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Abstract 13 

 14 

In bubbly flows, the bubble size distribution dictates the interfacial area available for the interphase 15 

transfer processes and, therefore, understanding the behaviour and the average features of the 16 

bubble population is crucial for the prediction of these kinds of flows. In this work, by means of the 17 

STAR-CCM+ code, the Sγ population balance model is coupled with an Eulerian-Eulerian two-fluid 18 

approach and tested against data on upward bubbly pipe flows. The Sγ model, based on the moments 19 

of the bubble size distribution, tracks the evolution of the bubble sizes due to bubble break-up and 20 

bubble coalescence. Good accuracy for the average bubble diameter, the velocity and the void 21 

fraction radial profiles is achieved with a modified coalescence source. Numerical results show that 22 

better predictions are obtained when these flows are considered to be coalescence dominated, but, 23 

nevertheless, additional knowledge is required to progress in the development of coalescence and 24 

break-up models that include all the possible responsible mechanisms. In this regard, there is a 25 

requirement for experimental data that will allow validation of both the predicted bubble diameter 26 

distribution and the intensity of the turbulence in the continuous phase which has a significant 27 
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impact on coalescence and break-up models. An advanced version of the model described, that 28 

includes a Reynolds stress turbulence formulation and two groups of bubbles to account for the 29 

opposite behaviour of spherical bubbles, which accumulate close to the pipe wall, and cap bubbles, 30 

that migrate towards the pipe centre, is proposed. The Reynolds stress model is found to better 31 

handle the interactions between the turbulence and the interphase forces, and the use of only two 32 

bubble groups seems sufficient to describe the whole bubble spectrum and the bubbly flow regime 33 

up to the transition to slug flow. 34 

 35 

Keywords: Bubbly flow; RANS modelling; population balance; method of moments; bubble 36 

diameter distribution. 37 

 38 

  39 
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1. Introduction 40 

 41 

Gas-liquid bubbly flows are common to a variety of processes encountered in numerous industrial 42 

sectors, including the nuclear sector as well as chemical and petro-chemical, oil and gas, mining, 43 

pharmaceutical and refrigeration industries, amongst others. In the nuclear industry, knowledge of 44 

the hydrodynamics of the two-phase flow is essential for the design and operation of boiling water 45 

reactors and natural circulation systems, and in the prediction of accident scenarios for pressurized 46 

water reactors as well as for other types of reactor. In chemical reactors, such as bubble columns 47 

and stirred tanks, gas bubbles are dispersed in the liquid phase to increase phase mixing and 48 

enhance heat and mass transfer processes. 49 

 50 

In these flows, the exchange of mass, momentum and energy between the phases depends on the 51 

flow conditions, and on the interfacial area concentration in particular. This, in bubbly flows, is 52 

determined by the number and the size of the bubbles that are dispersed in the continuous liquid. 53 

Often, bubbles are not monodispersed and their distribution is far from steady, and evolves 54 

continuously in space and time, following interactions between the bubbles and the continuous 55 

phase and collisions between neighbouring bubbles (Lucas et al., 2005; 2010). These interactions 56 

induce bubble shrinkage and growth due to the pressure field and bubble break-up and coalescence, 57 

and, in boiling or reacting flows, also wall boiling, evaporation and mass transfer. The bubble 58 

distribution is therefore governed by these phenomena that, with bubble behaviour strongly related 59 

to bubble size and shape (Tomiyama et al., 1998), determine the local flow field, which, at the same 60 

time, affect the ratios of mass transfer, break-up and coalescence. In view of this strong coupling, 61 

understanding the evolution of the local bubble size distribution in these kinds of flows still 62 

represents a rather complex task which, nevertheless, is necessary if we are to be able to predict 63 

them with any degree of accuracy. 64 
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 65 

The use of computational fluid dynamic (CFD) techniques, applied today in design and as well as a 66 

development tool in most of the engineering disciplines, has the potential to significantly improve 67 

our ability to predict the mentioned processes. At the present time, application of multiphase CFD 68 

to industrial and system-scale calculations has been mainly limited to two-fluid Eulerian-Eulerian, 69 

Reynolds-averaged Navier-Stokes (RANS) based models (Prosperetti and Tryggvason, 2009; 70 

Tryggvason and Buongiorno, 2010). The use of more advanced techniques, such as direct numerical 71 

simulation and large eddy simulation with interface tracking methods (Toutant et al., 2008; Dabiri 72 

and Tryggvason, 2015), or Lagrangian tracking techniques (Molin et al., 2012), recently coupled 73 

with immersed boundary methods (Santarelli et al., 2015), is mostly constrained to very simple flow 74 

conditions in view of the required computational resources (Tryggvason and Buongiorno, 2010).  75 

 76 

In two-fluid Eulerian-Eulerian RANS models, the conservation equations for each phase are derived 77 

from averaging procedures. Therefore, the details of the interphase structure are not resolved and 78 

interface exchange terms require explicit modelling (Fox, 2012; Prosperetti and Tryggvason, 2009). 79 

In these models, the bubble diameter is often needed as an input parameter that, therefore, becomes 80 

vital to properly predict the fluid dynamic behaviour of the system. Here, possible limitations can 81 

be avoided by coupling the CFD model with the population balance equation (PBE) approach which 82 

tracks the behaviour of the bubble size distribution in both physical and internal (e.g. bubble 83 

diameter or bubble volume) coordinate spaces (Buffo et al., 2013; Marchisio and Fox, 2005). The 84 

use of a PBE combined with CFD has been identified as a crucial development for the accurate 85 

prediction of bubbly flows, and significant advances have been achieved in recent years using this 86 

approach (Buffo et al., 2013; Cheung et al., 2009, 2013; Lehr et al., 2002; Liao et al., 2015; Lo and 87 

Zhang, 2009; Marchisio and Fox, 2005, 2007; Nguyen et al., 2013; Yao and Morel, 2004). 88 

 89 
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Many approaches have been considered for the solution of the PBE within a CFD code (Buffo et al., 90 

2013). In class methods, the internal coordinate space, which is usually the bubble size spectrum, is 91 

discretized into numerous size classes and the PBE is integrated over each class to give a finite set 92 

of discrete PBEs (Kumar and Ramkrishna, 1996; Liao et al., 2015; Lo, 1996; Nandanwar and 93 

Kumar, 2008; Wang et al., 2005). In each class, bubbles may be considered as all having the same 94 

size (zero-order methods) or a specified distribution (higher-order methods), often a low-order 95 

polynomial (Vanni, 2000). In Monte Carlo methods, stochastic differential equations are solved for 96 

a finite number of artificial realizations of the dispersed phase population (Lee and Matsoukas, 97 

2000; Lin et al., 2002; Zhao et al., 2007). For both the class and Monte Carlo methods, the 98 

drawback is the high computational cost involved. Respectively, the solution of at least one 99 

conservation equation for each class, with all the relevant source and sink terms, is required, or a 100 

very high number of realizations is necessary. In the last two decades, many authors have focused 101 

their efforts on the development of the interfacial area transport equation, in the context of both 102 

two-fluid CFD models and one-dimensional, advanced thermal hydraulic system codes (Hibiki and 103 

Ishii, 2000; Nguyen et al., 2013; Smith et al., 2012; Sun et al., 2004; Wu et al., 1998; Yao and 104 

Morel, 2004). Being derived from averaging over the whole bubble diameter spectrum, no bubble 105 

size distribution is retained and simplifying assumptions are often made, such as the use of constant 106 

or simple linear distributions (Ishii and Hibiki, 2006; Smith et al., 2012). Recently, promising 107 

results were achieved with progressively more advanced approaches based on the method of 108 

moments, originally introduced by Hulburt and Katz (1964). This method is based on the solution 109 

of a set of transport equations for the lower-order moments of the dispersed phase distribution 110 

(Marchisio and Fox, 2005). Progressively, more advanced methods have been developed, in 111 

particular in the category of quadrature-based methods of moments, such as the direct quadrature 112 

method (Marchisio and Fox, 2005) and the conditional quadrature method (Yuan and Fox, 2011). 113 

Overall, these methods are reported to provide good predictive accuracy without excessive 114 

computational cost (Buffo et al., 2013; Marchisio and Fox, 2005). The Sγ model, proposed by Lo 115 
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and Rao (2007) for droplet two-phase flows, involves a limited number of moments of the bubble 116 

size probability distribution, which is assumed to follow a log-normal shape. The model was later 117 

extended to bubbly flows by Lo and Zhang (2009) and its ability to predict with a reasonable 118 

accuracy a number of different flows was demonstrated.  119 

 120 

Alongside the method of solution, the other key aspect in regards to population balance based 121 

approaches is the availability of reliable closure models for the coalescence and break-up 122 

mechanisms. This issue has recently been the subject of numerous researches (Liao et al., 2015; Luo 123 

and Svendsen, 1996; Mukin, 2014; Prince and Blanch, 1990; Wang et al., 2005; Yao and Morel, 124 

