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Nonstationary Fractionally Integrated Functional
Time Series
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We study a functional version of nonstationary fractionally integrated time series, covering the functional unit root
as a special case. The time series taking values in an infinite-dimensional separable Hilbert space are projected onto
a finite number of sub-spaces, the level of nonstationarity allowed to vary over them. Under regularity conditions,
we derive a weak convergence result for the projection of the fractionally integrated functional process onto the
asymptotically dominant sub-space, which retains most of the sample information carried by the original functional
time series. Through the classic functional principal component analysis of the sample variance operator, we obtain
the eigenvalues and eigenfunctions which span a sample version of the dominant sub-space. Furthermore, we
introduce a simple ratio criterion to consistently estimate the dimension of the dominant sub-space, and use a
semiparametric local Whittle method to estimate the memory parameter. Monte-Carlo simulation studies are given
to examine the finite-sample performance of the developed techniques.

Keywords: fractional integration; functional principal component analysis; functional time series; local Whittle
estimation; nonstationary process

1. Introduction

In recent years, there has been increasing interest in studying functional time series. Examples of
functional time series include intraday stock price curves with each functional observation defined
as a pricing function of time points within a trading day (Horváth, Kokoszka and Rice, 2014), and
age-specific fertility rate curves with each functional observation defined as a function of different ages
for a particular calendar year (Li, Robinson and Shang, 2020). Most of the existing literature assumes
that the functional observations are either independent or stationary weakly dependent (e.g., Bosq, 2000,
Ramsay and Silverman, 2005, Ferraty and Vieu, 2006, Bathia, Yao and Ziegelmann, 2010, Hörmann and
Kokoszka, 2010, Horváth and Kokoszka, 2012). These authors introduce various approaches to reduce
the infinite dimension to a finite dimension, and subsequently apply statistical tools developed for scalar
or multivariate time series processes.

The stationarity assumption is often rejected when testing functional time series collected in eco-
nomics and finance. For example, Horváth, Kokoszka and Rice (2014) reject it via a functional version
of KPSS test (Kwiatkowski et al., 1992) for some intraday stock price curves; and Chang, Kim and Park
(2016) find evidence of unit root or 𝐼 (1) structure for intra-month distribution of S&P 500 index returns.
Therefore, it seems worthwhile to explore nonstationary pattern in functional time series analysis.
Univariate and multivariate nonstationary time series have been extensively studied in the last few
decades (e.g., Engle and Granger, 1987, Johansen, 1991, Phillips, 1995, Robinson and Marinucci, 2001,
Robinson and Hualde, 2003, Chen and Hurvich, 2006). In contrast, infinite dimensional curve time
series with nonstationarity have received much less attention.

Chang, Kim and Park (2016) study nonstationarity of the time series of state densities by dividing
an infinite-dimensional Hilbert space into the 𝐼 (1) and stationarity subspaces, and use the functional
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principal component analysis (FPCA) to estimate the finite-dimensional 𝐼 (1) subspace. Beare, Seo and
Seo (2017) consider a cointegrated linear process in the Hilbert space and derive the Granger-Johansen
representation theorem for infinite-dimensional 𝐼 (1) functional autoregressive processes. This result
is extended by Beare and Seo (2020) to I(2) autoregressive processes in the Hilbert space and further
extended by Franchi and Paruolo (2020) to more general functional 𝐼 (𝑑) autoregressive processes with
𝑑 = 1,2, · · · . Derivation of the main theoretical theorems in Beare and Seo (2020) and Franchi and
Paruolo (2020) relies on the analytic Fredholm theorem (e.g., Gohberg, Goldberg and Kaashoek, 1990),
which gives the inversion of the analytic operator functions. To facilitate estimation and inference, it is
crucial to estimate the dimension of the dominant nonstationary subspace, which is often called as the
attractor space (e.g., Beare, Seo and Seo, 2017, Beare and Seo, 2020, Franchi and Paruolo, 2020). Chang,
Kim and Park (2016) use a generalised eigenvalue test to determine the dimension of the I(1) subspace,
whereas Nielsen, Seo and Seong (2019) propose a variance ratio-type test to determine the dimension.

The aforementioned literature focuses on nonstationary functional time series with integration order
being a positive integer. In the present paper, we introduce a more general nonstationary framework
for functional time series, including functional 𝐼 (𝑑) structure (𝑑 = 1, 2, · · · ) as a special case, namely a
functional version of the nonstationary fractionally integrated time series. We allow the nonstationarity
level to vary over different sub-spaces, as specified in Section 2 below. The proposed framework is a
natural extension of the “Type II" multivariate fractionally integrated process, introduced by Marinucci
and Robinson (2000) and Robinson and Marinucci (2001), and further studied in Phillips and Shimotsu
(2004), Robinson (2005) and Shimotsu and Phillips (2005). We are particularly interested in a functional
sub-space denoted by H1 on which the orthogonal projection of the nonstationary functional time series
retains most of the sample information, and thus term it the asymptotically dominant sub-space, as
in Li, Robinson and Shang (2020). Under regularity conditions, we derive a weak convergence result
for projection of the fractionally integrated functional process onto the dominant sub-space, extending
Theorem 1 in Marinucci and Robinson (2000) from the multivariate setting to the functional setting
with multivariate Brownian motion replaced by Brownian motion on H1 and complementing weak
convergence results developed for stationary functional process (e.g., Berkes, Horváth and Rice, 2013).
Furthermore, in order to approximate the dominant nonstationary sub-space H1, we construct a sample
variance operator, derive its asymptotic properties and then implement the classic FPCA. Consequently,
we obtain the estimated eigenvalues and associated eigenfunctions whose span can be viewed as a
sample version of H1.

To facilitate inference, we further estimate two key elements: the dimension of H1 and the memory
parameter. As in Li, Robinson and Shang (2020), we use a simple ratio criterion to estimate the
dimension of H1 and prove that the estimator is weakly consistent. Our method is easy to implement
and substantially different from that in Chang, Kim and Park (2016) and Nielsen, Seo and Seong (2019).
We apply the local Whittle method which is introduced by Künsch (1987) and systematically studied by
Robinson (1995), Velasco (1999) and Phillips and Shimotsu (2004) to estimate the memory parameter.
Noting that local Whittle estimation is biased when the true memory parameter exceeds one, we further
introduce an algorithm involving appropriate integer-order differencing to obtain consistent estimate. The
developed methodology and the relevant asymptotic property extend those in Li, Robinson and Shang
(2020, 2021) from stationary long-range dependent functional processes to nonstationary fractionally
integrated processes. Monte-Carlo simulation further shows that the developed methodologies have
reliable performance in finite samples.

