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ABSTRACT

Several solutions have been proposed in the literature to maximise the harvested ocean energy, but
only a few consider the overall efficiency of the power take-off system. The fundamental problem of
incorporating the power take-off system efficiency is that it leads to a nonlinear and non-convex opti-
mal control problem. The main disadvantage of the available solutions is that none solve the optimal
control problem in real-time. This paper presents a nonlinear model predictive control (NMPC) approach
based on the real-time iteration (RTI) scheme to incorporate the power take-off system’s efficiency when
solving the optimal control problem at each time step in a control law aimed at maximising the energy
extracted. The second contribution of this paper is the derivation of a condensing algorithm O(N2) for
‘output-only’ cost functions required to improve computational efficiency. Finally, the RTI-NMPC approach
is tested using a scaled model of the Wavestar design, demonstrating the benefit of this new control
formulation.
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1. Introduction

One of several challenges that wave energy technologies con-
front is their inability to produce electricity at a cost comparable
with other grid-scale generation technologies like natural gas
and wind (Coe et al., 2021, may). Several studies have iden-
tified the refining of advanced control strategies as a way to
improve energy capture efficiency significantly and, as a result,
give a clear path to increase the economic viability for wave
energy converters (WEC) (Bull et al., 2016; Chang et al., 2018;
Cordonnier et al., 2015; Neary et al., 2014).

Control strategies for wave energy converters can be divided
into two groups based on the type of power take-off (PTO)
utilised. Suppose the PTO only allows unidirectional energy
flow from the ocean to the grid. In that case, the only control
option is passive control, which produces a force that opposes
the movement of the point absorber. Resistive control (Maria-
Arenas et al., 2019; Sanchez et al., 2015; Wang et al., 2018)
belongs to this group. Conversely, suppose the PTO allows
bidirectional energy flow from the ocean to the grid and vice
versa. In that case, active control is possible, for which reac-
tive control (Maria-Arenas et al., 2019; Wang et al., 2018) can
be mentioned as an example.

In theory, reactive control may be optimal by bringing the
system to resonance, allowing for the theoretical maximum
wave energy capture predicted by linear wave theory in uncon-
strained amplitude conditions (Falnes, 2002). However, it has
many challenges and disadvantages: the optimal reactive control
is anti-causal (requiring future prediction of the incident wave
and wave excitation force (Falnes, 2002)), but also it involves
dealing with large reactive power flux (as bringing the system to
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resonance requires cancelling the reactive terms in the equation
of motion) (Genest et al., 2014). On the other hand, reactive
power consists of a back-and-forth energy exchange between
the PTO and the oscillation system that contributes nothing
to the average delivered power. The energy loss due to dissi-
pative processes inherent in back-and-forth energy exchange
is a crucial disadvantage of reactive control (Falcão & Hen-
riques, 2015, august). This paper offers an advanced control
strategy to significantly improve energy capture efficiency of the
system.

In Strager et al. (2014, june), the performance of a reac-
tively controlled single point-absorber WEC with a nonideally
efficient PTO was studied for regular waves and the perfor-
mance of regular and irregular waves was studied in Sanchez
et al. (2015). For regular and irregular waves, partial reactive
control was suggested (Genest et al., 2014) as a causal subop-
timal control approach for a heaving single-body wave energy
converter, along with studies of the impact of the actuators’
efficiency in the annual mean absorbed power.

In Tona et al. (2015), a model predictive control (MPC)
approach was described that explicitly considers the efficiency
of the PTO system, with the control objective being to har-
vest the maximum amount of energy/mean power from the
WEC. However this optimal control scenario, similarly to the
one presented by the same author in Tona et al. (2019, 2020,
august), can not be used for real-time implementation with
small sampling times (Tp ≤ 50ms) since they are based on a
offline solution (Tona et al., 2020, august). Similarly, the MPC
algorithm presented in Tona et al. (2019, 2020, august) uses a
discrete objective function thatweights the instantaneous power
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value over the prediction horizon. The weightings are deter-
mined offline using an iterative optimisation approach based on
repeated simulations of the state space model over a set of sea
states (a Nelder-Mead optimisation algorithm is used).

The fundamental problem of incorporating the PTO system
efficiency is that it leads to a nonlinear and non-convex opti-
mal control problem. The main disadvantage of the available
solutions is that none solve the optimal control problem in real-
time. This paper presents a nonlinear model predictive control
(NMPC) approach based on the real-time iteration (RTI) (Diehl
et al., 2005) scheme. The proposed controller incorporates the
PTO system’s efficiency when solving the optimal control prob-
lem at each time step, in a control law aimed to maximise the
energy extracted from the ocean waves.

The controller proposed in this study differentiates fromoth-
ers in that it does not require offline computations to address the
nonlinear programming problem that arises from incorporating
the PTO’s efficiency into the optimal control problem. Our con-
troller technique is unique in that it can adapt to changes in the
sea condition to provide the best possible solution.

The control strategy proposed in this study is based on
the assumption that the incident wave force (or incident wave
moment in this case) for the current time step and a defined
prediction horizon window is known at each sampling step.
Another assumption is that the PTO system’s efficiency η

remains constant during the simulation time. That is, it does
not vary as the actuator heats up. The dynamics of actuators
are not considered in this work. It is considered much faster
than WEC dynamics, and these do not appear to have a signifi-
cant impact on electrical power production (Tona et al., 2020,
august). Finally, it is assumed that the float motion can be
described using a simple model derived from linear wave the-
ory. Nonetheless, a critical nonlinearity in the OCP arises from
the inclusion of the PTO system’s efficiency of the instantaneous
power at each time step of the prediction horizon window.

The second contribution of this paper is the derivation of
the condensing algorithmO(N2) (Andersson, 2013) for ‘output-
only’ cost functions which allow some important computa-
tional efficiency gains required for real-time implementation.
The overall RTI-NMPC strategy is presented and exempli-
fied through computer simulations. The code and results pre-
sented in this paper are available through a Code Ocean cap-
sule (Guerrero-Fernández & González-Villarreal, 2021).