2004), and thorough reviews have been provided by Liao and Lucas (2009) for the break-up 125 

mechanism and by Liao and Lucas (2010) for the coalescence mechanism. Despite this, however, 126 

commonly accepted and reliable models have not yet emerged in view of the intrinsic complexity 127 

encountered when modelling coalescence and break-up in turbulent bubbly flows. Amongst others, 128 

the strong mutual interactions with the two-phase turbulence, for which a general and mature model 129 

is not yet available, and the coupling and relative importance of the different competitive 130 

mechanisms (e.g. turbulent collision, wake entrainment, shearing-off) prevent substantial progresses 131 

on the subject being achieved and, therefore, further understanding is required. The ongoing 132 

modelling effort is supported by the experimental data available from a number of studies 133 

(Grossetete, 1995; Hibiki and Ishii, 1999; Hibiki et al., 2001; Liu, 1993; Lucas et al., 2005, 2010; 134 

Prasser et al., 2007; Sanyal et al., 1999). In particular, detailed measurements of the average bubble 135 

size and the bubble size distribution have been obtained using the wire-mesh sensor technique 136 

(Lucas et al., 2005, 2010; Prasser et al., 2007).  137 

 138 

In this paper, the Sγ model, implemented in the STAR-CCM+ code (CD-adapco, 2014), is combined 139 

with an Eulerian-Eulerian two fluid model and tested against data on air-water bubbly flows in 140 

pipes. With the aim to improve our ability to predict these flows and the evolution of the bubble 141 
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diameter distribution, a different coalescence model is introduced and optimized. By means of 142 

sensitivity studies, the relative impact of bubble break-up and coalescence, and the influence of the 143 

continuous phase turbulence and the bubble-induced turbulence, are investigated. In terms of the 144 

turbulent flow field, and in view of the influence it has on the accuracy of the predictions, a 145 

Reynolds stress turbulence model is also included with the aim of extending the model’s 146 

applicability to more complex flows, affected by known shortcomings of two-equation turbulence 147 

models. In bubbly flows, which are polydisperse by nature, the size determines the behaviour of the 148 

bubble, with small spherical bubbles flowing near the pipe wall and larger, deformed cap bubbles, 149 

migrating towards the pipe centre (Tomiyama et al., 2002b). Clearly, predicting this behaviour is 150 

mandatory if a general model capable of handling the entire bubble size spectrum is to be 151 

developed. In this regard, two bubble classes, each one with its own behaviour, are introduced in the 152 

final section of the paper. The ability of such a model, limited to only two bubble classes, to predict 153 

the whole bubble spectrum and the transition between wall-peaked and core-peaked void profiles, is 154 

then tested.  155 

 156 

2. Experimental data 157 

 158 

For any CFD technique to be applied with confidence, it is mandatory that the model has been 159 

previously validated against relevant experimental data. In this work, seven experiments from Liu 160 

(1993), Hibiki and Ishii (1999), Hibiki et al. (2001) and Lucas et al. (2005) were considered. The 161 

experimental conditions considered are summarized in Table 1. 162 

 163 

Table 1: Experimental database used for validation. 164 

Case Source jw [m s-1] ja [m s-1] αavg [-] dB,avg [mm] ReL [-] 

Hi1 Hibiki et al. (2001) 0.986 0.242 0.191 3.4 49989 

Hi2 Hibiki et al. (2001) 2.01 0.471 0.230 3.7 101903 

HI1 Hibiki and Ishii (1999) 0.262 0.0549 0.245 3.4 6641 

HI2 Hibiki and Ishii (1999) 1.75 0.399 0.253 3.8 44361 

L1 Liu (1993) 1.0 0.2 0.160 4.2 57086 

L2 Liu (1993) 3.0 0.2 0.062 3.4 171257 

Lu1 Lucas et al. (2005) 0.255 0.0368 0.072 - 13030 

  165 
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Liu (1993) conducted experiments in a vertical pipe of 0.0572 m i.d. to study the bubble diameter 166 

and entrance length effects on the void fraction distribution in upward air-water bubbly flows. 167 

Bubble velocity, void fraction and average bubble diameter radial profiles were obtained from 168 

measurements at different axial locations. Hibiki and Ishii (1999), and Hibiki et al. (2001), 169 

measured water and air velocity, turbulence intensity, void fraction, bubble diameter and interfacial 170 

area concentration radial profiles at three consecutive axial locations and for an air-water bubbly 171 

flows in vertical pipes of diameter 0.0254 m and 0.0508 m. Lucas et al. (2005) used a wire-mesh 172 

sensor to study air-water upward flows inside a 0.0512 m diameter pipe. High-resolution 173 

measurements of the void fraction and the bubble diameter distribution were obtained. The 174 

experiments extended over a wide range of the bubble diameter spectrum, including some mixed 175 

radial void profiles where both spherical and cap bubbles were present, one of which was 176 

specifically included in the database to validate the model with two bubble classes. Over the whole 177 

database, the water superficial velocity considered is in the range 0.262 m s-1 < jw < 3.0 m s-1 and 178 

the air superficial velocity is in the range 0.0368 m s-1 < ja < 0.471 m s-1. Average void fraction αavg 179 

and average bubble diameters dB,avg reported in Table 1 were calculated by means of integration of 180 

the experimental profiles at the last measurement station. Table 1 also includes values of the 181 

Reynolds number of the flows, based on the characteristic dimension along the pipe.   182 

 183 

3. Mathematical model 184 

 185 

In a two-fluid Eulerian-Eulerian model, each phase is described by a set of averaged conservation 186 

equations. As the cases considered in this paper are limited to adiabatic air-water flows, only the 187 

continuity and momentum equations are solved, with the phases treated as incompressible with 188 

constant properties: 189 

 190 𝜕𝜕𝑡 (𝛼𝑘𝜌𝑘) + 𝜕𝜕𝑥𝑖 (𝛼𝑘𝜌𝑘𝑈𝑖,𝑘) = 0 (1) 

 191 
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𝜕𝜕𝑡 (𝛼𝑘𝜌𝑘𝑈𝑖,𝑘) + 𝜕𝜕𝑥𝑗 (𝛼𝑘𝜌𝑘𝑈𝑖,𝑘𝑈𝑗,𝑘) = −𝛼𝑘 𝜕𝜕𝑥𝑖 𝑝𝑘 + 𝜕𝜕𝑥𝑗 [𝛼𝑘(𝜏𝑖𝑗,𝑘 + 𝜏𝑖𝑗,𝑘𝑅𝑒 )] + 𝛼𝑘𝜌𝑘𝑔𝑖 + 𝑀𝑖,𝑘 (2) 

 192 

In the above equations, αk represents the volume fraction of phase k, whereas in the following, only 193 

α will be used to specify the void fraction of air. ρ is the density, U the velocity, p the pressure and 194 

g the gravitational acceleration. τ and τRe are the laminar and turbulent stress tensors, respectively, 195 

and Mk accounts for the momentum exchanges between the phases. In the interfacial term, the drag 196 

force, lift force, wall force and turbulent dispersion force are included:  197 

 198 𝑴𝑘 = 𝑭𝑑 + 𝑭𝑙 + 𝑭𝑤 + 𝑭𝑡𝑑 (3) 

 199 

The drag force represents the resistance opposed to bubble motion relative to the surrounding liquid 200 

and is expressed as: 201 

 202 

𝑭𝑑 = 34 𝐶𝐷𝑑𝐵 𝛼𝜌𝑐|𝑼𝑟|𝑼𝑟 (4) 

 203 

Here, Ur is the relative velocity between the phases and the subscript c identifies the continuous 204 

phase, which is water for all the experiments in Table 1. The drag coefficient, CD, was calculated 205 

using the model of Tomiyama et al. (2002a), where the effect of the bubble aspect ratio on the drag 206 

was also accounted for (Hosokawa and Tomiyama, 2009) using: 207 

 208 

𝐶𝐷 = 83 𝐸𝑜𝐸2 3⁄ (1 − 𝐸2)−1𝐸𝑜 + 16𝐸4 3⁄ 𝐹−2 (5) 

 209 

Here, F is a function of the bubble aspect ratio E. The bubble aspect ratio was derived from the 210 

following correlation and as a function of the distance from the wall yw (Colombo et al., 2015): 211 
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 212 

𝐸 = max [1.0 − 0.35 𝑦𝑤𝑑𝐵 , 𝐸0] (6) 

 213 

E0 is calculated from the expression given by Welleck et al. (1966), where Eo is the Eötvös number: 214 

 215 

𝐸0 = 11 + 0.163𝐸𝑜0.757 (7) 

 216 

A lift force, perpendicular to the direction of motion, is experienced by bubbles moving in a shear 217 

flow (Auton, 1987), according to: 218 

 219 𝑭𝑙 = 𝐶𝐿𝛼𝜌𝑐𝑼𝑟 x (∇ x 𝑼𝑐) (8) 

 220 

In a pipe, the lift force has a strong influence on the radial movement of the bubbles and therefore 221 

on the void fraction radial distribution. Generally, a positive value of the lift coefficient CL 222 

characterizes spherical bubbles, which are pushed towards the pipe wall by the lift force. In 223 

contrast, larger bubbles, deformed by the inertia of the surrounding liquid, experience a negative lift 224 

force and move towards the centre of the pipe (Tomiyama et al., 2002b). In air-water flows, a 225 

critical bubble diameter range for the change of sign in the lift coefficient between 5.0 mm and 6.0 226 

mm was given by Tomiyama et al. (2002b). These authors also expressed the lift coefficient as a 227 

function of the Eötvös number, an approach adopted in other investigations (e.g. Krepper et al., 228 