The rest of the paper is organised as follows. Section 2 introduces the model setting, gives some tech-
nical assumptions and the weak convergence for the projected functional process. Section 3 constructs
the sample variance operator, implements FPCA and derives the relevant asymptotic results. Section 4
estimates the dimension and memory parameter of the dominant sub-space. Section 5 gives a Monte-
Carlo simulation study. Section 6 concludes the paper. Proofs of the main results are given in Appendix
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A. Some technical lemmas with their proofs, additional simulation studies and empirical applications
are available in a supplement. Throughout the paper, we define the separable space H as the set of
real measurable functions on a compact set S such that

∫
S
𝑧2 (𝑢)𝑑𝑢 <∞. The relevant inner product is

⟨𝑧1, 𝑧2⟩ =
∫
S
𝑧1 (𝑢)𝑧2 (𝑢)𝑑𝑢 and the norm is ∥𝑧∥ = ⟨𝑧, 𝑧⟩1/2. Denote by LH the space of continuous linear

operators from H to H equipped with the operator norm defined by ∥𝑳∥ = sup𝑧∈H {∥𝑳(𝑧)∥ : ∥𝑧∥ ≤ 1}.
Let 𝑳′ be the adjoint of 𝑳, which is defined via ⟨𝑳𝑥, 𝑦⟩ = ⟨𝑥, 𝑳′𝑦⟩ for all 𝑥, 𝑦 ∈ H . For 𝑳 ∈ LH , we
define two associated linear subspaces: ker(𝑳) = {𝑥 ∈ H : 𝑳(𝑥) = 0} and ran(𝑳) = {𝑳(𝑥) : 𝑥 ∈ H},
which are called as the kernel and range (or image) of 𝑳, respectively. Let 𝑧1 ⊗ 𝑧2 = ⟨𝑧1, · ⟩𝑧2 for all
𝑧1, 𝑧2 ∈ H , and let H1 ⊕ H2 denote a direct sum of two sub-spaces H1 and H2 in the sense that for

any 𝑧 ∈ H1 ⊕ H2, we can uniquely write 𝑧 = 𝑧1 + 𝑧2 with 𝑧𝑖 ∈ H𝑖 , 𝑖 = 1,2. Let
𝐷
→,

𝑃
→ and ⇒ denote

convergence in distribution, convergence in probability and weak convergence (in appropriate space),
respectively.

2. Model and assumptions

Assume that 𝑋𝑡 is a functional process in H defined by

𝑋𝑡 =

𝑡∑︁
𝑖=1

𝚿𝑡−𝑖𝜂𝑖 , 𝑡 = 1,2, · · · , (1)

where (𝚿𝑖 : 𝑖 ≥ 0) is a sequence of continuous linear operators in LH and (𝜂𝑖 : 𝑖 ≥ 1) is a stationary
linear process in H , which satisfy Assumptions 2.1 and 2.2, respectively.

Assumption 2.1. Let 𝚿0 = 𝑰, an identity operator from H to H , and for 𝑖 ≥ 1,

𝚿𝑖 =

𝑠0∑︁
𝑗=1

𝑖𝑑 𝑗−1𝐿 𝑗 (𝑖)𝑩 𝑗 , 𝑑1 > 𝑑2 > · · · > 𝑑𝑠0 , (2)

where 𝑑1 > 1/2, 𝑠0 is a fixed positive integer, 𝐿 𝑗 (·) is a slowly-varying function at infinity satisfying

sup
0≤ 𝜃≤1

��𝐿 𝑗 (𝑖 + 𝜃) − 𝐿 𝑗 (𝑖)�� ≤ 𝑐 𝑗𝐿⋄𝑗 (𝑖)/𝑖, 𝑗 = 1, · · · , 𝑠0

with 𝑐 𝑗 being a positive constant and 𝐿⋄
𝑗
(𝑖) being a positive slowly-varying function, and 𝑩 𝑗 , 𝑗 =

1, · · · , 𝑠0, are continuous linear operators in LH which are invariant over 𝑖.

Assumption 2.2. The stationary functional process 𝜂𝑡 is generated by

𝜂𝑡 =

∞∑︁
𝑖=0

𝑨𝑖𝜀𝑡−𝑖 , 𝑡 = 1,2, · · · , (3)

where (𝑨𝑖 : 𝑖 ≥ 0) is a sequence of continuous linear operators in LH with the operator norm satisfying∑∞
𝑖=1 𝑖∥𝑨𝑖 ∥ < ∞, and (𝜀𝑡 : 𝑡 ∈ Z) is a sequence of independent and identically distributed (i.i.d.)

random elements in H with mean zero, covariance function 𝛀(𝑢, 𝑣), 𝑢, 𝑣 ∈ C and E [∥𝜀𝑖 ∥
𝑝] < ∞,

𝑝 > max{2,2/(2𝑑1 − 1)}.
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Assumption 2.1 indicates that the sequence
(
𝑖𝑑 𝑗−1𝐿 𝑗 (𝑖) : 𝑖 ≥ 1

)
is quasi-monotonically decaying to

zero, which is commonly assumed in the literature on scalar strongly dependent process (e.g., Marinucci
and Robinson, 2000, Robinson and Marinucci, 2001). A key assumption to our main asymptotic theory
such as Proposition 2.1 and Theorem 3.1 is 𝑑1 > 1/2, whereas the remaining parameters 𝑑2, · · · , 𝑑𝑠0 can
be either larger than 1/2 (i.e., nonstationary region) or smaller than 1/2 (i.e., stationary region). As
𝑑1 > 1/2, the operator norm of 𝚿𝑖 defined in (2) is not square-summable and the functional process
𝑋𝑡 defined in (1) is not asymptotically stationary. The conditions in Assumption 2.2 ensure that 𝜂𝑡
is a stationary and short-range dependent functional process. As in Johansen and Nielsen (2012), the
moment condition on 𝜀𝑖 becomes very strong when 𝑑1 approaches the boundary value 1/2.