The remainder of this paper is organised as follows: Section 2
presents the time-domain modelling of the wave energy con-
verter used in this work. Section 3 formulates the general
objective of any energy maximising control strategy. A detailed
description of the modelling, prediction, optimisation and RTI
to implement the proposed RTI-NMPC scheme is presented
in Section 4. The results of the simulations are presented in
Section 5. Finally, the Section 6 contains conclusions, sum-
marises the paper’s contribution, and describes future work.

2. Wave energy converter modelling

TheWEC selected for testing the control algorithm proposed in
the present paper is a scaled model of the Wavestar device used
in the WEC control competition (Ringwood et al., 2017). The
development of the model is kept to a minimum in this Section

Figure 1. Diagram of the Wavestar WEC system.

for brevity. A semi-sphere serves as a floater in thismodel, and it
is attached to a rotating arm, which is hinged at a fixed reference
point A (Figure 1). For the float and linkage arm about point A,
the device’s dynamics can be reduced to an analogous equation-
of-motion:

(J + J∞)θ̈ (t) = −Khsθ(t) − bvθ̇ (t) − Mr(t) − Mexc(t)

+ Mpto(t) (1a)

ṙ(t) = Arr(t) + Br θ̇ (t) (1b)

Mr(t) = Crr(t) + Dr θ̇ (t) (1c)

where:

• θ represents the angular displacement of the armwith respect
to the equilibrium position, θ̇ and θ̈ represent the angular
velocity and angular acceleration of the arm.

• J is the total mass moment of inertia of the float and pivot
arm.

• J∞ is the added mass moment of the inertia.
• Khs is the hydrostatic coefficient,
• bv is a linear damping coefficient (Tom et al., 2018).
• Mr is the radiation moment.
• Mexc is the excitation moment due to the incident wave.
• Mpto is the PTO moment (input to the system).
• (Ar ,Br ,Cr ,Dr ,) are the state space matrices used to approxi-

mate the radiationmomentMr avoiding the direct computa-
tion of the convolution integral in time-domain simulation.
The state vector r(t) have no physical meaning, but still
contain information on the condition of the surrounding
fluid (Cretel et al., 2010).
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Remark 2.1: It is crucial to recall that all of the parameters and
variables in Equation (1a) are specified w.r.t. the rotating point
A. For more details of the model development, the interested
reader is referred to Tom, Ruehl, and Ferri (2018) and Tona
et al. (2020, august).

3. Problem formulation

3.1 General objective

The main objective of a PTO system controller is to transfer as
much energy as possible from the waves to the grid for a broad
range of sea states. The electrical energy Ee absorbed by the grid
over a time horizon T, is defined as:

Ee = −

∫ t+T

t
Pe(τ ) dτ = −

∫ t+T

t
Ŵ(τ)Pm(τ ) dτ (2)

where Pe denotes the electrical power delivered to the grid, Pm
the instantaneous hydromechanical power absorbed by the PTO
system, Ŵ the overall efficiency of the PTO system, and τ is the
variable of integration.

The negative sign in Equation (2) is because the energy
is drawn from the WEC and thus, the maximisation of the
energy absorbed corresponds to a minimisation of the control
objective (Nguyen et al., 2016, june).

The instantaneous hydromechanical absorbed power is given
by:

Pm(t) = Mpto(t)θ̇ (t) (3)

where Mpto is the PTO moment and θ̇ represents the angular
velocity of the arm. To use standard nomenclature, Mpto(tk) is
replaced by uk.

Substituting (3) in (2) the optimal control problem can be
formulated as:

min
u

− Ee =

∫ t+T

t
Ŵ(τ)u(τ )θ̇ (τ ) dτ (4a)

s.t. ẋ(t) = f (x, u,w, t) (4b)

Umin ≤ u(t) ≤ Umax (4c)

The equivalent discrete-time optimisation problem is given
by:

min
ui

J =

Np
∑

i=1

γk+iuk+i−1θ̇k+i (5a)

s.t. xk+1 = f (xk, uk,wk) (5b)

Umin ≤ uk ≤ Umax (5c)

where Np is the prediction horizon, Equation (5b) represents

the WEC dynamics, with the states x = [θ θ̇ r]T, uk the con-
trol input, wk the discrete-time value for the excitation moment
Mexc, and γk the specific value for the PTO efficiency at time
instant tk; that is, Ŵ(tk) = γk.

Remark 3.1: Equation (5a) considers the velocity θ̇ and the
control input u at different time steps (k+ i and k+ i−1). This
is chosen to ensure causality of the solution as discussed in Li
and Belmont (2014).

3.2 Power take-off efficiency

One of the common control policies proposed to increase the
amount of energy extracted from the ocean waves is reactive
control. The main idea of this strategy is to match the intrinsic
impedance of the system by supplying power to the PTO system
for some parts of the sinusoidal cycle (Ringwood et al., 2014).
One of the main limitations of reactive control is that it creates
a particular demand on PTO systems to allow for bi-directional
power flow. Still, it can yield energy losses if it is not tuned cor-
rectly (Li & Belmont, 2014; Mérigaud & Tona, 2020; Ringwood
et al., 2014).

PTO systems are not perfect in real-world applications,
which means that the electrical power Pe is never equal to the
absorbed mechanical power Pm. In other words, because of the
losses that occur throughout the conversion stage, the electrical
power available at the end of the mechanical-to-electrical con-
version stage is less than the absorbed mechanical power, i.e.
0 ≤ Pe ≤ Pm. If a reactive control strategy is adopted, at cer-
tain times, the PTO system must return some electric power
from the grid back into the ocean (Pm ≤ 0). In those instants,
and because of the losses in the conversion stages, the electrical
power provided by the grid to the PTO system must be larger
than |Pm|, i.e. Pe ≤ Pm ≤ 0 (Mérigaud & Tona, 2020).