2008; Rzehak and Krepper, 2013). In this work, however, and in view of previously observed 229 

discrepancies between calculations and experimental data when using such an approach, constant 230 

values were chosen. More specifically, CL = 0.1 was used for wall-peaked (Lahey and Drew, 2001; 231 

Lopez de Bertodano et al., 1994), and CL = -0.05 for core-peaked, void profiles.  232 

 233 
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The presence of a solid wall modifies the flow field around the bubbles and the asymmetry in the 234 

flow distribution generates a hydrodynamic pressure difference on the bubble surface that keeps 235 

bubbles away from the wall (Antal et al., 1991): 236 

 237 

𝑭𝑤 = max (0, 𝐶𝑤,1 + 𝐶𝑤,2 𝑑𝐵𝑦𝑤) 𝛼𝜌𝑐 |𝑼𝒓|2𝑑𝐵 𝒏𝒘 (9) 

 238 

In this equation, nw is the normal to the wall and Cw1 and Cw2 are constants that modulate the 239 

strength and the region of influence of the wall force. Here, values of Cw1 = -0.4 and Cw2 = 0.3 were 240 

used (Colombo et al., 2015). Finally, the turbulent dispersion force was modelled as (Burns et al., 241 

2004): 242 

 243 

𝑭𝑡𝑑 = 34 𝐶𝐷𝛼𝜌𝑐|𝑼𝑟|𝑑𝐵 𝜈𝑡,𝑐𝜎𝛼 (1𝛼 + 1(1 − 𝛼)) ∇α (10) 

 244 

where νt,c is the turbulent kinematic viscosity of the continuous phase, obtained from the turbulent 245 

viscosity μt,c, calculated from the single-phase relation (more details can be found in the following 246 

Section 3.1, where the turbulence model is presented), divided by the continuous phase density ρc. 247 

σα is the turbulent Prandtl number for the void fraction, assumed equal to 1.0 (Burns et al., 2004). 248 

 249 

3.1. Multiphase turbulence modelling 250 

 251 

Turbulence was solved only in the continuous phase, with a multiphase formulation (CD-adapco, 252 

2014) of the standard k-ε turbulence model (Jones and Launder, 1972): 253 

 254 𝜕𝜕𝑡 ((1 − 𝛼)𝜌𝑐𝑘𝑐) + 𝜕𝜕𝑥𝑖 ((1 − 𝛼)𝜌𝑐𝑈𝑖,𝑐𝑘𝑐)
= 𝜕𝜕𝑥𝑖 [(1 − 𝛼) (𝜇𝑐 + 𝜇𝑡,𝑐𝜎𝑘 ) 𝜕𝑘𝑐𝜕𝑥𝑖 ] + (1 − 𝛼)(𝑃𝑘,𝑐 − 𝜌𝑐𝜀𝑐) + (1 − 𝛼)𝑆𝑘𝐵𝐼 (11) 
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 255 𝜕𝜕𝑡 ((1 − 𝛼)𝜌𝑐𝜀𝑐) + 𝜕𝜕𝑥𝑖 ((1 − 𝛼)𝜌𝑐𝑈𝑖,𝑐𝜀𝑐)
= 𝜕𝜕𝑥𝑖 [(1 − 𝛼) (𝜇𝑐 + 𝜇𝑡,𝑐𝜎𝜀 ) 𝜕𝜀𝑐𝜕𝑥𝑖] + (1 − 𝛼) 𝜀𝑐𝑘𝑐 (𝐶𝜀,1𝑃𝑘,𝑐 − 𝐶𝜀,2𝜌𝑐𝜀𝑐) + (1 − 𝛼)𝑆𝜀𝐵𝐼 (12) 

 256 

In the equations above, Pk,c is the production term due to shear and Sk
BI and Sε

BI the source terms 257 

due to bubble-induced turbulence. The turbulent viscosity μt,c was evaluated from the single-phase 258 

relation: 259 

 260 

𝜇𝑡,𝑐 = 𝐶𝜇𝜌𝑐 𝑘𝑐2𝜀𝑐  (13) 

 261 

Turbulence was not resolved in the dispersed phase, but was obtained from the continuous phase. 262 

More specifically, it was directly related to the turbulence of the continuous phase by means of a 263 

response coefficient Ct, assumed equal to unity (Gosman et al., 1992; Troshko and Hassan, 2001). 264 

Experimental measurements do in fact suggest that a value of unity is approached starting from void 265 

fractions as small as 6 % (Behzadi et al., 2004).  266 

 267 

In bubby flows, the generation of turbulence by the bubbles often modifies significantly the 268 

turbulence in the continuous phase, with respect to the single-phase flow (Lance and Bataille, 1991; 269 

Shawkat et al., 2007; Wang et al., 1987). The bubble contribution to turbulence was accounted for 270 

with bubble-induced source terms in Eq. (12) and Eq. (13). In particular, the drag force was 271 

considered as the only source of turbulence generation due to the bubbles and all the energy lost by 272 

the bubbles to drag was assumed to be converted into turbulence kinetic energy inside the bubble 273 

wakes (Kataoka and Serizawa, 1989; Rzehak and Krepper, 2013; Troshko and Hassan, 2001): 274 

 275 
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𝑆𝑘𝐵𝐼 = 𝐾𝐵𝐼𝑭𝒅𝑼𝒓 (14) 

 276 

The corresponding turbulence dissipation rate source is equal to the turbulence kinetic energy 277 

source divided by the timescale of the bubble-induced turbulence τBI. In this work, the mixed 278 

timescale introduced by Rzehak and Krepper (2013) was chosen, derived from the velocity scale of 279 

the turbulence and the length scale of the bubbles:  280 

 281 

𝑆𝜀𝐵𝐼 = 𝐶𝜀,𝐵𝐼 𝑆𝑘𝐵𝐼𝜏𝐵𝐼 = 1.0 𝑘0.5𝑑𝐵 𝑆𝑘𝐵𝐼 (15) 

 282 

The mixed timescale is expected to mimic the split of eddies which move past the bubbles (Rzehak 283 

and Krepper, 2013) and the shift of the energy of turbulence to smaller length scales observed in 284 

experiments (Lance and Bataille, 1991; Shawkat et al., 2007). The mixed timescale, used in 285 

combination with the coefficient KBI = 0.25 in Eq. (14), has been found to provide accurate 286 

predictions over a wide range of bubbly pipe flows (Colombo and Fairweather, 2015). 287 

 288 

A multiphase Reynolds stress turbulence model (RSM) was also included in the overall model and, 289 

based on the single-phase formulation, the Reynolds stresses (Rij = τi,j
Re/ρc) are given by (CD-290 

adapco, 2014): 291 

 292 𝜕𝜕𝑡 ((1 − 𝛼)𝜌𝑐𝑅𝑖𝑗) + 𝜕𝜕𝑥𝑗 ((1 − 𝛼)𝜌𝑐𝑈𝑖,𝑐𝑅𝑖𝑗)
= 𝜕𝜕𝑥𝑗 [(1 − 𝛼)𝐷𝑖𝑗] + (1 − 𝛼)(𝑃𝑖𝑗 + 𝛷𝑖𝑗 − 𝜀𝑖𝑗) + (1 − 𝛼)𝑆𝑖𝑗𝐵𝐼 (16) 

 293 

Here, Pij is the turbulence production. The Reynolds stress diffusion Dij was modelled accordingly 294 

to Daly and Harlow (1970), whilst the isotropic hypothesis was used for the turbulence dissipation 295 
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rate term εij. Φij is the pressure-strain correlation, accounting for pressure fluctuations that 296 

redistribute the turbulence kinetic energy amongst the Reynolds stress components. This was 297 

modelled using the “SSG model” which is quadratically non-linear in the anisotropy tensor 298 

(Speziale et al., 1991): 299 

 300 

𝛷𝑖𝑗 = −[𝐶1𝑎𝜀 + 𝐶1𝑏𝑡𝑟(𝑃)]𝑎𝑖𝑗 + 𝐶2𝜀 (𝑎𝑖𝑘𝑎𝑘𝑗 − 13 𝑎𝑚𝑛𝑎𝑚𝑛𝛿𝑖𝑗) + [𝐶3𝑎 − 𝐶3𝑏(𝑎𝑖𝑗𝑎𝑖𝑗)0.5] 𝑘𝑆𝑖𝑗
+ 𝐶4𝑘 (𝑎𝑖𝑘𝑆𝑗𝑘 + 𝑎𝑗𝑘𝑆𝑖𝑘 − 23 𝑎𝑚𝑛𝑆𝑚𝑛𝛿𝑖𝑗) + 𝐶5(𝑎𝑖𝑘𝑊𝑗𝑘 + 𝑎𝑗𝑘𝑊𝑖𝑘) 

(17) 

 301 

In Eq. (17), aij, Sij and Wij are components of the anisotropy, strain rate and rotation rate tensors, 302 

respectively. The bubble-induced turbulence source term was calculated using Eq. (14) and then 303 

split amongst the normal Reynolds stress components following Colombo et al. (2015): 304 

 305 

𝑆𝑖𝑗𝐵𝐼 = [1.0 0.0 0.00.0 0.5 0.00.0 0.0 0.5] 𝑆𝑘𝐵𝐼 (18) 

 306 

Values of the coefficients used for the k-ε model and the RSM can be found in Table 2. 307 