In this paper, we call model (1) a fractionally integrated functional process, which can be viewed
as a functional generalisation of the “Type II" fractionally integrated multivariate process studied
in Marinucci and Robinson (2000), Robinson and Marinucci (2001), Phillips and Shimotsu (2004)
and Shimotsu and Phillips (2005). For the very special case 𝚿𝑖 ≡ 𝑰 for 𝑖 ≥ 0, (1) reduces to the 𝐼 (1)
functional process 𝑋𝑡 =

∑𝑡
𝑖=1 𝜂𝑖 which is considered by Chang, Kim and Park (2016) and Beare, Seo and

Seo (2017). Noting that 𝚿𝑖 = 𝑖𝑑1−1𝐿1 (𝑖)𝑩1 (1+ 𝑜(1)) for 𝑖 sufficiently large, we may call (1) a functional
𝐼 (𝑑1) process. An alternative nonstationary fractionally integrated functional process is

𝑋𝑡 = 𝑋𝑡−1 +𝑈𝑡 = 𝑋0 +

𝑡∑︁
𝑘=1

𝑈𝑡 , (4)

where𝑈𝑡 is an 𝐼 (𝑑1−1) functional process with 1/2 ≤ 𝑑1 < 3/2, which may be generated by a functional
version of stationary fractionally integrated autoregressive moving averages considered as in Section 4 of
Li, Robinson and Shang (2020). Model (4) is a natural functional extension of the “Type I" multivariate
fractionally integrated process introduced by Velasco (1999), and can be extended to cover 𝑑1 ≥ 3/2 by
repeated use of partial summation. Robinson (2005) discusses the difference between the “Type I" and
“Type II" processes in the univariate time series setting. The present paper concentrates on “Type II"
structure (1) since it directly provides a valid representation for all 𝑑1 > 1/2.

We next provide a decomposition of 𝑋𝑡 using the Beveridge-Nelson (B-N) decomposition (Phillips
and Solo, 1992) and Abel summation by parts. This decomposition motivates the introduction of
Assumption 2.3 below which is crucial to achieve dimension reduction. Letting 𝑆𝑘 (𝜂) =

∑𝑘
𝑗=1 𝜂 𝑗 , by the

B-N decomposition, we can show that

𝑆𝑘 (𝜂) = 𝑨

𝑘∑︁
𝑗=1

𝜀 𝑗 + 𝜂0 − 𝜂𝑘 , (5)

where 𝑨 =
∑∞
𝑖=0 𝑨𝑖 and 𝜂𝑡 =

∑∞
𝑖=0 �̃�𝑖𝜀𝑡−𝑖 with �̃�𝑖 =

∑∞
𝑗=𝑖+1 𝑨 𝑗 . From (2), we may write 𝚿𝑖 =∑𝑠0

𝑗=1 𝜓𝑖, 𝑗𝑩 𝑗 with 𝜓𝑖, 𝑗 = 𝑖𝑑 𝑗−1𝐿 𝑗 (𝑖), which, together with (1), leads to

𝑋𝑡 =

𝑠0∑︁
𝑗=1

𝑡∑︁
𝑖=1

𝜓𝑡−𝑖, 𝑗𝑩 𝑗𝜂𝑖 =:
𝑠0∑︁
𝑗=1

𝑋𝑡 , 𝑗 . (6)

Since 𝑑1 > 𝑑2 > · · · > 𝑑𝑠0 , we may show that 𝑋𝑡 ,1 is the leading term on the right side of (6) when
𝑡 is sufficiently large. Letting 𝚿𝑖,1 = 𝜓𝑖,1𝑩1 = 𝑖𝑑1−1𝐿1 (𝑖)𝑩1 for 𝑖 ≥ 1 and 𝚿0,1 = 𝑰, and noting that
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𝑆0 (𝜂) = 0, by Abel summation by parts and the B-N decomposition in (5), for 𝑡 ≥ 2,

𝑋𝑡 ,1 =

𝑡∑︁
𝑖=1

𝚿𝑡−𝑖,1𝜂𝑖 =

𝑡∑︁
𝑖=1

𝚿𝑡−𝑖,1 (𝑆𝑖 (𝜂) − 𝑆𝑖−1 (𝜂))

=

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝑆𝑖 (𝜂) + 𝑆𝑡 (𝜂)

=

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝑆𝑖 (𝜂) + 𝑆𝑡 (𝜂) +

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝜂0 −

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝜂𝑖 + 𝜂0 − 𝜂𝑡 ,

=: 𝑋∗
𝑡 ,1 + 𝑋

†
𝑡 ,1, (7)

where 𝑆𝑡 (𝜂) = 𝑨
∑𝑡
𝑘=1 𝜀𝑘 ,

𝑋∗
𝑡 ,1 =

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝑆𝑖 (𝜂) + 𝑆𝑡 (𝜂),

𝑋
†
𝑡 ,1 =

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝜂0 −

𝑡−1∑︁
𝑖=1

(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
𝜂𝑖 + 𝜂0 − 𝜂𝑡 .

Combining (6) and (7), we have

𝑋𝑡 = 𝑋
∗
𝑡 ,1 + 𝑋

†
𝑡 ,1 + 𝑋𝑡 ,−1 with 𝑋𝑡 ,−1 =

𝑠0∑︁
𝑗=2

𝑋𝑡 , 𝑗 . (8)

We may show that 𝑋†
𝑡 ,1 and 𝑋𝑡 ,−1 are asymptotically dominated by 𝑋∗

𝑡 ,1 when 𝑡 is sufficiently large (see

the proof of Proposition 2.1 in Appendix A). Furthermore, by (2) and the definition of 𝑆𝑖 (𝜂), we write

𝑋∗
𝑡 ,1 =

𝑡∑︁
𝑖=1

𝚿𝑡−𝑖,1𝑨𝜀𝑖 =

𝑡−1∑︁
𝑖=1

𝜓𝑡−𝑖,1𝑩1𝑨𝜀𝑖 + 𝑨𝜀𝑡 . (9)

Assumption 2.3. The operator 𝑩1,𝐴 := 𝑩1𝑨 has finite positive rank 𝑞1.