Given that the efficiency of the PTO system varies depend-
ing on the direction of the energy flow (float-to-grid or grid-
to-float directions), the energy-maximising control strategy
must consider the efficiency when solving the OCP (Ander-
sen et al., 2015). Other studies have discussed the impact of
nonideal PTO efficiency on WEC control (Bacelli et al., 2015;
Falcão & Henriques, 2015, august; Genest et al., 2014; Méri-
gaud & Tona, 2020; Sanchez et al., 2015; Tedeschi et al., 2011;
Tom et al., 2019; Tona et al., 2015, 2019), with the main draw-
back that none of them solves the OCP related to the nonlinear
output equation of the model in real-time (see Section 4.1,
Equation (8)), which is the main contribution of this paper.

The PTO system efficiency can be modelled by a mod-
ification of a step function, having two different values for
the efficiency depending if the PTO system is working as
motoring (grid-to-float) or as generator (float-to-grid). Using
this modified-step function model, the instantaneous power
extracted is given by:

Pe(t) = Ŵ(t)Pm(t),

{

Ŵ(t) = µgen if Pm(t) ≥ 0

Ŵ(t) = µmot if Pm(t) < 0
(6)

where µgen is the global efficiency of the PTO system when it
delivers energy to the grid andµmot is the global efficiencywhen
the PTO system consumes energy from the grid.

4. Nonlinear model predictive control

Because of its ability to explicitly handle constraints and non-
linear dynamics that define the system of interest, NMPC is
becoming increasingly popular for real-time optimal control
solutions (Diehl et al., 2005). The following subsections are
intended to offer a quick overview of each of the steps/phases
involved in developing NMPC.

Let us first define some notations used in the following sub-
sections. The upper bar (x̄) represents a nominal-guessed point
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which is considered a ‘desirable-optimal’ trajectory to be used
by the NMPC framework to optimise and improve the solution
iteratively. Similarly, the hat (x̂) represents the predicted, whilst
the variable without any additional notation will be reserved for
the real/simulated value. Also, the underbar notation for vectors
(x)will be dropped for the sake of readability and to simplify the
notation of the following equations.

4.1 Modelling

In this paper, we consider a general ordinary differential
equation describing the system evolution in continuous time of
a generic wave energy converter on a time interval [0,T] of the
form:

ẋ(t) = f (x(t), u(t),w(t), t), t ∈ [0,T] (7a)

y(t) = g(x(t), u(t),w(t), t) (7b)

where t ∈ R is the time, u(t) ∈ R
nu are the control input, x(t) ∈

R
nx is the state, w(t) ∈ R

nw is wave excitation input, and y(t) ∈

R
ny . The function f is a map from states, control input, wave

input, and time to the rate of change of the state, i.e. f : R
nx ×

R
nu × R

nw × [0,T] �→ R
nx . Similar definition for g. Also it is

assume that f and g are continuous with respect to x and t.
The prediction and optimisation presented in Sections 4.2

and 4.3 respectively, are formulated in discrete time, therefore
to translate the continuous-time model into the discrete-time
model, a discretisation by integration is implemented (Gonzá
lez-Villarreal, 2021). For this study, we decided to use the
explicit 4th order Runge-Kutta method.

In the present study, the output function g(xk, uk,wk) is
selected as follows:

yk = gk =

[

θ̇k
γkuk−1

]

(8)

On the other hand, the PTO efficiency model presented in
Equation (6) suffers from a discontinuity between the two
cases Pm(t) ≥ 0 and Pm(t) < 0. In gradient-based optimisa-
tion approaches, such a discontinuous function is undesirable.
Therefore, a smoothed approximation to Equation (6), contin-
uous in Pm(t) = 0, must be implemented to prevent problems
with the optimisation technique.

A modified-hyperbolic tangent function is used to approx-
imate Equation (6) in Mérigaud and Tona (2020) and Tona
et al. (2015). Although a sigmoid function or another comparable
activation function may be used to approximate this sort of dis-
continuous function, the approximation using tanh is preserved
in this study and is given by:

Ŵapprox(t) = α + β tanh(ϕPm(t)) (9)

where α is an offset, β is a scaling factor, and ϕ is a real positive
parameter that determines the accuracy of the approximation.
Defined as α = (µmot + µgent)/2, and β = (µmot − µgent)/2.

4.2 Prediction

The derivation of the predictionmodel discussed in this Section
follows a similar pattern to that presented inGonzález-Villarreal

and Rossiter (2020b) and is presented here to allow the con-
tents of this paper to be self-contained. Using a first order
multivariable Taylor series expansion, the linearised model for
Equation (7a) at time step k, is given by:

x̂k+1 = x̄k+1 + Akδx̂k + Bkδûk + Bw,kδŵk (10)

where δx̂k = x̂k − x̄k, δûk = ûk − ūk, and δŵk = ŵk − w̄k are
the deviations of the state, control input and wave excitation
moment from their nominal points (x̄k, ūk, w̄k) at time step
t = k respectively, and Ak, Bk, and Bw,k are the partial deriva-
tives w.r.t. the states, control input, and wave excitation input
moment, which will be defined shortly.

The wave excitation moment deviation δŵk requires spe-
cial consideration at this stage. The approach used in this work
assumes that the wave excitation moment at the current time
and for a specific time horizon is known at each time step.
Therefore, the nominal and predicted trajectory for the wave
excitation moment is the same at each time step, i.e. δŵk =

0 for all k, and thus the following derivation does not take
this term into account. But practical implementation could
take deviations into account, which could emerge consider-
ing a correction-estimation of the predicted wave during the
feedback phase.

Ak =
∂f (x,u,w)

∂x

∣
∣
∣ x̄k
ūk
w̄k

Bk =
∂f (x,u,w)

∂u

∣
∣
∣ x̄k
ūk
w̄k

x̄k+1 = f (x̄k, ūk, w̄k)

The deviation δxk+1 = xk+1 − x̄k+1 at time step t = k+ 1 can
be approximated by:

δx̂k+1 = Akδx̂k + Bkδûk (11)

Given that the nominal point x̄k+1 and the linearisation matri-
ces Ak,Bk are parametrically dependent on x̄k, ūk, w̄k, and that
the value for xk and w̄k are already known at a given sampling
time t = k (either by measurements or by state estimation), the
value for x̄k+1 can only be computed if the value for the optimal
control input ūk is known. Similar for x̄k+2, for which the value
of ūk+1 is needed.