 308 

Table 2. Coefficients of the turbulence models. 309 

k-ε σk = 1.0; σε = 1.3; C1ε = 1.44; C2ε = 1.92; Cμ = 0.09 

RSM SSG C1a = 1.7; C1b = 0.9; C2 = 1.05; C3a = 0.8; C3b = 0.65; C4 = 0.625; C5 = 0.2 

 310 

 311 

3.2. The Sγ model 312 

 313 

The Sγ model (Lo and Rao, 2007; Lo and Zhang, 2009) was used to model the evolution of the 314 

bubble population following break-up and coalescence events. In the Sγ model, the bubble size 315 

distribution is assumed to obey to a pre-defined log-normal probability distribution P(dB). 316 

Therefore, it is not necessary to divide the bubble size spectrum into a large number of bubble 317 
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classes, but the bubble population can be characterized from a limited number of parameters, Sγ, 318 

related to the moments of the bubble size distribution Mγ: 319 

 320 

𝑆𝛾 = 𝑛𝑀𝛾 = 𝑛 ∫ 𝑑𝐵𝛾𝑃(𝑑𝐵)∞
0 𝑑(𝑑𝐵) (19) 

 321 

where n is the bubble number density. The zeroth order moment is equal to the bubble number 322 

density n, whereas S2 and S3 are closely related to the interfacial area concentration ai and to the 323 

void fraction: 324 

 325 

𝑆0 = 𝑛; 𝑆2 =  𝑛 ∫ 𝑑𝐵2 𝑃(𝑑𝐵)∞
0 𝑑(𝑑𝐵) = 𝑎𝑖𝜋 ; 𝑆3 =  𝑛 ∫ 𝑑𝐵3 𝑃(𝑑𝐵)∞

0 𝑑(𝑑𝐵) = 6𝛼𝜋  (20) 

 326 

From a knowledge of S2 and S3, the average bubble diameter can be determined by using the 327 

definition of the Sauter mean diameter (SMD): 328 

 329 

𝑑𝑆𝑀 = 𝑑32 = 𝑆3𝑆2 = 6𝛼𝑎𝑖  (21) 

 330 

In addition, the variance of the distribution can also be calculated: 331 

 332 

𝜎2 = ln (𝑑32𝑑30) = ln [ (𝑆3 𝑆2⁄ )(𝑆3 𝑆0⁄ )1 3⁄ ] (22) 

 333 

The two average diameters, d32 and d30, are equal only in presence of a homogeneous distribution. 334 

Once the model is combined with a two-fluid Eulerian–Eulerian model that solves for the void 335 

fraction, S3 is known, and only two additional moments, namely S0 and S2, are sufficient to 336 
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characterize the bubble size distribution. For each moment, a transport equation of the following 337 

type needs to be solved: 338 

 339 𝜕𝑆𝛾𝜕𝑡 + ∇ ∙ (𝑆𝛾𝑼𝑎) = 𝑆𝑏𝑟𝛾 + 𝑆𝑐𝑙𝛾
 (23) 

 340 

In this equation, the velocity of the air Ua is given by the two-fluid model and Sγ
br and Sγ

cl are 341 

source terms that account for bubble break-up and coalescence in the γth moment equation. Amongst 342 

the different mechanisms, interactions induced by turbulence were assumed to be dominant (Lo and 343 

Zhang, 2009; Yao and Morel, 2004) and the only sources of break-up and coalescence in Eq. (23). 344 

 345 

The source term for bubble break-up is expressed as: 346 

 347 

𝑆𝑏𝑟𝛾 = ∫ 𝐾𝑏𝑟∆𝑆𝛾𝑏𝑟𝑛𝑃(𝑑𝐵)𝑑(𝑑𝐵)∞
0  (24) 

 348 

Here, Kbr is the break-up rate, which is the reciprocal of the break-up time τbr. ΔSγ
br is the change in 349 

Sγ due to a single break-up event, which, from conservation of volume, is: 350 

 351 

∆𝑆𝛾𝑏𝑟 = 𝑑𝐵𝛾 (𝑁𝑓3−𝛾𝛾 − 1) (25) 

 352 

The number of daughter bubbles Nf was assumed equal to 2 (Lo and Zhang, 2009; Luo and 353 

Svendsen, 1996; Yao and Morel, 2004). The break-up source term then becomes: 354 

 355 

𝑆𝑏𝑟𝛾 = ∫ 𝑑𝐵𝛾 (𝑁𝑓3−𝛾 3⁄ − 1)𝜏𝑏𝑟 𝑛𝑃(𝑑𝐵)𝑑(𝑑𝐵)∞
0  

(26) 
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 356 

The break-up timescale follows from the frequency of the second oscillation mode of a droplet (Lo 357 

and Zhang, 2009): 358 

 359 

𝜏𝑏𝑟 = 2𝜋𝑘𝑏𝑟√3𝜌𝑑 + 2𝜌𝑐192𝜎 𝑑𝐵3  (27) 

 360 

where kbr =0.2, the subscript d identifies the dispersed phase and σ is the surface tension. The break-361 

up criterion was expressed as a function of a critical Weber number Wecr, therefore a bubble breaks 362 

when the Weber number is higher than the critical value: 363 

 364 

𝑑𝑐𝑟 = (1 + 𝐶𝛼) (2𝜎𝑊𝑒𝑐𝑟𝜌𝑐 )3 5⁄ 𝜀−2 5⁄  (28) 

 365 

Cα, equal to 4.6, is a correction factor that accounts for nearby bubbles that disrupt the influence of 366 

the surrounding inertial forces. In Lo and Zhang (2009), Wecr = 0.31, whilst in Yao and Morel 367 

(2004), Wecr = 1.24. 368 

 369 

The general source term for bubble coalescence is: 370 

 371 

𝑆𝑐𝑙𝛾 = ∫ ∫ 𝐾𝑐𝑙𝑑,𝑑′∆𝑆𝛾,𝑐𝑙𝑑𝐵,𝑑𝐵′ 𝑛2𝑃(𝑑𝐵′ )𝑑(𝑑𝐵′ )𝑃(𝑑𝐵)𝑑(𝑑𝐵)∞
0

∞
0  (29) 

 372 

Here, 𝐾𝑐𝑙𝑑,𝑑′
 is the coalescence rate between two bubbles with diameters dB and dB’, and ∆𝑆𝛾,𝑐𝑙𝑑𝐵,𝑑𝐵′  is 373 

the change in Sγ due to a single coalescence event. To avoid excessive complication, a uniform 374 
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bubble distribution with an equivalent mean diameter deq was assumed when computing the change 375 

in Sγ due to a single coalescence event (Lo and Zhang, 2009): 376 

 377 ∆𝑆𝛾,𝑐𝑙𝑑,𝑑′ = 𝑑𝑒𝑞𝛾 (2𝛾 3⁄ − 2) (30) 

 378 

The coalescence rate is expressed as: 379 

 380 𝐾𝑐𝑙𝑑,𝑑′ = 𝐹𝑐𝑙𝑘𝑐𝑙𝑑𝑒𝑞2 𝑢𝑟𝑃𝑐𝑙 (31) 

 381 

Following Chester (1991), Lo and Zhang (2009) considered two different coalescence mechanisms 382 

resulting from viscous and inertial collisions. For viscous coalescence, the film drainage model was 383 

applied for the coalescence probability (Prince and Blanch, 1990). When two bubbles collide, they 384 

trap a thin liquid film between them that prevents coalescence. If the interaction time in the 385 

turbulent flow is sufficient for the film to drain out until rupture of the film occurs, then the bubbles 386 

coalesce, otherwise the bubbles are separated and coalescence does not occur. The drainage time 387 

was calculated from a model for a partially mobile interface and a quasi-steady flow in the film (Lo 388 

and Zhang, 2009): 389 

 390 

𝑡𝑑 = 𝜋𝜇𝑑√𝐹𝑖2ℎ𝑐𝑟 ( 𝑑𝑒𝑞4𝜋𝜎) (32) 

 391 

Here, Fi is the interaction force during collision and hcr the critical film thickness (Lo and Zhang, 392 

2009). The coalescence probability is then expressed from the interaction time ti and the drainage 393 

time td: 394 

 395 
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𝑃𝑐𝑙 = 𝑒𝑥𝑝(− 𝑡𝑑 𝑡𝑖⁄ ) = 𝑒𝑥𝑝(𝑡𝑑�̇�) (33) 

 396 

where the interaction time is the inverse of the Kolmogorov shear rate: 397 

 398 

�̇� = √𝜀𝜌𝑐𝜇𝑐  (34) 

 399 

Finally, in Eq. (31), kcl = (8π/3)0.5 and the relative velocity between the bubbles ur = �̇�𝑑𝑒𝑞. 400 

Alternatively, for inertial collision, kcl = (2π/15)0.5 and ur = (εdeq)
1/3. With regard to the probability 401 

of coalescence, the major role is played by bubble shape oscillations and, therefore, the coalescence 402 

probability was expressed following Chester (1988): 403 

 404 

𝑃𝑐𝑙 = 𝛷𝑚𝑎𝑥𝜋 [1 − 𝑘𝑐𝑙,22 (𝑊𝑒 − 𝑊𝑒0)2𝛷𝑚𝑎𝑥2 ]1 2⁄
 (35) 