Assumption 2.3 is key to reduct infinite dimension to finite dimension in our main asymptotic
analysis. Motivated by the representation in (8) and (9), we define H1 = ran(𝑩1,𝐴), which is a closed
linear subspace of H with finite dimension 𝑞1. For any non-zero 𝑣 ∈ H1, the coordinate process
⟨𝑣, 𝑋𝑡 ⟩ is univariate nonstationary 𝐼 (𝑑1). Hence, we call H1 as the nonstationary 𝐼 (𝑑1) sub-space or
the attractor space as in Beare, Seo and Seo (2017) and Beare and Seo (2020). As the orthogonal
projection of 𝑋𝑡 onto H1 results in the strongest nonstationary signal and retains most of the sample
information, we may also call H1 the dominant sub-space as in Li, Robinson and Shang (2020). Let
H⊥

1 be the orthogonal complement of H1 such that H1 ⊕H⊥
1 =H . By the definition of H1, we have



6

H⊥
1 =

[
ran(𝑩1,𝐴)

]⊥
= ker(𝑩′

1,𝐴). In fact, for any 𝑣 ∈ H⊥
1 , we may show that the order of integration for

the coordinate process ⟨𝑣, 𝑋𝑡 ⟩ is strictly smaller than 𝑑1, and thus term H⊥
1 as the cointegrating space.

The definitions of H1 and H⊥
1 are similar to those in Beare, Seo and Seo (2017), Beare and Seo (2020)

and Franchi and Paruolo (2020), which derive the Granger-Johansen representation theorems for the
autoregressive processes in the Hilbert space and then construct the 𝐼 (𝑑) subspace (𝑑 = 1,2, · · · ) and
the cointegrating space using the autoregressive coefficient operators.

Let 𝑷1 and 𝑷⊥
1 be the orthogonal projections on H1 and H⊥

1 , respectively, and 𝑷1 + 𝑷⊥
1 = 𝑰. Let

D([0,1],R) be the space of real-valued functions on [0,1] which are continuous on the right and
have finite left limit. The space D([0,1],H1) is defined similarly to D([0,1],R) but with H1-valued
functions replacing real-valued ones. For a random sequence (𝑍𝑡 : 𝑡 ≥ 1) on H1, we write 𝑍⌊𝑛𝑟 ⌋ ⇒ 𝑍 (𝑟)

in the space D([0,1],H1), if ⟨𝑣, 𝑍⌊𝑛𝑟 ⌋⟩ ⇒ ⟨𝑣, 𝑍 (𝑟)⟩ in the space D([0,1],R) for any 𝑣 ∈ H1, where
⌊·⌋ denotes the floor function and 𝑍 (·) is a limiting stochastic process on H1. The following proposition
gives the weak convergence of 𝑋𝑡 in the direction determined by 𝑷1, which plays a key role in proving
the main asymptotic theorems to be given in Section 3.
Proposition 2.1. Suppose that Assumptions 2.1– 2.3 are satisfied and let 𝛀1 = 𝑷1𝑩1,𝐴𝛀𝑩′

1,𝐴𝑷1 be

positive definite on H1. For 0 ≤ 𝑟 ≤ 1,

1

𝑛𝑑1−1/2𝐿1 (𝑛)
𝑷1𝑋⌊𝑛𝑟 ⌋ ⇒𝑊𝑑1 ,𝛀1 (𝑟) (10)

in the space D([0, 1],H1), where the limiting process𝑊𝑑1 ,𝛀1 (·) takes value on H1 with𝑊𝑑1 ,𝛀1 (0) = 0
almost surely (a.s.) and

𝑊𝑑1 ,𝛀1 (𝑟) =

∫ 𝑟

0
(𝑟 − 𝑠)𝑑1−1𝑑𝐵𝛀1 (𝑠), (11)

𝐵𝛀1 (·) is a Brownian motion on H1 with variance operator 𝛀1.

The above proposition is an extension of Theorem 1 in Marinucci and Robinson (2000) from the
multivariate setting to the functional setting with the multivariate Brownian motion in Marinucci and
Robinson (2000) replaced by a Brownian motion on the sub-space H1. For the special case 𝑑1 = 1 and
𝐿1 (·) ≡ 𝑐0, a positive constant,𝑊𝑑1 ,𝛀1 (·) reduces to the Brownian motion 𝐵𝛀1 (·), and Proposition 2.1
becomes the functional weak convergence result derived by Chang, Kim and Park (2016).

We can make a further decomposition on the cointegrating space H⊥
1 . Suppose that 𝑑2 > 1/2,

0 < 𝑑1 − 𝑑2 < 1/2, and the operator 𝑷⊥
1 𝑩2,𝐴 with 𝑩2,𝐴 = 𝑩2𝑨 has finite positive rank 𝑞2. Let H2 =

ran(𝑷⊥
1 𝑩2,𝐴), which is closed and finite dimensional. For any non-zero 𝑣 ∈ H2, we may show that

⟨𝑣, 𝑋𝑡 ⟩ is a univariate nonstationary 𝐼 (𝑑2) process. Define the sub-space H⊥
2 via H2 ⊕H⊥

2 =H⊥
1 . Let

𝑷2 and 𝑷⊥
2 be the orthogonal projections on H2 and H⊥

2 , respectively, and 𝑷2 + 𝑷⊥
2 = 𝑷⊥

1 . Following
the proof of Proposition 2.1 in Appendix A and strengthening the moment condition in Assumption 2.2,
we may show that

1

𝑛𝑑2−1/2𝐿2 (𝑛)
𝑷2𝑋⌊𝑛𝑟 ⌋ ⇒𝑊𝑑2 ,𝛀2 (𝑟) (12)

in the space D([0,1],H2), where 𝑊𝑑2 ,𝛀2 (·) takes value on H2 with 𝑊𝑑2 ,𝛀2 (0) = 0 a.s. and
𝑊𝑑2 ,𝛀2 (𝑟) =

∫ 𝑟
0 (𝑟 − 𝑠)𝑑2−1𝑑𝐵𝛀2 (𝑠), 𝐵𝛀2 (·) is a Brownian motion on H2 with variance operator

𝛀2 = 𝑷2𝑩2,𝐴𝛀𝑩′
2,𝐴𝑷2 which is assumed to be positive definite on H2. Note that H =H1 ⊕ H⊥

1 =

H1 ⊕H2 ⊕H⊥
2 , which is similar to the subspace decomposition in Remark 4.5 of Beare and Seo (2020)

and the POLE(2) condition in Franchi and Paruolo (2020).
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3. Sample variance operator and FPCA

In this section, we consider approximating the sub-space H1 and the associated orthogonal projection 𝑷1
by the corresponding sample version. To achieve this, we have to construct a sample variance operator,
derive its asymptotic property and then implement the FPCA. Define an unnormalised variance operator
by