If values for the future optimal-nominal input trajectory Ū =

[ūTk , ū
T
k+1, . . . , ū

T
k+Np−1]

T are assumed or guessed, the projected

nominal state trajectory X̄ = [x̄Tk+1, x̄
T
k+2, . . . , x̄

T
k+Np

]T and the

linearisation matrices Ak,Bk can be computed for future time
steps t = k + 1, k + 2, . . . , k + Np, where Np is known as the
prediction horizon. A typical strategy to guess the nominal input
trajectory Ū (no necessarily the optimum) is to simulate the
system in free response, i.e. Ū = [00, . . . , 0Np−1] for k = 0, the
system is linearised around the resulting state trajectory, and the
optimisation improves the initial guess at every iteration using
a Newton-type framework (Diehl et al., 2005; Gros et al., 2016).
This technique is often referred as single-shooting. Other tech-
niques such as multiple shooting and collocation points can also
be used with the proposed approach (Quirynen et al., 2015).
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After obtaining X̄ with Ū, Equation (11) can be shifted
forward:

δx̂k+2 = Ak+1δx̂k+1 + Bk+1δûk+1 (12)

Substituting Equation (11) into Equation (12) yields:

δx̂k+2 = Ak+1(Akδx̂k + Bkδûk) + Bk+1δûk+1 (13)

By recursively repeating the preceding procedure for Np steps
and considering just the system output (Equation (8)), the pre-
dicted deviations from the nominal output trajectory may be
expressed in a matrix form by:

δŶ = Gyδxk + HyδÛ (14)

where δŶ = Ŷ − Ȳ = [δyTk+1, δyTk+2, . . . , δyTk+Np
]T are the out-

put deviations, δÛ = Û − Ū = [δûTk , δûTk+1, . . . , δûTk+Np−1]
T

are the control input deviations. The matrices Gy and Hy are
given by:

Gy =

⎡

⎢
⎢
⎢
⎣

C1A0

C2A1A0

...
CNpANp−1 · · ·A1A0

⎤

⎥
⎥
⎥
⎦

(15)

Hy =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1B0 0 · · · 0

C2A1B0 C2B1 · · ·
...

C3A2A1B0 C3A2B1
. . . 0

...
...

. . .
...

CNpANp−1 · · ·A1B0 CNpANp−1 · · ·A2B1 · · · CNpBNp−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)
The dimensions for thesematrices areGy = [Np ny × nx],Hy =

[Np ny × Np nu], and Ck is the partial derivative of Equation (8)
w.r.t. nominal state, evaluated at the specific time step t = k, and
is given by:

Ck =
∂g(x, u,w)

∂x

∣
∣
∣
∣ x̄k
ūk
w̄k

In addition, the matrix 0 represents a matrix of zeros with the
same dimensions as the matrix CkBk.

4.3 Optimisation

Following the definition of the prediction models, the cost
function described in Equation (5a) can be recast as follows:

J = 1
2 Ŷ

TQŶ + 1
2δÛ

TRδÛ (17)

where thematrix R is a positive definite matrix with dimensions
[Np nu × Np nu] and constant elements over its diagonal. Q is
selected as a block diagonal matrix with dimensions [Np nu ×

Np nu] and inner matrices qi used to compute the product θ̇k ×

γkuk−1 as defined in Guerrero-Fernández et al. (2020).

Q =

⎡

⎢
⎢
⎢
⎢
⎣

q1 0 · · · 0

0 q2
. . .

...
...

. . .
. . . 0

0 · · · 0 qNp

⎤

⎥
⎥
⎥
⎥
⎦

qi =

[

0 1
1 0

]

∀ i = [1,Np]
(18)

The reader may have observed that, in addition to the con-
densed format of (17), the cost differs from (5a) in that it
includes an additional term that penalises the input deviation.
The input deviation term is included for two reasons: first, it
smooths the control signal, making the requirement for the
actuator’s response limit less stringent, and second, according
to Ringwood et al. (2014), Li and Belmont (2014), Mérigaud
and Tona (2020) and Bacelli and Coe (2021), a reactive con-
trol strategy with a cost function based solely onmaximising the
extracted energy can result in overall negative energy absorbed,
implying that the system is losing energy rather than absorbing
energy from the waves.

Finally, the standard quadratic programming (QP) formula-
tion is obtained by substituting the linearised output prediction
Equation (14) in Equation (17), grouping similar termsw.r.t. the
decision variable δÛ, and omitting any constant terms in the
cost function:

J = 1
2δÛ

TEδÛ + δÛT f s.t. MδÛ ≤ ρ (19a)

E = HT
y QHy + R (19b)

f = HT
y Q[Ȳ + Gyδxk] (19c)

where E ∈ R
Npnu×Npnu is a symmetric matrix known as the hes-

sian and f ∈ R
Npnu is a column vector usually referred as the

linear term;M ∈ R
2Npnu×Npnu is the constraints matrix and ρ ∈

R
2Npnu is the constraints vector, defined as:

M =

[

I
−I

]

ρ =

[

Umax − Ū
−(Umin − Ū)

]

(20)

Here, the matrix M and the vector ρ are defined considering
only constraints in the control input. If constraints for any states
are required,M and ρ must be slightly reformulated. The reader
may have also noticed that Gy and Hy, therefore E and f, are
time-dependent, which is one of the main reasons why NMPC
is computationally expensive.

