao et al
compared the predictive ability of standardised compared to
unstandardised images for glioma grading demonstrating an
area under the curve (AUC) of 0.956, 27% higher than that
without standardisation. Using HSASR, Chen et al achieved
0.9934 AUC for grading (AUC 0.8512 without). These were
the highest achieved for glioma grading, although a direct
comparison to other methods of intensity standardisation
would have been helpful in interpreting the results.

Table 1 Summary of the risk of bias and applicability concerns for the 12 studies

Study Risk of bias Applicability concerns

Patient selection Index test Reference standard Flow and timing Patient selection Index test Reference standard

Chen et al 2019 [22] Unclear Low Low Low Low Low Low

Zhao et al 2020 [23] Unclear Low Low Low Low Low Low

Reuze et al 2018 [24] Unclear Low Low Low Low High Low

Um et al 2019 [25] Unclear Low Low Low Low Low Low

Upadhaya et al 2016 [26] Unclear Low Low Low Low High Low

Florez et al 2018 [21] Unclear Low Low Low Low Low Low

Florez et al 2018 [27] Unclear Low Low Low Low Low Low

Hu et al 2021 [28] Unclear Low Low Low Low Low Low

Hoebel et al 2021 [24] Low Low Low Low Low Low Low

Vils et al 2021 [29] Low Low Low Low Low Low Low

Carré et al 2020 [13] Unclear Low Low Low Low Low Low

Orlhac et al 2020 [14] Unclear Low Low Low Low Low Low
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Deep learning

Hu et al [22] describe ‘MIL’ pre-processing and intensity nor-
malisation that corrects: modality incompleteness (M), uneven
intensity distribution (I), and inconsistent layer spacing (L) in
mpMRI datasets of T1-weighted (T1W), T1Gd, T2-weighted
(T2W), and FLAIR sequences. Modality incompleteness is
the absence of MRI sequences (referred to as ‘modalities’),
for example T1Gd. Intensity unevenness is MRI signal inten-
sity variation, and inconsistent layer spacing refers to variation
in slice thickness. Effect of MIL normalisation on accuracy of
radiomics model for glioma grading, for isocitrate dehydroge-
nase 1 (IDH1) prediction (a key genetic marker of adult-type
diffuse glioma that has prognostic and diagnostic qualities),
and on tumour segmentation was assessed. A cycle-consistent
adversarial network (CycleGAN) standardised signal intensi-
ties, and a deep learning network synthesised any missing
MRI sequences using an encoder (a modified U-net) and sep-
arate decoder [22]. Slice thickness was standardised using
interpolation software, Statistical Parametric Mapping 12
(SPM12). AUC 0.693 (95% CI 0.613–0.772) was reported
for unprocessed images, which increased following synthesis
of missing sequences (AUC 0.838, 0.772–0.904), intensity
standardisation (0.704, 0.626–0.783), and layer space normal-
isation (0.716, 0.639–0.793). Combining the three steps pro-
duced the best performing model (0.89, 0.838–0.941), high-
lighting the additive effects of the pre-processing pipeline.

Limiting or rescaling signal intensity

Reuze et al rescaled the signal intensity between 0 and 32767
per patient and concurrently resampled to 0.5 × 0.5 × 0.5 mm3

and assessed the impact on feature robustness on images from
11 MRI scanners [26]. From 31 textural features, 11 were
found to be robust among differing magnetic field strength
post-normalisation (p > 0.05 on Wilcoxon paired test).
Results from intensity standardisation alone were not
presented.

Upadhaya et al assessed the effect of pre-processing steps
on the accuracy of a overall survival (OS) prediction model
[27]. Baseline pre-processing steps included bias field correc-
tion, skull stripping, and registration, with additional spatial
resampling, intensity quantisation, and normalisation.
Intensity normalisation ignored any values outside of the
range: (m-s, m+s). m and s are the mean and standard devia-
tion of the intensity values within the VOI. If the model
utilised additional sequences and pre-processing steps, sensi-
tivity improved from 79 to 93% and specificity from 86 to
93%. The effect of intensity standardisation alone was not
presented.

Florez et al evaluated intensity standardisation on differen-
tiation of tumour volume and oedema in 17 and 20 GBM
patients [20, 21]. A 1–99% normalisation, where the 1st and

99th centiles of the intensity histogram are included [28], was
compared to no normalisation. Normalised T1Gd sequences
produced the best model with an AUC > 0.97 (0.85 without
normalisation) [20]. The performance of normalised T2W im-
ages decreased—AUC of 0.85 (normalised) compared to
AUC 0.91 (without). In a separate study, utilising only
FLAIR, normalisation reduced AUC for discriminating tu-
mour and oedema (AUC without 0.87, AUC with normalisa-
tion 0.84) [21].

Vils et al assessed the impact of linear intensity interpola-
tion in 118 patients with recurrent GBM [24]. Linear intensity
interpolation uses two regions of interests (ROIs) within nor-
mal contralateral white matter and the vitreous body:

intensitynormalized

¼ intensityoriginal
500

intensitywhite matter−intensityeye

þ 800−
500 intensitywhite matter

intensitywhite matter−intensityeye

A radiomic model for prediction of O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation (mo-
lecular marker for treatment response and prognostication)
following normalisation achieved an AUC of 0.673 (95% CI
0.4837–0.8618) on the validation set. Without interpolation,
the model achieved an AUC of 0.660 but could not be
validated.