𝑽𝑛 =

𝑛∑︁
𝑡=1

𝑋𝑡 ⊗ 𝑋𝑡 , or equivalently, 𝑽𝑛 (𝑧) =

𝑛∑︁
𝑡=1

⟨𝑋𝑡 , 𝑧⟩𝑋𝑡 (13)

for 𝑧 ∈ H , where 𝑋𝑡 is defined in (1). As 𝑋𝑡 = 𝑷1𝑋𝑡 + 𝑷⊥
1 𝑋𝑡 , we write

𝑽𝑛 =

𝑛∑︁
𝑡=1

(
𝑷1 + 𝑷⊥

1

)
𝑋𝑡 ⊗ 𝑋𝑡

(
𝑷1 + 𝑷⊥

1

)

=

𝑛∑︁
𝑡=1

𝑷1𝑋𝑡 ⊗ 𝑋𝑡𝑷1 +

𝑛∑︁
𝑡=1

𝑷1𝑋𝑡 ⊗ 𝑋𝑡𝑷
⊥
1 +

𝑛∑︁
𝑡=1

𝑷⊥
1 𝑋𝑡 ⊗ 𝑋𝑡𝑷1 +

𝑛∑︁
𝑡=1

𝑷⊥
1 𝑋𝑡 ⊗ 𝑋𝑡𝑷

⊥
1

=: 𝑽𝑛1 +𝑽𝑛2 +𝑽𝑛3 +𝑽𝑛4. (14)

Using Proposition 2.1 in Section 2, we can prove the following theorem which describes the asymptotic

behavior of 𝑽𝑛. For a sequence of operators (𝒁𝑡 : 𝑡 ≥ 1) on H1, we write 𝒁𝑛
𝐷
→ 𝒁, if ⟨𝑣1, 𝒁𝑛 (𝑣2)⟩

𝐷
→

⟨𝑣1, 𝒁(𝑣2)⟩ for any 𝑣1, 𝑣2 ∈ H1.

Theorem 3.1. Suppose that the assumptions of Proposition 2.1 are satisfied. Then we have

1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽𝑛1
𝐷
−→𝑽 :=

∫ 1

0
𝑊𝑑1 ,𝛀1 (𝑟) ⊗𝑊𝑑1 ,𝛀1 (𝑟)𝑑𝑟, (15)

where𝑊𝑑1 ,𝛀1 (·) is defined in Proposition 2.1. For 𝑘 = 2,3,4, ∥𝑽𝑛𝑘 ∥ = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
.

When 𝑑1 = 1, 𝑊𝑑1 ,𝛀1 (·) in (15) would be replaced by the Brownian motion 𝐵𝛀1 (·) and we can
obtain convergence results similar to those in Lemma 3.1 in Chang, Kim and Park (2016). If 𝑠0 ≥ 2 and
𝑑2 > 1/2, we may derive more explicit rates for ∥𝑽𝑛𝑘 ∥, 𝑘 = 2,3,4. Specifically, for 𝑘 = 2 and 3,

∥𝑽𝑛𝑘 ∥ =



𝑂𝑃

( [
𝑛𝑑1+𝑑2𝐿2

∗ (𝑛)
]
∨

[
𝑛2𝑑1−1/2𝐿2

∗ (𝑛)
] )
, 𝑑1 > 1,

𝑂𝑃

(
𝑛𝑑1+𝑑2𝐿2

∗ (𝑛)
)
, 1/2 < 𝑑1 ≤ 1,

(16)

and

∥𝑽𝑛4∥ =



𝑂𝑃

( [
𝑛2𝑑2𝐿2

∗ (𝑛)
]
∨

[
𝑛2𝑑1−1𝐿2

∗ (𝑛)
] )
, 𝑑1 > 1,

𝑂𝑃

(
𝑛2𝑑2𝐿2

∗ (𝑛)
)
, 1/2 < 𝑑1 ≤ 1,

(17)

where 𝐿∗ (·) = max
{
|𝐿1 (·) |, |𝐿

⋄
1 (·) |, |𝐿2 (·) |

}
. Theorem 3.1 indicates that 𝑽𝑛1 is the asymptotic leading

term of 𝑽𝑛, i.e.,

1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽𝑛 =
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽𝑛1 + 𝑜𝑃 (1). (18)
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We next implement FPCA. Let (𝜆𝑘 (𝑽𝑛), 𝜈𝑘 (𝑽𝑛)), 𝑘 = 1, · · · , 𝑞1, be pairs of eigenvalues and eigen-
functions of the unnormalised sample variance operator 𝑽𝑛. If the dimension 𝑞1 is known a priori, we
may construct the sample nonstationary 𝐼 (𝑑1) (or dominant) subspace via

H1 (𝑽𝑛) = S
(
𝜈1 (𝑽𝑛), · · · , 𝜈𝑞1 (𝑽𝑛)

)
(19)

which is the span of the eigenfunctions 𝜈1 (𝑽𝑛), · · · , 𝜈𝑞1 (𝑽𝑛). Let 𝑷1 (𝑽𝑛) be the orthogonal projection
on H1 (𝑽𝑛) and 𝑷⊥

1 (𝑽𝑛) = 𝑰 − 𝑷1 (𝑽𝑛). Using Theorem 3.1, we readily have the following asymptotic
result.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Then

𝑷1 (𝑽𝑛) = 𝑷1 + 𝑜𝑃 (1), 𝑷⊥
1 (𝑽𝑛) = 𝑷⊥

1 + 𝑜𝑃 (1), (20)

and for 𝑘 = 1, · · · , 𝑞1, (
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝜆𝑘 (𝑽𝑛), 𝜈𝑘 (𝑽𝑛)

)
𝑃

−→ (𝜆𝑘 (𝑽), 𝜈𝑘 (𝑽)) , (21)

where (𝜆𝑘 (𝑽), 𝜈𝑘 (𝑽)), 𝑘 = 1, · · · , 𝑞1, are non-zero eigenvalues (arranged in the decreasing order and

distinct with probability one) of 𝑽 defined in (15) and the corresponding eigenfunctions.