After definingE, f,M, andρ, theOCP can be solved using any
QP solver, such as Matlab’s quadprog function, qpOASES (Fer-
reau et al., 2008), and so on. In this study, qpOASES was used.
Once the QP problem has been solved, the new control input
sequence is computed, recalling that Û = Ū + δU. Only the
first input is applied to the system, and the procedure is repeated
at the next time step, which is known as the receding horizon
scheme (González-Villarreal & Rossiter, 2020a).

4.4 Real-time iterations scheme

In this Section, we recall the RTI scheme first introduced
by Diehl et al. (2005). A fully converged NMPC should
ideally re-linearise the predictions and thus cost function
Equation (19a) until no deviations are necessary, i.e. δÛ =
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0 (González-Villarreal & Rossiter, 2020a). is not computation-
ally tractable in real-time applications since one must provide a
solution at each time step under strict time constraints and avoid
solving a problem that is just ‘getting older’ (Gros et al., 2016).

TheRTI exploits the fact thatNMPC is required to solve opti-
misations closely related from one-time step to the next, which
has proven to be a very successful and popular method of tack-
ling the problem at hand. The RTI scheme is summarised in the
following subsections.

4.4.1 Initial value embedding

Choosing an appropriate initial estimate for Û optimal, denoted
as Û∗, is critical for fast and reliable convergence of the sequen-
tial quadratic programming (SQP) approach. It can help avoid
a premature exit from the SQP algorithm with an infeasible
solution, but also it allows for complete Newton steps in the
SQP, which yields a fast convergence rate (Gros et al., 2016).
To facilitate the estimation, the previous optimal input trajec-
tory is utilised in a shifted version to hot-start the solution at
the following sampling time, generally by duplicating the last
value. In the case of active-set-based SQP, the Lagrange multi-
pliers λ, linked to the optimisation constraints, may also be used
to hot-start the QP in a shifted version (González-Villarreal
& Rossiter, 2020b).

4.4.2 Single sequential quadratic programming iteration

One of the most efficient approaches to handle nonlinear
programming (NLP) problems is sequential quadratic pro-
gramming (SQP) (Nocedal, 2006). In the SQP approach, the
NLP is sequentially approximated by QPs, delivering New-
ton directions for performing steps towards the solution start-
ing from the available guess. Iterations are performed until
convergence is reached, taking (not necessarily full) Newton
steps (Gros et al., 2016). However, within the RTI scheme, only
one iteration of SQP is performed, given that the optimisation
is ‘warn-started’ from the prior solution (González-Villarreal
& Rossiter, 2020b).

4.4.3 Computation separation

The separation of the computation is perhaps the essential
aspect of the RTI scheme. It divides the calculations into prepa-
ration and feedback phases. A timing diagram that illustrates
this can be seen in Gros et al. (2016).

• Preparation phase: It uses the last applied input trajectory

uk−1 to predict the state ˆ̄xk | k−1, which is then used to lin-
earise and prepare a QP to be later solved in the feedback
phase.

• Feedback phase: as soon as the state xk becomes available,

the state deviation δxk = xk − ˆ̄xk | k−1 is used to complete

the calculation of f, ρ and the optimal correction δÛ∗ to the
current trajectory Û.

4.5 Efficient algorithmO(N2) to compute the hessian E

Because of its dimensions and time-varying nature, the hessian
E is one of themost computationally expensive operations of the
OCPmentioned above. Fortunately, the underlying structure of
thematrixHy allows the implementation of the so-calledO(N2)

condensing algorithm, initially presented in Andersson (2013)
and re-derived inGonzález-Villarreal (2021). It provides an effi-
cient calculation of the hessian termHT

y QHy via a recursive-like
operation that takes advantage of the block triangular struc-
ture of matrix Hy to avoid the zero terms computations, as
well as any repeated terms that may result from the direct cal-
culation. However, the condensing algorithm O(N2) presented
in the preceding studies was derived for quadratic optimisa-
tions considering states/inputs and state-input costs, whereas,
for the formulation presented in this paper, an algorithm for
‘output-only’ cost functions is required.

For the sake of simplicity, the algorithm is derived here
considering the resulting hessian with a short horizon of
Np = 3.

E =

⎡

⎣

C1B0 0 0
C2A1B0 C2B1 0

C3A2A1B0 C3A2B1 C3B2

⎤

⎦

T

︸ ︷︷ ︸

Hy

⎡

⎣

q1 0 0
0 q2 0
0 0 q3

⎤

⎦

︸ ︷︷ ︸

Q

⎡

⎣

C1B0 0 0
C2A1B0 C2B1 0

C3A2A1B0 C3A2B1 C3B2

⎤

⎦

︸ ︷︷ ︸

Hy

E =

⎡

⎣

E1,1 E1,2 E1,3
E2,1 E2,2 E2,3
E3,1 E3,2 E3,3

⎤

⎦

One can see that a good starting point towards computing the
hessian is the multiplication of QHy. The resulting matrix S is
given by:

S =

⎡

⎣

s1,1 0 0
s2,1 s2,2 0
s3,1 s3,2 s2,3

⎤

⎦ =

⎡

⎣

q1C1B0 0 0
q2C2A1B0 q2C2B1 0

q3C3A2A1B0 q3C3A2B1 q3C3B2

⎤

⎦

(21)
Separating the hessian column-wise, the first column of it is
computed as follows:

⎡

⎣

E1,1
E2,1
E3,1

⎤

⎦ =

⎡

⎣

BT0C
T
1 BT0A

T
1C

T
2 BT0A

T
1A

T
2C

T
3

0 BT1C
T
2 BT1A

T
2C

T
3

0 0 BT2C
T
3

⎤

⎦

⎡

⎣

s1,1
s2,1
s3,1

⎤

⎦ (22)

The algorithm is based on iteratively reusing terms that were
computed previously. Starting from the last term E3,1:

E3,1 = BT2C
T
3 s3,1 �→ Z3,1 = CT

3 s3,1

E3,1 = BT2 Z3,1

The next term E2,1 is computed as:

E2,1 = BT1C
T
2 s2,1 + BT1A

T
2C

T
3 s3,1

Reusing the term Z3,1 computed previously:

E2,1 = BT1 (CT
2 s2,1 + AT

2 Z3,1) �→ Z2,1 = CT
2 s2,1 + AT

2 Z3,1

E2,1 = BT1 Z2,1
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Using the same logic, the last term E1,1 can be calculated as
function of Z2,1, and hence of Z3,1:

E1,1 = BT0 (CT
1 s1,1 + AT

1 Z2,1) �→ Z1,1 = CT
1 s1,1 + AT

1 Z2,1

E1,1 = BT0 Z1,1

Thus, an obvious pattern can be seen where the hessian can be
calculated by recursively computing the terms with an expres-
sion like Zk,j = CT

k sk,j + AT
j Zk+1,j for k, j ∈ [1, . . . ,Np × nu],

and then calculating the hessian term Ek,j = BTk−1Zk,j. Keeping
in mind that in the case where k = j, the term R(k, j) needs
to be added to Ek,j, i.e. to the diagonal of the hessian, see
Equation (19b).

Because the hessian is symmetric (Nocedal, 2006), the final
algorithm only calculates the lower triangular terms and dupli-
cates the rest of the terms.

Finally, this approach can also be used to re-derive the
algorithmO(N) (Andersson, 2013), which can be used to calcu-
late the linear term f, see Equation (19c), for ‘output-only’ cost
functions.

5. Numerical results

In this section, numerical results of the proposed control strat-
egy implemented on the benchmark scale model of the Waves-
tar (Ringwood et al., 2017) are presented.

5.1 Model parameters

The model parameters used in this study are summarised in
Table 1.

5.2 Wave conditions

The wave climate is characterised by the significant wave height
Hm0, the peak wave period Tp and the wave direction. A series
of three unidirectional sea states, generated using the JON-
SWAP spectrum, are used for this study. The spectrum param-
eters are given in Table 2, based on the sea states used in the
WECCCOMP (Tona et al., 2019).

5.3 Simulation and control parameters

Given that the main goal of this work is to evaluate the RTI-
NMPC proposed for WECs, all simulation trials were done in
the nominal case, i.e. no noise or uncertainty was included. It

Table 1. Model parameters for the scale model of the Wavestar device, taken
from Tona et al. (2019) and Ringwood et al. (2017).

Hydrodynamic parameters

Inertia of arm and float J 1.04 kgm2

Added inertia J∞ 0.4805 kgm2

Hydrostatic stiffness coefficient Khs 92.33 Nm rad−1

Rotational linear damping bv 1.80 Nm rad−1 s−1

Radiation moment impulse response realisation

Ar =

[

−13.59 −13.35
8.00 0.00

]

Br

[

8.0
0.0

]

Cr =
[

4.739 0.5
]

Dr = −0.1586

Table 2. Parameters for wave generation using JONSWAP spectrum. Significant
wave height Hm0 , peak period Tp and peak enhancement factor γ .

Namea Hm0 [m] Tp [s] γ [-] Duration [s]

SS4 0.0208 0.988 3.3 98.8
SS5 0.0625 1.412 3.3 141.2
SS6 0.1042 1.836 3.3 183.6

aNames are given to have consistency with the names given in the WECC-
COMP (Tona et al., 2019).

Table 3. Simulation and control tuning parameters

Parameter Value

Simulation time [s] 100 × Tp
Control sampling time [ms] 10
Prediction horizon [samples]⊛ Round(2 × Tp/dt, 5)
µ⋆
gen 0.7

µ⋆
mot 0.7−1

ϕ† 1000
Control limit [Nm] ±12

⋆Suggested by Ringwood et al. (2017).
†Used in PTO efficiency function approximation.
⊛Operator Round(number,multiple) returns a number rounded to the desired
multiple.

was also assumed that the vector containing the future wave
excitation moment is known throughout the prediction hori-
zon.

Regarding the prediction horizon, research on wave exci-
tation force prediction suggests that prediction strategies can
predict wave excitation force for swell waves extremely accu-
rately up to two peak wave periods in the future (Fusco & Ring-
wood, 2010). In light of the foregoing, a prediction horizon
equivalent to two peak wave periods (Np = 2 × Tp/dt.) was
chosen for each sea state. Other relevant control tuning param-
eters are summarised in Table 3.

5.4 Results on the amount of energy absorbed

With the idea to have a reference point for each sea state, sim-
ulations were carried out using NMPC with an efficiency of
100%. This will give us an estimate of how much energy can be
harvested in the case of an ideal bi-directional PTO system.

Figure 2 shows the absorbed power over the simulation time
for the sea state SS6. For this simulation, the absorbed energy
was 249.75 J with a mean power of 1.4988W.

Figure 2 also shows how the control input takes the form of a
bang-bang type of control, mostly assigning the values of uk =

±12. Similar results were obtained for sea states SS4 and SS5,
summarised in Table 4.

After establishing a reference point for each sea state, further
simulations were run with the specified value for PTO system
efficiency (see Table 3).

Figure 3 depicts the absorbed power by the WEC model
across the simulation time with a cost function without the
matrix R (See Equation (19a)), which penalises the input devi-
ation. Figure 3 and Table 5 complement prior studies (Bacelli
&Coe, 2021; Li &Belmont, 2014;Mérigaud&Tona, 2020; Ring-
wood et al., 2014) where energy loss was reported. Even when
considering the PTO system efficiency in the OCP at each sam-
ple time, a reactive control strategy can result in overall negative
energy absorbed if not correctly tuned.
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Figure 2. Control input and absorbed power by theWavestar model undersea state SS6 with an ideal bidirectional PTO system. The red dashed line represents the mean
absorbed power.

Table 4. Energy absorbed andmean power for the sea states considering an ideal
bidirectional PTO System.

Sea State Energy Absorbed [J] Mean Power [W]

SS4 2.90 0.0366
SS5 71.78 0.5820
SS6 249.75 1.4988

Another insight we can get from Figure 3 is that, even when
the control input constraints are met, the input trajectory does
not appear acceptable due to the fast change in its value, result-
ing in severe mechanical wear of the actuator, shortening its
life cycle. Hence, there needs to be a trade-off between energy
capture and actuator activity in practice.