 405 

where Φmax is the maximum phase difference (Lo and Zhang, 2009), kcl,2 = 12.7, We0 = 0.8Wecr and 406 

h0 = 8.3hcr.  407 

 408 

A different coalescence model, proposed by Yao and Morel (2004), was also considered in this 409 

work. When using the Yao and Morel (2004) approach, the break-up model described above was 410 

retained, except for the value of Wecrit which was modified to 1.24, following the authors’ proposal. 411 

In Yao and Morel (2004), the number of coalescence events per unit volume and unit time, which is 412 

assumed to be mainly due to the collisions induced by turbulence, is expressed as: 413 

 414 

𝐾𝑐𝑙𝑑,𝑑′𝑛2 = −𝐶1 𝜀1 3⁄ 𝛼2𝑑𝑆𝑀11 3⁄ 1𝑔(𝛼) + 𝐶2√𝑊𝑒 𝑊𝑒𝑐𝑟𝑖𝑡⁄ 𝑒𝑥𝑝 (−𝐶3√𝑊𝑒 𝑊𝑒𝑐𝑟𝑖𝑡⁄ ) (36) 
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 415 

The first part of this equation represents the collision rate between the bubbles, whilst the 416 

exponential function describes the probability of coalescence following a collision event. The 417 

function g(α) accounts for the effect of the packing of the bubbles when the void fraction is higher 418 

than a certain value. From Yao and Morel (2004), C1 = 2.86, C2 = 1.922, C3 = 1.017 and Wecrit = 419 

1.24. 420 

 421 

When two groups of bubbles were included, additional source terms were added to the mass and 422 

momentum conservation equations to account for the exchanges between the groups. In a similar 423 

manner as above, the conservation equation for the moment of the bubble size distribution becomes: 424 

 425 𝜕𝑆𝛾,𝑛𝜕𝑡 + ∇ ∙ (𝑆𝛾,𝑛𝑼𝑎,𝑛) = 𝑆𝑏𝑟,𝑛𝛾 + 𝑆𝑐𝑙,𝑛𝛾 + 𝐷𝑏𝑟,𝑛𝛾 + 𝐵𝑐𝑙,𝑛𝛾 + 𝐵𝑏𝑟,𝑛𝛾 + 𝐷𝑐𝑙,𝑛𝛾
 (37) 

 426 

In this equation, the subscript n identifies the bubble group and assumes the values s for spherical 427 

bubbles and c for cap bubbles. Dγ
br and Dγ

cl are source terms for the death of bubbles by break-up to 428 

the previous group and by coalescence to the following group. Conversely, Bγ
br and Bγ

cl are due to 429 

the birth of bubbles by coalescence from the previous group and by break-up from the following 430 

group. Obviously, when only two groups are considered, Eq. (37) simplifies and the only source 431 

terms to be considered are the death of cap bubbles which gives rise to the birth of spherical bubbles 432 

by break-up, and the death of spherical bubbles with the birth of cap bubbles by coalescence. 433 

 434 

In this work, break-up of cap bubbles into spherical bubbles has been neglected, with this 435 

assumption explained and justified in detail in the results section. To calculate the additional 436 

sources accounting for exchanges between groups, using Eq. (29), Eq. (30) and the hypothesis of a 437 
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uniform bubble distribution for the coalescence source, the source terms for the death of spherical 438 

bubbles by coalescence are obtained as: 439 

 440 𝐷𝑐𝑙,𝑠0 = −2 ∙ (𝐾𝑐𝑙,𝑠𝑑,𝑑′𝑛𝑠2) 𝑓(𝑑𝐵) (38) 

 441 𝐷𝑐𝑙,𝑠2 = −2𝑑𝑒𝑞2 (𝐾𝑐𝑙,𝑠𝑑,𝑑′𝑛𝑠2) 𝑓(𝑑𝐵) (39) 

 442 

f(dB) is a function that expresses the probability that a coalescence event between two spherical 443 

bubbles leads to the birth of a cap bubble. Therefore, it is the ratio of the number of coalescence 444 

events that generate a cap bubble to the total number of coalescence events amongst the spherical 445 

bubble population. The coefficients -2 and -2d2
eq are calculated from the second contribution to Eq. 446 

(30) and reflect the fact that, in these events, the results is not a net change in the value of Sγ for the 447 

spherical bubbles, but a loss of two bubbles and their interfacial area to the cap bubbles. 448 

Accordingly, from the first contribution to Eq. (30), the gain in Sγ in the cap bubble group due to 449 

coalescence events in the spherical bubble group is obtained as: 450 

 451 𝐵𝑐𝑙,𝑐0 = (𝐾𝑐𝑙,𝑐𝑑,𝑑′𝑛𝑐2) 𝑓(𝑑𝐵) (40) 

 452 𝐵𝑐𝑙,𝑐2 = 1.59 ∙ 𝑑𝑒𝑞2 (𝐾𝑐𝑙,𝑐𝑑,𝑑′𝑛𝑐2) 𝑓(𝑑𝐵) (41) 

  453 

From Eq. (38), the mass source from spherical to cap bubbles can be obtained, using the volume 454 

average bubble diameter: 455 

 456 

𝛤𝑠𝑐 = −𝛤𝑐𝑠 = −𝐷𝑐𝑙,𝑠0 𝜋𝑑30,𝑠36 𝜌𝑎 (42) 
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 457 

Finally, for simplicity, the function f(dB) was assumed equal to ratio of the SMD to the critical 458 

diameter: 459 

 460 

𝑓(𝑑𝐵) = 𝑑𝑆𝑀𝑑𝑐  (43) 

  461 

In the previous equation, dc is the critical diameter at which bubble behaviour changes from a 462 

spherical bubble to a cap bubble. 463 

 464 

The overall model, implemented in the STAR-CCM+ CFD code (CD-adapco, 2014), was solved in 465 

a two-dimensional axisymmetric geometry. At the inlet, fully-developed phase velocities and void 466 

fraction boundary conditions were imposed, together with an imposed pressure at the outlet and the 467 

no-slip condition at the wall. Experimental measurements of average bubble diameter at the first 468 

measurement station were used for the bubble diameter inlet boundary condition. Therefore, 469 

experimental measurements at the last station were compared against predictions at a distance from 470 

the inlet equal to that between the first and the last measurement stations. Strict convergence of 471 

residuals was ensured, together with a mass balance error lower than 0.01 % for both phases. 472 

Experiment HI2 was selected for a mesh sensitivity study, the results of which are presented in 473 

Figure 1 in terms of the radial profiles of water velocity, turbulence kinetic energy, void fraction 474 

and SMD. The radial profiles are shown as a function of the normalized radial position r/R, which is 475 

equal to 0 at the pipe centre and to 1 at the pipe wall. Four grids were tested with a progressively 476 

increasing number of grid nodes (10  100, 15  150, 20  200, and 25  250). The water velocity 477 

and void fraction distributions are rather insensitive to the number of nodes, but some differences 478 

between the various grids are apparent for the turbulence kinetic energy and the SMD. From the 479 

results in Figure 1, the grid with 20  200 nodes was chosen for other simulations. All grids had a 480 
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first grid node higher than, but close, to y+ = 30, which is the lower limit for the use of wall 481 

functions. 482 

 483 

Figure 1. Mesh sensitivity study in terms of radial and axial node numbers for experiment HI2. 484 

Water velocity (a), turbulence kinetic energy (b), void fraction (c) and SMD (d) radial profiles are 485 

presented. 486 

  487 

 488 

4. Results and discussion 489 

 490 

This section describes and discusses the simulation results and comparisons against experimental 491 

data. First, the experiments of Liu (1993), Hibiki and Ishii (1999) and Hibiki et al. (2001) were 492 

simulated with the YM model (Yao and Morel, 2004) and the results are presented in Figure 2 and 493 

Figure 3. As can be seen, the YM model generally overestimates the SMD. In particular, marked 494 

overestimations were obtained at the lowest liquid velocities (Hi1, HI1 and L1), whereas, at higher 495 

velocities (Hi2, HI2 and L2), the overestimation is reduced and, for experiment HI2 (Figure 3a) 496 
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only, good agreement with data is found. The tendency of the YM model to over-predict the bubble 497 

diameter has already been noted by Cheung et al. (2007) and Nguyen et al. (2013). To serve as a 498 

benchmark, predictions from the LZ model (Lo and Zhang, 2009) are also included in Figure 2 and 499 

Figure 3. Overall, the LZ model provides better accuracy when predicting the SMD. Nevertheless, 500 

and similar to YM, a strong dependency on the liquid velocity is apparent. At low velocity, good 501 

agreement, or limited overestimation of the SMD, was obtained (with respect to YM) but, at higher 502 

velocities, LZ under predicts the experiments. In addition, as already reported in Lo and Zhang 503 

(2009), the bubble diameter is generally under predicted in the near wall region, probably as a 504 

consequence of the excessively strong bubble break-up rate there.  505 

 506 

The availability of experimental data allowed a further optimization of the YM model to be made. 507 