Theorem 3.2 can be seen as an extension of Proposition 3.2 and Theorem 3.3 in Chang, Kim and
Park (2016) from functional 𝐼 (1) processes to more general functional 𝐼 (𝑑1) processes. Without loss of
generality, we define 𝜈𝑘 (𝑽) = sign(⟨𝜈𝑘 (𝑽𝑛), 𝜈𝑘 (𝑽)⟩)𝜈𝑘 (𝑽) so that 𝜈𝑘 (𝑽𝑛) and 𝜈𝑘 (𝑽) have the same
sign. The dominant subspace H1 may be generated as the span of the eigenfunctions 𝜈1 (𝑽), · · · , 𝜈𝑞1 (𝑽).
Hence H1 (𝑽𝑛) defined in (19) is a sensible approximation of H1. Note that although 𝜈𝑘 (𝑽), 𝑘 =

1, · · · , 𝑞1, are random as functionals of 𝑊𝑑1 ,𝛀1 (·), the space spanned by them is non-random and
uniquely determined as pointed out by Chang, Kim and Park (2016).

Motivated by Theorem 3.1 above, we may also define the normalised sample variance operator:

𝑽𝑛 =
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑛∑︁
𝑡=1

𝑋𝑡 ⊗ 𝑋𝑡 , or 𝑽𝑛 (𝑧) =
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑛∑︁
𝑡=1

⟨𝑋𝑡 , 𝑧⟩𝑋𝑡 . (22)

In practice, we can obtain the following sample variance (or covariance) function:

𝑉𝑛 (𝑢, 𝑣) =
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑛∑︁
𝑡=1

𝑋𝑡 (𝑢)𝑋𝑡 (𝑣), 𝑢, 𝑣 ∈ S, (23)

which is connected to the normalised sample variance operator via V𝑛 (𝑧) (𝑢)=
∫
S
𝑉𝑛 (𝑢, 𝑣)𝑧(𝑣)𝑑𝑣, 𝑧 ∈ H .

Note that 𝑽𝑛 is proportional to 𝑽𝑛, indicating that the eigenfunctions via FPCA of 𝑽𝑛 are the same
as those of 𝑽𝑛. However, the latter does not contain any unknown quantity (say, 𝑑1) so is preferred in
practical implementation.

4. Estimation of 𝒒1 and 𝒅1

In this section, we introduce methods to estimate the dimension 𝑞1 and the parameter 𝑑1, which are
important when the main interest lies in statistical inference.
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4.1. Estimation of 𝒒1

In practice, the dimension 𝑞1 of the dominant subspace H1 is unknown, and needs to be estimated
before implementing the FPCA technique introduced in Section 3. We estimate 𝑞1 via a simple ratio
criterion and then show its consistency. Recall that 𝜆𝑘 (𝑽𝑛) is the 𝑘-th largest eigenvalue of 𝑽𝑛. We
estimate 𝑞1 by

𝑞1 = arg min
1≤𝑘≤𝐾

����𝜆𝑘+1 (𝑽𝑛)

𝜆𝑘 (𝑽𝑛)

���� , (24)

where 𝐾 is a pre-specified positive integer and 0/0 = 1. The above ratio criterion is easy to implement
and a similar idea has been commonly used to estimate the number of latent factors in factor models
(Lam and Yao, 2012, Ahn and Horenstein, 2013), to identify cointegrated components of nonstationary
time series (Zhang, Robinson and Yao, 2019), and to determine the dimension of the dominant subspace
for stationary long memory functional time series (Li, Robinson and Shang, 2020). Other dimension
selection methods proposed in the literature on functional data analysis include the cumulative percentage
of total variation (Horváth and Kokoszka, 2012), bootstrap (Hall and Vial, 2006) and the Akaike
information criterion (Li, Wang and Carroll, 2013). In practical implementation of the ratio criterion,
we may set 𝜆𝑘 (𝑽𝑛)/𝜆1 (𝑽𝑛) as 0 if |𝜆𝑘 (𝑽𝑛)/𝜆1 (𝑽𝑛) | < 𝛿 with 𝛿 being a pre-specified small positive
number. Consequently, we can show that����𝜆𝑘+1 (𝑽𝑛)

𝜆𝑘 (𝑽𝑛)

���� = |𝜆𝑘+1 (𝑽𝑛)/𝜆1 (𝑽𝑛) |

|𝜆𝑘 (𝑽𝑛)/𝜆1 (𝑽𝑛) |
= 0/0 = 1, (25)

if both |𝜆𝑘+1 (𝑽𝑛)/𝜆1 (𝑽𝑛) | and |𝜆𝑘 (𝑽𝑛)/𝜆1 (𝑽𝑛) | are smaller than 𝛿. The following theorem shows that
𝑞1 is weakly consistent, extending Proposition 4 in Li, Robinson and Shang (2020) from the stationary
long-range dependence setting to nonstationary fractional integration.

Theorem 4.1. Suppose that the assumptions of Theorem 3.2 are satisfied. Then we have P (𝑞1 = 𝑞1) → 1.

4.2. Local Whittle estimation of 𝒅1

Semiparametric estimation of the memory parameter 𝑑1 in fractionally integrated time series has
received much attention. In this section, we extend the most commonly-used semiparametric local
Whittle method to functional processes. The local Whittle estimation method is introduced by Künsch
(1987), and its asymptotic properties including consistency and asymptotic normality are established by
Robinson (1995, 2008) for stationary univariate and multivariate time series with memory parameter
between −1/2 and 1/2. These results are extended by Velasco (1999) to “Type I" fractionally integrated
processes with memory parameter between −1/2 and 1, and further extended by Phillips and Shimotsu
(2004) to “Type II" fractionally integrated processes with memory parameter exceeding 1/2 and possibly
larger than 1. Li, Robinson and Shang (2020) apply this method to estimate the memory parameter for
stationary and long-range dependent functional time series and Li, Robinson and Shang (2021) further
derive its asymptotic theory including consistency and asymptotic normality.