On the other hand, Figure 4 depicts the control input and
the absorbed power for sea state SS6 across the simulation time
after simulating the system with a cost function as described in
Equation (19a).

From the data depicted in Figure 4 we can make the follow-
ing remarks. First, it is clear that the proposed control strategy
is successful in absorbing a net positive power from the ocean
waves; second, in contrast to the findings in Figure 3, RTI-
NMPC with the added weighting matrix R strives to avoid
consuming energy from the grid; and third, one can see how
the control input is smoother for RTI-NMPC with the added
weighting matrix R compared with the one presented in Figure
3 (the reader may consider the resolution for the time length

shown in both figures). For sea states SS4 and SS5, similar find-
ings are obtained with cost function (19a), these are presented
in Table 6.

Now, to compare the control strategy proposed around RTI-
NMPC with the added weighting matrix R, two additional sets
of simulations were performed using a linear model predictive
controller (MPC) and a proportional controller, also known as
resistive control in the ocean wave energy community (Maria-
Arenas et al., 2019; Sanchez et al., 2015; Wang et al., 2018).

The advantage of employing a resistive control is that it
is computationally cheap, i.e. speedy and physically simple to
implement, for example, with electronic components. Still, the
disadvantage is that it is suboptimal, and the proportional gain
must be adjusted for each specific sea state. MPC, on the other
hand, even though it attempts to provide an optimal solution
at each sample time, the absence of the PTO system efficiency
in the OCP renders its solution meaningless at the current time
step, resulting in a suboptimal control law, or even in a net neg-
ative absorbed energy, depending on the sea state and tuning
parameters used in the simulation. For comparative purposes,
Figure 5 shows the control input and absorbed power by the
Wavestar model for sea state SS6. Figure 6 shows the energy
absorbed by the WEC for each control strategy.

The reader may also see in Figure 6 the percentage of energy
absorbed in comparison to the ideal scenario with an efficiency
of 100%. From there, we can observe that, while the proportion
of energy collected by RTI-NMPC is low in general, 58.9% of
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Figure 3. Control input and absorbed energy by the PTO system with an efficiency value as presented in Table 3 and a cost function without the matrix R for sea state
SS6. The mean delivered power is−0.0087W and absorbed energy of−7.8038 J, which represent a loss of energy.

Table 5. Energy absorbed and mean power for the sea states for a nonideal
bidirectional PTO System using a cost function inside RTI-NMPC control strategy
without the matrix R.

Sea State Energy Absorbed [J] Mean Power [W]

SS4 −65.3 −0.6234
SS5 −46.4 −0.3252
SS6 −7.8038 −0.0087

249.5 J, it is significantly higher when compared to the other two
control laws considered, 20.4% forMPC and 23.6% for the resis-
tive controller. Between them, RTI-NMPC can absorb roughly
three times more than the MPC and two and a half times more
than the resistive controller.

Another interesting fact we can extract from these results is
that standardMPC,which is well understood and highly praised
for linear systems, could not extract more energy than a simple
resistive controller. So, linear MPC is not worth the effort, espe-
cially considering the extra costs when designing/buying a PTO
system that can offer a bidirectional energy flow.

Finally, an intriguing finding is that, as indicated in Table 6,
linear MPC cannot extract energy for sea state 5. The total
amount of energy absorbed is negative, implying that the sys-
tem loses energy rather than absorbing it from the waves. This
energy loss is because MPC’s forecasts are invalid since it does
not incorporate the PTO system’s efficiency into each OCP. To
put it another way, the MPC controller borrows energy from
the grid with the ‘promise’ of returning it with interest in the

not-too-distant future. Yet, the controller fails due to inaccurate
predictions and thus cannot meet this promise.

5.5 Computational efficiency of the proposed NMPC

algorithm

Before evaluating the computational performance of the pro-
posed RTI-NMPC strategy for each of the sea states, we are
interested in highlighting how much time may be saved when
computing the hessian using the proposed algorithm O(N2)

against standard matrix-vector operations. The average time
required to calculate the hessian for both approaches men-
tioned above is summarised in Table 7 for different prediction
horizons.

To determine the average execution time of the hessian and
the proposed RTI-NMPC strategy, a customised C + + code
was written using the Eigen3 C + + library and tested on a PC
running Ubuntu 20.04 LTS terminal for Windows 10 with an
Intel i5-7400 CPU @ 3.4GHz with 8 GB of RAM. For each pre-
diction horizon, the average execution timewas calculated using
10000 simulations.

Table 7 shows how the time saving from computing the hes-
sian increases as the number of points in the prediction horizon
increases. Even though we know that the time it takes to com-
pute the hessian is not the only factor to consider when trying
to solve an OCP, it is undoubtedly the most important.

For example, using normal matrix-vector operations, we can
observe that computing the hessian for 300 steps ahead takes



10 J. L. GUERRERO-FERNANDEZ ET AL.

Figure 4. Control input and absorbed power by the Wavestar model undersea state SS6 using a cost function without considering the matrix R that penalises the input
slew rate.

Table 6. Energy absorbed and mean power for resistive control, MPC, and RTI-NMPC for each sea state.

Resistive MPC RTI – NMPC

Sea State Absorbed Energy [J] Mean Power [W] Absorbed Energy [J] Mean Power [W] Absorbed Energy [J] Mean Power [W]

SS4 1.4974 0.01899 1.1914 0.01537 1.9499 0.02458
SS5 18.2770 0.1468 −13.1914 −0.1083 40.875 0.3210
SS6 59.0760 0.3566 51.0505 0.3532 147.092 0.8897

longer than the 10ms sampling time used in this study. This
indicates that the controller would not deliver a solution in the
allotted time if typical matrix-vector operations are applied. In
general, we can attain saving times of 1.5 times to 4.8 times
for prediction horizons within the typical range that we can
encounter in wave energy applications (between 1 Tp to 2 Tp

of the dominant wave).
After studying the computing performance of algorithm

O(N2), Table 8 gathers the average execution times with its
respective standard deviation for the proposed RTI-NMPC
using the algorithm O(N2) to compute the hessian E and the
algorithm O(N) for the linear term f for different prediction
horizons for the three sea states. Recall that for this paper, the
QP solver qpOASES was used.