As the over prediction of the bubble diameter is possibly due to an excessive amount of bubble 508 

coalescence in the flow, this was limited by modifying the value of Wecrit in Eq. (36), where it 509 

mainly impacts the coalescence probability. Therefore, a lower Wecrit reduces the coalescence 510 

probability or, from a different perspective, it reduces the interaction time available to the liquid 511 

film trapped between the two colliding bubbles to drain out. Calibration of the model was limited to 512 

the coalescence model (the model for break-up was not changed from that of Lo and Zhang (2009), 513 

except for the value of Wecrit, equal to 1.24 for YM). Even if the SMD is still overestimated at low 514 

liquid velocity and underestimated at high liquid velocity, acceptable agreement was achieved in all 515 

the tested conditions with Wecrit = 0.10 (YM opt. lines in Figure 2 and Figure 3). Overall, the 516 

improvement in the accuracy with respect to the original YM and LZ models is significant. In the 517 

near wall region, where LZ significantly under predicts the experimental data, the value of the 518 

bubble diameter is well predicted, with the exception of experiment HI1 (Figure 2g) in which the 519 

flow rate is particularly low. In addition, for the LZ model, optimization on a case-by-case basis has 520 

been found necessary to reach a comparable accuracy (Lo and Zhang, 2009), whereas, in this work, 521 

the same value of Wecrit was maintained for all flow conditions considered. In view of this finding, 522 



25 

 

additional research work is required to develop more general and accurate models of bubble break-523 

up and coalescence. 524 

 525 

Figure 2 and Figure 3 also show radial profiles of the mean water velocity and void fraction (for L1 526 

and L2, Figure 3e and Figure 3h, the air velocity is also provided). Overall, simulation results are in 527 

good agreement with the experiments. The mean velocity is under predicted for L2 and, but only in 528 

the pipe core region, for Hi1. With regards to the void fraction, the best agreement is found for the 529 

wall-peaked void profiles (Figure 2c, Figure 3f and Figure 3i). In contrast, the core-peaked void 530 

profiles were more difficult to predict. As it is possible to see from Figure 2 and Figure 3, a larger 531 

bubble size spectrum characterizes the core-peaked void profiles (Hi2, HI1 and HI2) with respect to 532 

the wall-peaked profiles, where the average bubble diameter radial distribution is generally flatter. 533 

This complicates the simulation of the momentum transfer at the interphase, even with the use of a 534 

population balance model. As shown in Figure 2f, Figure 2i and Figure 3c, a sharp increase in the 535 

near wall region, followed by an almost flat profile, is usually predicted. The experiments, however, 536 

show a more gentle but continuous increase of the void fraction towards the pipe centre. Predictions 537 

are similar amongst the three different models considered. This suggests that it is the interphase 538 

momentum forces (lift and wall forces in particular) that mostly determine the radial void fraction 539 

and mean velocity profiles. In this regard, the use of constant lift force coefficients, not dependent 540 

on the bubble diameter, may significantly inhibit changes in the lift force induced by changes in the 541 

latter diameter.  542 

 543 

The role of the critical Weber number in the YM model is the focus of the results given in Figure 4, 544 

where the SMD profile is shown for three different values of Wecrit. It has already been mentioned 545 

how Wecrit mainly affects the coalescence probability. Specifically, a lower Wecrit reduces the 546 

coalescence probability and, therefore, the average bubble diameter. This effect is equivalent to 547 

reducing the interaction time available for the liquid film trapped between two colliding bubbles to 548 
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drain out, or, equivalently, to increasing the time required by this liquid film to drain out. Figure 4 549 

includes two different experimental datasets. It is observed that the reduction in coalescence with 550 

Wecrit is higher at the low flow rate (Figure 4a), while the effect of a lower Wecrit is reduced at the 551 

higher flow rate (Figure 4b). At high flow rates, therefore, the interaction time is low given the high 552 

level of turbulence, and hence the coalescence probability has a correspondingly low value. As a 553 

consequence, the amount of decrease achievable by tuning Wecrit is also low. At low flow rates, in 554 

contrast, the coalescence probability is higher due to the longer interaction times that occur in a low 555 

level turbulence field, and hence this probability can be significantly affected by a change in the 556 

value of Wecrit. 557 

 558 

 559 
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 560 
Figure 2. SMD, mean water velocity and void fraction radial profiles compared against experiments 561 

Hi1 (a-c), Hi2 (d-f) and HI1 (g-i). Simulation results are shown for LZ (---), YM (--) in its standard 562 

form (Eq. 36) and after optimization (YM opt., ⎯).  563 

 564 

 565 
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 566 
Figure 3. SMD, mean velocity and void fraction radial profiles compared against experiments HI2 567 

(a-c), L1 (d-f) and L2 (g-i). Simulation results are shown for LZ (---), YM (--) in its standard form 568 

(Eq. 36) and after optimization (YM opt., ⎯).  569 

 570 

 571 
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 572 
Figure 4. SMD radial profiles obtained with YM and Wecrit = 0.1 (⎯), Wecrit = 0.25 (--) and  573 

Wecrit = 1.24 (---). Predictions are compared against experiments Hi1 (a) and Hi2 (b).  574 

  575 

4.1. Effect of the break-up model 576 

 577 

As mentioned, no changes were introduced in the break-up model, except for the value of the Wecrit, 578 

which, for YM, was increased to 1.24 following the authors’ proposal (Yao and Morel, 2004). Since 579 

no clear indications of the amount of bubble break-up occurring are available for the flows studied 580 

in this work, additional simulations neglecting break-up were made to evaluate the impact of the 581 

break-up model on the predictions. In Figure 5, four of the experiments were predicted with and 582 

without accounting for break-up. For the majority of the pipe cross-section, the effect of break-up 583 

on the bubble diameter distribution is seen to be negligible. In the near wall region, break-up is 584 

effective in reducing the SMD, but only at the highest liquid velocities (Figure 5b and Figure 5d). 585 

At low velocities, break-up is negligible even in the region close to the wall (Figure 5a and Figure 586 

5c). Overall, and in view of the agreement obtained with these experiments, these results suggest 587 

that coalescence is the dominant mechanism in these flows. 588 

 589 

Since only the net result of the combined action of both break-up and coalescence is available in 590 

terms of the experimental data, this being the SMD, additional sensitivity studies were made, 591 
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increasing the impact of both. The same Wecrit value of 0.25 was adopted in both the break-up and 592 

the coalescence models. The increase in the rate of coalescence with a higher critical Weber number 593 

was already addressed in Figure 4. A lower Wecrit in the break-up model increases the break-up rate 594 

since a lower energy is required to break-up the bubble. The value of Wecrit adopted is now close to 595 

that used in the LZ model and, therefore, a comparable amount of break-up is to be expected. The 596 

results are presented in Figure 6. Even if some improvement is obtained for a number of flows 597 

(Figure 6a, Figure 6c and Figure 6e), excessive break-up causes an under prediction of bubble 598 

diameter at high liquid velocities (Figure 6b, Figure 6d and Figure 6f). In addition, and except for 599 

experiment HI1 (Figure 6c), the bubble diameter is always underestimated in the near wall region, 600 

where, in view of the higher levels of turbulence, break-up is expected to be more significant. 601 

Again, these results are similar to those obtained with the LZ model (Figure 2 and Figure 3), for 602 

which an excessive amount of break-up, in particular in the near wall region, has already been 603 

reported (Lo and Zhang, 2009). This further supports the case for these flows being coalescence 604 

dominated. 605 

Overall, and despite the previous results, it remains difficult to precisely evaluate the accuracy of 606 

the model with regard to the competitive action of coalescence and break-up, and the mechanisms 607 

involved. As mentioned, only the net result is available through data on the bubble diameter. 608 

Therefore, additional knowledge is required on the physics of these flows, and on the interaction 609 

between bubbles and with the continuous phase in particular. The lack of information on these 610 

processes is a significant constraint on the further development of these models that needs to be 611 

overcome if more accurate modelling is to be achieved. As an example, the recent tendency has 612 

been to include all possible mechanisms of bubble break-up and coalescence (e.g. turbulent 613 

collision, wake entrainment, shearing-off) (Liao et al., 2015; Smith et al., 2012; Sun et al., 2004). 614 

Even if this may benefit the generality of the developed models, the relative influence of each 615 

mechanism has been generally optimized with additional constants tuned against average bubble 616 

diameter measurements, which, at the present time, is the only real option available to modellers. 617 
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Without a clear knowledge of the effective impact of each mechanism as a function of the flow 618 

conditions, however, accurate prediction of the average bubble diameter does not guarantee the 619 

accuracy of each individual model, and possibly increases the uncertainty in the results and limits 620 

the applicability of the model itself. In view of this, advances must rely on the availability of more 621 

detailed experimental measurements or, perhaps, accurate direct numerical simulations of bubble 622 

behaviour. 623 

 624 

 625 
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 626 
Figure 5. SMD radial profiles with (⎯) and without (--) considering the effect of bubble break-up 627 

in the flow. Predictions are compared against experiments Hi1 (a), Hi2 (b), L1 (c) and L2 (d).  628 

 629 
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 630 
Figure 6. SMD radial profiles at different rates of coalescence and break-up of bubbles in the flow 631 