We now limit our attention to the following 𝐼 (𝑑1) functional time series model:

∇𝑑1𝑋𝑡 = 𝜂𝑡 𝐼{𝑡 ≥ 1} with ∇ = 1 − 𝐵, (26)

where 𝐵 denotes the backshift operator, 𝑑1 > 1/2, 𝐼{·} is an indicator function and (𝜂𝑡 : 𝑡 ≥ 1) is a
stationary and short-range dependent functional process satisfying Assumption 2.2 in Section 2. Model
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(26) extends the functional FARIMA model in Li, Robinson and Shang (2020) from the stationary region
to the nonstationary one, and generalises the model in Phillips and Shimotsu (2004) and Shimotsu and
Phillips (2005) from the classic univariate setting to the functional setting. Note that

𝑋𝑡 = ∇−𝑑1𝜂𝑡 𝐼{𝑡 ≥ 1} =
𝑡−1∑︁
𝑖=0

𝛽𝑖,𝑑1𝐵
𝑖𝜂𝑡 =

𝑡−1∑︁
𝑖=0

𝛽𝑖,𝑑1𝜂𝑡−𝑖 =

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖,𝑑1𝜂𝑖 , (27)

where, by the Stirling’s formula,

𝛽𝑖,𝑑1 =
Γ(𝑑1 + 𝑖)

Γ(𝑑1)𝑖!
=

1
Γ(𝑑1)

𝑖𝑑1−1 +𝑂 (𝑖𝑑1−2) (28)

with Γ(·) being the gamma function. Combining (27) and (28), it is easy to show that (26) falls within the
model framework (1), so the theory and methodology developed in Sections 2 and 3 are applicable to 𝑋𝑡
defined in (26). For notational simplicity, we let H1,𝑛 :=H1 (𝑽𝑛) defined in (19), and 𝑷1,𝑛 := 𝑷1 (𝑽𝑛),
the orthogonal projection on H1,𝑛. For a real function 𝜈 ∈ H such that ∥𝑷1𝜈∥ > 0, by (20) in Theorem
3.2, we readily have that

∥𝑷1,𝑛𝜈 − 𝑷1𝜈∥ = 𝑜𝑃 (1). (29)

Define the sequence of inner products:

𝑥𝜈𝑡 = ⟨𝑷1𝜈, 𝑋𝑡 ⟩ =

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖,𝑑1 ⟨𝑷1𝜈, 𝜂𝑖⟩ =

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖,𝑑1𝜂
𝜈
𝑖 , (30)

which is univariate nonstationary 𝐼 (𝑑1) with 𝑑1 > 1/2. Furthermore, by (27) and Proposition 2.1, we
readily obtain

1

𝑛𝑑1−1/2
𝑥𝜈
⌊𝑛𝑟 ⌋

=
1

𝑛𝑑1−1/2

〈
𝑷1𝜈, 𝑷1𝑋⌊𝑛𝑟 ⌋ + 𝑷⊥

1 𝑋⌊𝑛𝑟 ⌋

〉

=
1

𝑛𝑑1−1/2

〈
𝑷1𝜈, 𝑷1𝑋⌊𝑛𝑟 ⌋

〉

⇒ 𝑤𝜈 (𝑟) :=
1

Γ(𝑑1)

〈
𝑷1𝜈,𝑊𝑑1 ,𝛀★

(𝑟)
〉

(31)

in D([0,1],R), where 𝑊𝑑1 ,𝛀★
(·) is defined similarly to 𝑊𝑑1 ,𝛀1 but with 𝛀1 replaced by 𝛀★ =

𝑷1𝑨𝛀𝑨′𝑷1.
Given that (𝑥𝜈𝑡 : 𝑡 ≥ 1) is univariate 𝐼 (𝑑1) with 𝑑1 > 1/2, we may estimate 𝑑1 by local Whittle.

Assume that 𝜂𝜈
𝑖
= ⟨𝑷1𝜈, 𝜂𝑖⟩ has a spectral density 𝑓𝜈 (·) satisfying 𝑓𝜈 (𝜆) ∼𝐺𝜈 as 𝜆→ 0+, where 𝐺𝜈 is

a positive constant relying on choice of 𝜈. This is a sensible condition as (𝜂𝑡 : 𝑡 ≥ 1) is stationary and
short-range dependent (see Assumption 2.2). Define the discrete Fourier transform and the periodogram
of 𝑥𝜈𝑡 at the frequency 𝜆 𝑗 = 2𝜋 𝑗/𝑛 as

𝑤𝜈𝑥 (𝜆 𝑗 ) =
1

(2𝜋𝑛)1/2

𝑛∑︁
𝑡=1

𝑥𝜈𝑡 𝑒
𝑖𝑡𝜆 𝑗 and 𝐼𝜈𝑥 (𝜆 𝑗 ) =

��𝑤𝜈𝑥 (𝜆 𝑗 )��2 . (32)

Consider the following Gaussian objective function:

Q(𝐺, 𝑑) =
1
𝑚

𝑚∑︁
𝑗=1

[
log(𝐺𝜆−2𝑑

𝑗 ) +𝐺−1𝜆2𝑑
𝑗 𝐼

𝜈
𝑥 (𝜆 𝑗 )

]
, (33)
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where 𝑚 is a tuning parameter satisfying that 𝑚→∞ but 𝑚 = 𝑜(𝑛). As in Robinson (1995), we may
concentrate Q(𝐺, 𝑑) in (33) with respect to 𝐺, and obtain the local Whittle estimate:

𝑑1 = arg min
𝑑∈Θ

𝑅(𝑑) = arg min
𝑑∈Θ




log𝐺 (𝑑) −
2𝑑
𝑚

𝑚∑︁
𝑗=1

log𝜆 𝑗




(34)

with

𝐺 (𝑑) =
1
𝑚

𝑚∑︁
𝑗=1

𝜆2𝑑
𝑗 𝐼

𝜈
𝑥 (𝜆 𝑗 ),

where Θ = [Δ1,Δ2] with Δ1 and Δ2 chosen such that −1/2 < Δ1 < Δ2 < ∞. Unfortunately, the local
Whittle estimation defined in (34) is practically infeasible as the orthogonal projection 𝑷1 (involved in
the definition of 𝑥𝜈𝑡 ) is unobservable. By (20) in Theorem 3.2, it is sensible to approximate 𝑷1 by its
sample version 𝑷1,𝑛, and thus we may expect that 𝑥𝜈𝑡 is reasonably close to 𝑥𝜈𝑡 = ⟨𝑷1,𝑛𝜈, 𝑋𝑡 ⟩, which is
an approximate 𝐼 (𝑑1) process. Following the local Whittle estimation procedure with 𝑥𝜈𝑡 replaced by 𝑥𝜈𝑡 ,
we can obtain a feasible estimator of 𝑑1, denoted by 𝑑1. Similar to Theorems 3.1 and 3.2 in Phillips and
Shimotsu (2004), the following theorem shows that the feasible local Whittle estimator is only consistent
when 1/2 < 𝑑1 ≤ 1, and converges to unity when 𝑑1 exceeds 1.