Here, it is essential to note that the timings are determined
by the number of points ahead used for the prediction horizon
in each simulation, not the actual sea state characteristics.

Two predictions horizon were chosen for each sea state, cor-
responding to one peak period (1 × Tp) and two peak periods
(2 × Tp) of the dominant wave. For example, that would be 185

and 365 steps ahead in the case for sea state SS6 (see Table 8 for
the prediction horizon for the other sea states).

Let us now turn our attention to the execution times. For
sea state SS6 we can see that for 185 steps ahead, the entire
RTI-NMPC implementation would take around 1.581ms (i.e.
Texc + σexc) to solve the OCP at each time step, which is within
the sampling time used in this study (10ms). However, in the
case of 365 steps ahead, the implementation would take around
11.840ms in the worst-case scenario. If this is the case, the con-
troller will not provide an optimal solution within the 10ms
sampling time frame.

One quick and straightforward solution to this problem
could be to reduce the prediction horizon for something in
between one peak period (1 × Tp) and two peak periods (2 ×

Tp) of the dominant wave. Moving blocking strategies, such as
the one presented in González-Villarreal and Rossiter (2020b),
could also be used as a possible solution but are not discussed
here. The main takeaway from this Section is that the proposed
algorithm would allow faster computation required to achieve
real-time performance.
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Figure 5. Control input and absorbed power by the Wavestar model undersea state SS6 with different control strategies. In blue NMPC using the modified cost function
Equation (17), in black MPC and red resistive control proportional.

Figure 6. Energy absorbed by theWavestar model undersea state SS6 with different control strategies. In blue RTI-NMPC using themodified cost function Equation (17),
in black MPC and red resistive control. The value in parenthesis represents the percentage of energy absorbed concerning the maximum theoretical amount, 249.5 J.

6. Conclusions

This paper presents a nonlinear model predictive control strat-
egy based on the real-time iteration scheme (NMPC-RTI). The
controller can take into account the efficiency of the PTO system
when solving the OCP at each time step. This is a key feature in
a control policy that maximises the energy extracted from the
ocean waves.

Computer simulations of a reactive controller for a single
point absorber of a Wavestar-scale model wave energy con-
verter with a nonideal PTO system efficiency indicate that the

RTI-NMPC approach can significantly improve wave energy
converter performance.

TheRTI-NMPCapproach outperforms the other two control
policies tested for the specific case in Section 5. The proposed
approach harvests roughly two and a half times the amount
of energy extracted by a resistive controller and nearly three
times that of linear MPC while keeping the amount of power
‘borrowed’ from the grid to a bare minimum.

On the other hand, with linear MPC, despite attempting
to provide an optimal solution at each sample time, the over-
all optimisation procedure becomes meaningless at the current
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Table 7. Average time for computing the hessian E using algorithm O(N2) and
standard matrix-vector operations.

Np
Avg. Time using

algorithm O(N2) [ms]

Avg. using standard
matrix-vector operations

[ms] Gain [-]

100 0.318 ± 0.039 0.547 ± 0.141 1.720
200 1.236 ± 0.126 3.766 ± 0.245 3.047
300 2.848 ± 0.212 10.179 ± 0.583 3.574
365 4.500 ± 0.441 17.892 ± 1.040 3.976
400 5.426 ± 0.274 22.795 ± 0.497 4.201
500 8.803 ± 0.331 42.671 ± 0.789 4.847

Table 8. Average execution times for the proposed RTI-NMPC using the algorithm
O(N2) to compute the hessian E and the algorithm O(N) for the linear term f for
different prediction horizons.

Np [Points ahead]
Avg. Exc. Time

Texc [ms]
Avg. Standard

Deviation σexc [±ms]

SS6
185 1.139 0.422
365 8.707 3.133

SS5
140 0.607 0.199
280 3.971 0.746

SS4
100 0.260 0.074
200 1.607 0.089

time step due to the absence of the PTO system efficiency in
the OCP, which causes significant differences in the predic-
tions of the generated energy resulting in an ill-posed optimisa-
tion (Rossiter, 2018). This ultimately leads to suboptimal control
law, or even a net negative absorbed energy, depending on the
sea state and tuning parameters used in the simulation.

Another interesting finding of this study, related to the pre-
vious point, is that in some cases, linear MPC cannot harvest
more energy than a simple resistive controller, which makes it a
very interesting feat that many previous studies have otherwise
ignored. This may also be seen in the reactive power that MPC
‘consumes’ at specific points during the simulation, as opposed
to the resistive controller, which consumes no power from the
grid at all.

Finally, this study also derived a computationally efficient
algorithm O(N2) for ‘only-output’ cost functions, which offers
significant time savings for computing the hessian for large pre-
diction horizons. The computational time savings achieved by
implementing the O(N2) condensing procedure could allow
for the use of larger prediction horizons and/or faster sample
rates, as long as more precise prediction algorithms are avail-
able. Here, a sample rate of 10ms was shown to be feasible with
realistic horizons and without excessive computing power.

Future work on the proposed strategy will be concerning the
robustness of the controller design in the face of unmodelled
system dynamics and the performance of the control law with
imperfect wave force/torque prediction.

To summarise, the controller presented in this paper: non-
linear model predictive control based on the real-time iteration
scheme can significantly improve wave energy converter per-
formance, reducing at the same time the amount of energy
temporally borrowed from the grid.

Ultimately, enhancing peer collaboration and transparency,
the findings provided in this paper and the code used in the sim-
ulation are accessible through a Code Ocean capsule available
at Guerrero-Fernández and González-Villarreal (2021).
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