(Wecrit,br = 1.24 and Wecrit,cl = 0.1 (⎯);  Wecrit,br = 0.25 and Wecrit,cl = 0.25 (--)). Predictions are 632 

compared against the experiments in Table 1. 633 

 634 

4.2. Continuous phase turbulence sensitivity 635 

 636 

Turbulence parameters affect in different ways the models for coalescence and break-up, and, as the 637 

latter models are based on the collision of bubbles due to turbulence, they are expected to have a 638 

significant impact on results. The sensitivity to the turbulence model predictions has already been 639 

investigated in some literature studies (Nguyen et al., 2013; Yao and Morel, 2004), but, in many 640 

more, the assessment and optimization of the coalescence and break-up models was carried out 641 

without considering the accuracy of the turbulence predictions. The aim of this section, therefore, is 642 

to address the dependency of results on the continuous phase turbulence.  643 

 644 

In bubbly flows, the contribution of the bubbles to the continuous phase turbulence is accounted for, 645 

in the k-ε turbulence model, by source terms in the equations of that model (Eq. (11) and Eq. (12), 646 

Section 3.1).  647 
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 648 

Figure 7 shows radial profiles of the predicted SMD as a function of the amount of bubble-induced 649 

turbulence, together with the continuous phase streamwise turbulence intensities I. Turbulence 650 

measurements are available only from Hibiki and Ishii (1999) and Hibiki et al. (2001), where 651 

turbulence intensity was calculated by dividing the streamwise r.m.s of the velocity fluctuations by 652 

the maximum liquid velocity. Three different cases are considered: no bubble-induced turbulence, 653 

and Eq. (14) with KBI = 0.25 and KBI = 1.0. At low flow rates (HI1, Figure 7i), or for wall-peaked 654 

void profiles (Hi1, Figure 7g, and L1, Figure 7k), where the presence of the bubbles induces a flat 655 

mean velocity profile and a strong reduction of the shear-induced turbulence production in the pipe 656 

centre, the contribution of the bubble-induced turbulence is significant. For the high flow rate wall-657 

peaked case (L2, Figure 7l), where the turbulence level is already high and the void fraction in the 658 

pipe centre is low, and the core-peaked void profiles (Hi2, Figure 7h, and HI2, Figure 7j), where the 659 

shear-induced production remains significant, the impact of the bubble-induced contribution is less. 660 

In the first case scenario, significant differences in the turbulence level cause bubble diameter 661 

profiles to be very different from one another (Figure 7a, Figure 7c and Figure 7e). This means that 662 

these results are dependent on the continuous phase turbulence and, for some flows, on the bubble-663 

induced turbulence model as well. Therefore, for a proper model validation, both the average 664 

bubble diameter and the continuous phase turbulence predictions need to be compared against 665 

experiments. Conversely, the results may be dependent not only on the flows used for validation, 666 

but also on the specific bubble-induced turbulence model. Unfortunately, turbulence measurements 667 

are not available for all the experiments considered. Moreover, for the data of Hibiki et al. (2001), 668 

turbulence levels were always under predicted, even when considering all the drag force to be 669 

converted to turbulence kinetic energy. It must be pointed out that the turbulence intensities in these 670 

data appear significantly higher than for other experiments in the literature having comparable 671 

geometry and flow conditions (Liu, 1998; Serizawa et al., 1975; Wang et al., 1987). For HI1 and 672 

HI2, instead, satisfactory predictions were obtained. In view of the limited number of simultaneous 673 
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measurements of both the bubble diameter distribution and the flow turbulence, some additional 674 

comparisons are shown in Figure 8, taking advantage of a previous validation of the bubble-induced 675 

turbulence model (Eq. (14) and Eq. (15)), which showed satisfactory accuracy over a wide range of 676 

conditions (Colombo and Fairweather, 2015). In Figure 8, radial profiles of the r.m.s. of streamwise 677 

velocity fluctuations are compared against different bubbly flow data in vertical pipes. For these 678 

validations, the bubble diameter was fixed and assumed equal to experimental observations, even if 679 

only rough averaged values were available for the majority of the experiments. Even if some 680 

discrepancies are still apparent, the overall agreement can be considered satisfactory. This 681 

additional validation, although useful, did not allow a comparison of bubble diameter and 682 

turbulence for the same experiment and, therefore, concerns related to data availability still remain. 683 

Recently, the development of advanced experimental techniques has allowed detailed 684 

measurements of the average bubble diameter and the bubble diameter distribution (Lucas et al., 685 

2005, 2010; Prasser et al., 2007). However, in view of the previous results and to better support the 686 

modelling effort, experimental measurements need to allow not only the validation of the bubble 687 

diameter distribution, but also of the continuous phase turbulence level. 688 

 689 

In Figure 7, YM predicts a higher SMD, therefore a higher coalescence ratio, with a decrease in the 690 

continuous phase turbulence. Collision rate increases with turbulence, while coalescence probability 691 

reduces, with the latter being the dominant effect. This qualitatively behaviour needs further 692 

examination. In Figure 9, the same sensitivity study is made for the LZ model, for experiments Hi1, 693 

Hi2 and L1. The turbulence intensity behaviour remains the same, but the bubble diameter 694 

predictions are changed. At low liquid velocity (Hi1 and L1) and without the bubble-induced 695 

turbulence model, bubble diameter is high at the wall, where the turbulence remains high, whereas 696 

it is low in the centre of the pipe due to the reduced turbulence in this region. When the turbulence 697 

level is increased, the coalescence is also increased, and, consequently, the SMD. With a further 698 

increase of the turbulence, the bubble diameter is reduced by a decrease of the coalescence or, more 699 
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likely, by an increase of bubble break-up, which is higher for this model (Section 4.2). At high 700 

velocity (Hi2), the break-up is already high even without including bubble-induced turbulence. 701 

Therefore, with an increase of the turbulence level, the break-up is further increased and a decrease 702 

of the SMD is observed. For YM, even if a reduction in the coalescence following an increase of the 703 

turbulence, at already high turbulence levels, cannot be excluded, in the limit of zero turbulence, an 704 

increase of the coalescence is expected following an increase in the turbulence. Therefore, despite 705 

the good accuracy shown, the qualitative behaviour of YM with the turbulence level, which is 706 

different from that of LZ, suggests the need for additional future verification of these models. 707 
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 708 
Figure 7. SMD (a-f) and turbulence intensity (g-l) radial profiles without bubble-induced turbulence 709 

(---), and with bubble-induced turbulence, and for KBI = 0.25 (⎯) and KBI = 1.0 (--). Predictions, 710 

obtained with YM and Wecrit = 0.1, are compared against experiments in Table 1. 711 

 712 
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 713 
Figure 8. Radial profiles of r.m.s. of streamwise velocity fluctuations compared against experiments 714 

in bubbly pipe flows (Colombo and Fairweather, 2015). (a) Liu and Bankoff (1993), jw = 1.087 m/s, 715 

ja = 0.112 m/s (∆); Serizawa et al. (1975), jw = 1.03 m/s, ja = 0.291 m/s (○); Liu and Bankoff (1993), 716 

jw = 0.376 m/s, ja = 0.347 m/s (□). (b) Wang et al. (1987), jw = 0.71 m/s, ja = 0.1 m/s (∆); Liu 717 

(1998), jw = 1.0 m/s, ja = 0.22 m/s (○); Serizawa et al. (1975), jw = 1.03 m/s, ja = 0.436 m/s (□). 718 

 719 

 720 
Figure 9. SMD (a-c) and turbulence intensity (d-f) radial profiles without bubble-induced 721 

turbulence (---), and with bubble induced turbulence, and for KBI = 0.25 (⎯) and KBI = 1.0 (--). 722 

Predictions, obtained with LZ, are compared against experiments Hi1 (a,d), Hi2 (b,e) and L1 (c,f). 723 

 724 
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4.3. Reynolds stress turbulence model 725 

 726 

Using the YM model, the same tests were repeated with a Reynolds stress turbulence model and the 727 

results are presented in Figure 10 and Figure 11. A comparable level of agreement with data is 728 

found using both turbulence models for the SMD profiles (Figure 10 a-c and Figure 11 a-c), and 729 

similar velocity profiles were obtained (Figure 10 d-f and Figure 11 d-f). Similar void fraction 730 

profiles were also obtained for the wall-peaked cases (Figure 10g, Figure 11h and Figure 11i), 731 

although for the core-peaked profiles, the behaviour of the void fraction is reproduced better by the 732 

RSM (Figure 10h, Figure 10i and Figure 11g). More specifically, in such cases the void fraction 733 

gently increases from the wall towards the pipe centre. However, for the k-ε model, the increase is 734 

sharper near the wall, and the profile is then flatter towards the pipe centre. In a turbulent bubbly 735 

flow, the turbulence may interact with the interphase forces, inducing a radial pressure gradient in 736 

the flow that impacts upon the distribution of the dispersed phase (Ullrich et al., 2014). Generally, 737 

since the turbulence is higher near the wall, the pressure accordingly increases towards the pipe 738 

centre. It is this pressure gradient that is likely responsible for the over predicted void fraction peak 739 

for experiment L2 (Figure 11i). 740 

 741 

In bubbly pipe flows, the turbulence is anisotropic, and this anisotropy can be reproduced using a 742 