Orlhac et al assessed the impact of hybridWhiteStripe nor-
malisation on the distribution of features from normal white
matter and tumours in 18 patients with diffuse glioma that had
been scanned and rescanned at different field strengths [14].
WhiteStripe subtracts the mean and divides by the standard
deviation of normal white matter intensity [35]. WhiteStripe
reduced the number of significantly different features in nor-
mal white matter (88 to 69%) and tumour (98 to 60%), high-
lighting considerable remaining scanner dependency.

Comparison of techniques

Carré et al [13] and Hoebel et al [30] both used histogram-
matching and Z-score. Z-score normalisation subtracts the
mean signal intensity from each voxel and divides by the
standard deviation of the ROI [13]. Carré et al also used
WhiteStripe.

Hoebel et al assessed the repeatability, using the intraclass
correlation coefficient (ICC), of radiomic features extracted
from a set of scan-rescan T1Gd and FLAIR images of 48
patients diagnosed with GBM [30]. Z-score and histogram
matching improved repeatability of intensity features on
FLAIR but not T1Gd. Histogram matching improved repeat-
ability of texture features on FLAIR (p = 0.003), whereas Z-
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score did not and neither technique improved the repeatability
of texture features on T1Gd.

Carré et al [13] assessed the impact of intensity normalisa-
tion on feature robustness and the prediction of glioma grad-
ing. Using a scan-rescan dataset of 20 patients with low-grade
glioma, histogram matching was found to produce the highest
number of robust first-order features on both T1Gd and
FLAIR images (ICC and CCC > 0.80, 16 and 8 features out
of 18 respectively). Regarding glioma grading using T1Gd
images, and only robust features from the first scan-rescan
experiment, the average balanced accuracy increased from
0.73 to 0.81, 0.79, and 0.81 for histogram, WhiteStripe, and
Z-score respectively.

Discussion

To be clinically useful, radiomics needs to be validated
[36], with unique challenges when evaluating radiomic pre-
dictive models [37]. For MRI radiomics, a key challenge to
assessing repeatability and reproducibility is to remove the
scanner-dependent signal intensity changes [11]. This re-
view confirms that intensity standardisation improves
radiomic feature repeatability and improves most predictive
models, and therefore that the clinical radiologist needs to
be aware of this crucial step in any radiomics studies or
applications. Variation in methodology precluded the direct
comparison of results across studies and this review has
highlighted potential areas of improvement, which may im-
prove translation of radiomic models into the clinical set-
ting (Table 3).

In two studies [26, 27], the effects of intensity
standardisation were difficult to differentiate from other pre-
processing, and the authors could have reported separately the
impact of different pre-processing steps on feature robustness
or model performance. Hu et al presented all possible combi-
nations of pre-processing steps, with separate AUC results, so
the impact of each step was identifiable.

Only two studies [13, 30] compared more than one in-
tensity technique. Given the number of methods and lack of
consensus, more studies that directly compare techniques
are required. This is important when interpreting the results
of histogram specification studies [23, 34]. The AUC for
grading was the highest reported; however, it is unclear
how this relates to other techniques. A recent analysis
[16] compared multiple intensity standardisation tech-
niques and post-feature extraction correction with
ComBat, a statistical normalisation for batch-effect correc-
tion in genomics that has been applied to radiomics [11,
14]. Intensity standardisation was insufficient to remove
scanner dependency, but ComBat could remove scanner-
dependent information from extracted features [16], similar
to the findings of Orlhac et al [14].

Three studies used scan-rescan data, providing the oppor-
tunity to assess radiomic feature reproducibility on images
from the same patient acquired within a short time delay (i.e.
days between studies). Although a tumour may change micro-
scopically within several days, these radiomic studies assume
that if the imaging appearance remains the same then the
radiomic features ought to as well [13, 14, 30]. Test-retest
data, along with phantom studies [16], and comparison of
radiomic features extracted from normal structures provide a
useful paradigm to test standardisation techniques. Open ac-
cess to such data in a public repository should help further
validate different intensity standardisation approaches.

Limitations to this review include not being able to retrieve
full-text articles for two conference abstracts. Based on the
abstracts, it is unlikely they would have been included. Their
potential omission will have had a limited impact as a narra-
tive synthesis would still have been required. QUADAS-2 is
not specifically designed for assessing the efficacy of MRI
intensity standardisation techniques, but we considered this a
viable method given the absence of a more specific alterna-
tive. The scope of this review was to assess MRI intensity
standardisation in the context of diffuse glioma and there will
have been the inevitable omission of studies of other organs,
brain pathologies, and healthy volunteers.

Table 3 Limitations of the current literature and opportunities for the future

Limitation Opportunity

1. Assessing the effect of multiple preprocessing
steps simultaneously

Effects of preprocessing steps presented independently of others so their effect on the result can be
determined

2. Investigating the effect of only one intensity
standardisation technique

Impact of more than one standardisation method on a predictive model or feature robustness
should be evaluated

3. Lack of scan-rescan data used to test the repeat-
ability of radiomic features

Increased availability of datasets that have rescanned a patient with a diffuse glioma within a short
time interval (i.e. days) in public databases

4. Single-centre studies used to assess
standardisation techniques

Use of multi-centre datasets in assessing the efficacy of standardisation techniques and repeat-
ability of radiomic features
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Conclusion

No clear consensus has emerged as to which approach is the
most reliable standardisation approach. In order to translate
radiomics to the clinic, studies should assess the effects of
intensity standardisation on their results and the impact of
any intensity standardisation step should be clearly reported.
Collation and sharing of scan-rescan datasets would facilitate
production of radiomic models in diffuse glioma and greatly
improve the development of clinically translatable models.
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