Reynolds stress model (Colombo and Fairweather, 2015). Therefore, different results should be 743 

expected when using a k-ε model, because of the different turbulent stresses, or if the turbulence 744 

kinetic energy is added to the pressure. It must be noted, however, that differences between the two 745 

turbulence modelling approaches might be obscured by the influence of the interfacial momentum 746 

forces, which have been the object of a significant amount of optimization and refinement in the 747 

past. It is the opinion of the authors, however, that even when a similar accuracy is obtained (wall-748 

peaked profiles), the use of a Reynolds stress formulation provides more insight into the distinctive 749 

features of the flow and should assist the development of models of more general applicability. In 750 
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this regard, Ullrich et al. (2014) predicted some wall-peaked void fraction profiles with an RSM, 751 

whilst neglecting lift and wall reflection forces.  752 

 753 

Differences between the turbulence model predictions are also apparent in the turbulence intensity 754 

profiles (Figure 10 j-l and Figure 11 j-l). These, even if small for the majority of cases, induce 755 

differences in the coalescence rates which, as discussed in the previous section, are strongly 756 

dependent on the turbulence in the continuous phase. The different coalescence rates, together with 757 

differences in the void fraction profiles, can be considered the reason for the slight disparity in the 758 

bubble diameter and the mean velocity profiles between the k-ε model and the RSM. 759 

  760 

 761 
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 762 
Figure 10. SMD (a-c), mean velocity (d-f), void fraction (g-i) and turbulence intensity (j-l) radial 763 

profiles compared against experiments Hi1, Hi2 and HI1. Predictions were obtained with a k-ε ( ⎯) 764 

and a Reynolds stress (---) turbulence formulation.  765 
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 766 
Figure 11. SMD (a-c), mean velocity (d-f), void fraction (g-i) and turbulence intensity (j-l) radial 767 

profiles compared against experiments HI2, L1 and L2. Predictions were obtained with a k-ε ( ⎯) 768 

and a Reynolds stress (---) turbulence formulation. 769 

 770 
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4.4. Two-group model 771 

 772 

It was mentioned in the introduction how bubbly flows are generally characterized by polidispersity 773 

and by an extended range of bubble sizes. The comparisons in the previous sections demonstrated 774 

the different behaviour of spherical and larger cap bubbles, showing wall-peaked or core-peaked 775 

void fraction profiles induced by the value of the average bubble diameter. When both types of 776 

bubble are present in a comparable amount, the void fraction profile may exhibit both wall- and 777 

core-peaked features, as is the case for the experiment L1, depicted in Figure 12 (Lucas et al., 778 

2005). These experiments are particularly difficult to predict because the distinctive features of both 779 

bubble types must be reproduced. Therefore, an advanced model with two different bubble classes 780 

was specifically implemented to predict these kinds of flows. In view of the results from the 781 

previous sections, and the in general negligible impact of break-up, only the additional sources due 782 

to the coalescence of two spherical bubbles into a cap bubble were considered. For this case, the 783 

value of the critical diameter dc was assumed equal to 5 mm. Comparison against experimental data 784 

is provided in Figure 12, based on the RSM predictions. As shown in the figure, the void fraction 785 

radial profile and the behaviour of both the spherical and the cap bubbles are well predicted. Near 786 

the wall, the void fraction profile increases rapidly because of the presence there of the majority of 787 

the spherical bubbles. After a region where it remains almost flat, the void fraction increases again 788 

towards the pipe centre where the cap bubbles accumulate, pushed there by the negative lift force. 789 

In a similar manner, close to the wall, the SMD is close to the SMD of the spherical bubbles, 790 

whereas it tends to the SMD of the cap bubbles towards the pipe centre.  791 

 792 

The bubble size distribution, which is tracked by the Sy model, is shown at three different axial 793 

locations in Figure 13. The plots display hdB, which is, following the work of Lucas et al. (2005), 794 

the contribution of each bubble size to the total void fraction: 795 

 796 
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ℎ𝑑𝐵 = 𝑑(𝛼)𝑑(𝑑𝐵) (44) 

 797 

In this way, the contribution of larger bubbles, which are few in number but carry a significant 798 

amount of the total air volume, is properly accounted for (Lucas et al., 2005). Experimental data 799 

were obtained by averaging over the whole pipe cross-section. For the predictions, the bubble 800 

distribution was extracted from the simulation at each node and is shown in Figure 13 for the near-801 

wall region (Figure 13a) and for the pipe centre (Figure 13b). At the first axial location (L/D = 8.4), 802 

two distinct peaks are shown in both the experimental and the numerical results. Starting from the 803 

inlet, the predominance of coalescence events leads to the formation of larger bubbles, as is 804 

demonstrated by the second peak in the profile at around 6 mm. Obviously, being still close to the 805 

inlet, large bubbles represent only a small fraction of the total void fraction. At this location, the 806 

total void fraction is overestimated, as can be seen from the higher peak values predicted. This is 807 

due to the fact that it was not possible to match the inlet conditions of the experiment exactly due to 808 

lack of data, in particular for the velocity of the phases. Therefore, some distance from the inlet is 809 

required for the flow to establish. Predicted values of the void fraction at the two other locations are 810 

indeed significantly closer to the experimental values. At the second axial location (L/D = 29.9), the 811 

bubble population evolves and, since coalescence remains predominant, the number of larger 812 

bubbles increases. Two distinctive peaks are still present, but the larger diameter peak is now the 813 

greatest. This shift of the bubble diameter spectrum to larger values is well reproduced by the 814 

simulation, with the main difference with experiment being a larger number of bubbles in the region 815 

between the two peaks. At the final location (L/D = 59.2), the larger bubbles are in the majority, 816 

with the first peak at around 4 mm now being very small. The same evolution is found in the 817 

simulation, with a more diffuse distribution and an extended spectrum of diameters. It should be 818 

noted that the variance of the distribution is lower and the first peak still present near the wall where 819 

the majority of the spherical bubbles are present. In contrast, near the pipe centre, where the 820 
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majority of the larger bubbles accumulate, the averaged experimental spectrum is overestimated and 821 

the bubble population extends to even higher values of the bubble diameter. The experimental 822 

profile, therefore, can be qualitatively considered an average of these two behaviours. In view of 823 

these results, the evolution of the bubble diameter distribution is predicted with a satisfactory 824 

accuracy, even with the rather simple model adopted which could be subject to numerous further 825 

improvements. Therefore, the challenge of predicting the whole bubble size spectrum from small 826 

spherical to large cap bubbles seems to be manageable with the use of only two bubble groups. 827 

 828 

 829 
Figure 12. Void fraction (a) and SMD (b) radial profiles considering two bubble classes. Along with 830 

total values ( ⎯), which are compared against Lu1 experiment, predictions for spherical (--) and 831 

cap bubbles (---) are also shown. 832 

 833 
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 834 
Figure 13. Bubble diameter distribution extracted from the simulations (lines) compared against the 835 

experiments (markers) at three axial locations: L/D = 8.4 (x, --);  L/D = 29.9 (○, --); L/D = 59.2 (□, 836 

⎯). Simulation results are displayed in two different locations: (a) pipe wall; (b) pipe centre. 837 

 838 

 839 

5. Conclusions 840 

 841 

In this work, the Sγ model (Lo and Zhang, 2009), based on the moments of the bubble size 842 

distribution, was coupled with an Eulerian-Eulerian two-fluid model with the STAR-CCM+ code, 843 

and tested against the data from seven upward bubbly flow experiments in pipes. Through the Sγ 844 

model, the evolution of the bubble size distribution was followed through the flows, so that the 845 

average SMD and the interfacial area concentration, which are crucial for the prediction of the 846 

phase interactions, could be tracked. Being based on the method of moments, the Sγ model also has 847 

the advantage that the required computational resources are limited. The addition of a different 848 

coalescence model (Yao and Morel, 2004), based on the collision of bubbles in turbulence and on 849 

the film drainage model, and further optimized against the experiments, allowed reproduction of the 850 

experimental radial profiles of the SMD. More specifically, a constant critical Weber number value 851 

of 0.10 in the coalescence model was sufficient to obtain a satisfactory predictive accuracy. 852 

 853 

A sensitivity study suggested a negligible effect of the bubble break-up model and the best results 854 

were achieved by considering these flows to be dominated by bubble coalescence. However, the 855 
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lack of availability of experimental data, limited to the average bubble diameter alone, constrains  856 

research work in the field. In particular, it is extremely difficult to evaluate the competitive 857 

contributions of break-up and coalescence, and to extend the modelling to cover all possible 858 

mechanisms involved. Therefore, additional knowledge is required, by means of experiments or 859 

direct numerical simulations. Continuous phase turbulence was noted to significantly influence the 860 

predictions of the model. In this regard, validation of turbulence models needs to be carried out in 861 

conjunction with that for the bubble diameter evolution, and requires the availability of additional 862 

complete datasets. In addition, different coalescence models were found to display different 863 

qualitative behaviour following changes in the flow field turbulence level, and this requires further 864 

investigation. 865 

 866 

Lastly, an advanced version of the overall model described was tested. This included a Reynolds 867 

stress turbulence formulation and two groups of bubbles, accounting for spherical bubbles 868 

accumulating close to the wall and cap bubbles migrating towards the pipe centre. The RSM, in 869 

addition to performing better in flows where known shortcomings of two-equation turbulence 870 

models are present, provides better accuracy in predicting core-peaked void fraction profiles and 871 

properly accounts for the interaction between the turbulence and the interphase forces. Comparison 872 

with a complex void fraction profile suggested that extension of the model to only two bubble 873 

groups is sufficient to describe the whole bubble spectrum, and the bubbly flow regime up to the 874 

transition to slug flow, even though additional comparisons with data are necessary.    875 
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