Theorem 4.2. Suppose that the spectral density of 𝜂𝜈
𝑖

satisfies that 𝑓𝜈 (𝜆) ∼ 𝐺𝜈 as 𝜆 → 0+, it is

differentiable in a small neighbourhood of the origin, and

𝑑

𝑑𝜆
log 𝑓𝜈 (𝜆) =𝑂 (1/𝜆) as 𝜆→ 0 + .

In addition, the tuning parameter 𝑚 satisfies that 𝑚→∞ and 𝑚 = 𝑜(𝑛).

(i) For 1/2 < 𝑑1 ≤ 1, 𝑑1
𝑃
→ 𝑑1.

(ii) For 1 < 𝑑1 ≤ 𝑐 with 1 < 𝑐 <∞, 𝑑1
𝑃
→ 1.

Theorem 4.2, together with Theorem 1(i) in Li, Robinson and Shang (2021), indicates that, to obtain
a consistent estimated value of 𝑑1, an integer-order differencing is needed to process the approximate
coordinate process (𝑥𝜈𝑡 : 𝑡 ≥ 1) when 𝑑1 is close to one. Hence, we propose the following algorithm.

Algorithm 1. Local Whittle with integer-order differencing

1. Apply local Whittle using 𝑥𝜈𝑡 to obtain the estimate 𝑑1.

2. If 𝑑1 < 1 − 𝛾 with 𝛾 being a pre-determined small tuning parameter, we stop the algorithm and use
𝑑1 as the final estimate. Otherwise, take point-wise differences of 𝑥𝜈𝑡 and obtain the local Whittle
estimate 𝑑1 (1).

3. Repeat Step 2 𝑘0 times. Terminate the algorithm when 𝑑1 (𝑘0) < 1− 𝛾 and obtain the final estimate:
𝑑1 (𝑘0) + 𝑘0.

It would be interesting to further study the asymptotic distribution theory of the developed local
Whittle estimate. Velasco (1999) and Phillips and Shimotsu (2004) derive the estimation distribution



12

properties for the “Type I" and “Type II" univariate fractionally integrated processes, respectively. In
fact, following Theorem 4.1 in Phillips and Shimotsu (2004), we may show the following asymptotic
distributions for the infeasible local Whittle estimate 𝑑1:

𝑚1/2
(
𝑑1 − 𝑑1

)
𝐷
−→

1
2

N1 for 1/2 < 𝑑1 < 3/4,

𝑚1/2
(
𝑑1 − 𝑑1

)
𝐷
−→

1
2

N1 +𝐶 (𝑑1)N
2
2 for 𝑑1 = 3/4,

𝑚2−2𝑑1

(
𝑑1 − 𝑑1

)
𝐷
−→𝐶 (𝑑1)N

2
2 for 3/4 < 𝑑1 < 1,

where N1 and N2 are two independent standard normal random variables and

𝐶 (𝑑) = (2𝜋)2𝑑−2 [Γ(𝑑)]−2 (2𝑑 − 1)−3 (1 − 𝑑).

When 𝑑1 = 1, using Theorem 4.2 in Phillips and Shimotsu (2004), we may show that 𝑚1/2
(
𝑑1 − 𝑑1

)
converges in distribution to a mixed normal distribution. We conjecture this distribution property may
also hold for the feasible local Whittle estimate 𝑑1. However, more technical assumptions would be
required and the mathematical proofs would be quite involved. We will leave it in our future studies.

5. Monte-Carlo simulation

We next present a Monte-Carlo simulation study to assess numerical performance of the simple ratio
criterion and local Whittle estimation in finite samples. The supplemental document contains extra
simulation studies and two empirical applications.
Example 5.1. Following the simulation setting in Aue, Rice and Sönmez (2018) and Nielsen, Seo and
Seong (2019), we let 𝜈1

★, 𝜈
2
★, · · · , 𝜈

21
★ be the first 21 polynomial basis functions defined on S = [0, 1], and

generate functional time series via

𝑋𝑡 =

21∑︁
𝑗=1

𝑥
𝑗
𝑡 𝜈
𝑗
★ =

3∑︁
𝑗=1

𝑥
𝑗
𝑡 𝜈
𝑗
★ +

21∑︁
𝑗=4

𝑥
𝑗
𝑡 𝜈
𝑗
★ = 𝒙𝑁𝑡 𝝂𝑁 + 𝒙𝑆𝑡 𝝂

𝑆 , (35)

where 𝝂𝑁 =

(
𝜈1
★, 𝜈

2
★, 𝜈

3
★

)⊤
, 𝝂𝑆 =

(
𝜈4
★, 𝜈

5
★, . . . , 𝜈

21
★

)⊤
, 𝒙𝑁𝑡 =

(
𝑥1
𝑡 , 𝑥

2
𝑡 , 𝑥

3
𝑡

)⊤
is generated from a three-

dimensional “Type II" fractionally integrated process:

∇𝑑1𝒙𝑁𝑡 = 𝜼𝑡 𝐼{𝑡 ≥ 1}, (36)

where the memory parameter 𝑑1 is set as 0.75,1.0 or 1.25, and (𝜼𝑡 : 𝑡 ≥ 1) is independently generated
by a three-dimensional normal distribution with mean zero and covariance matrix

𝛀3 =
©«

1.0 0.5 0.5
0.5 1.0 0.5
0.5 0.5 1.0

ª®¬
,

and 𝒙𝑆𝑡 =
(
𝑥4
𝑡 , 𝑥

5
𝑡 , · · · , 𝑥

21
𝑡

)⊤
is generated from a stationary VAR(1) with dimension 18:

𝒙𝑆𝑡 = 𝑨𝑆𝒙
𝑆
𝑡−1 + 𝝃𝑡 , (37)



Nonstationary Fractionally Integrated Functional Time Series 13

where 𝑨𝑆 = (𝑎𝑖 𝑗 )18×18 is a banded autoregressive matrix with 𝑎𝑖 𝑗 independently generated from
𝑈 (−0.3,0.3) when |𝑖 − 𝑗 | ≤ 3 and 𝑎𝑖 𝑗 = 0 when |𝑖 − 𝑗 | > 3 or 𝑨𝑆 is a diagonal matrix with diagonal
elements drawn from a𝑈 (−0.5, 0.5), and (𝝃𝑡 : 𝑡 ∈ Z) is independently generated by an 18-dimensional
normal distribution with mean zero and identity covariance matrix.

Models (35)–(37) above show that the dimension 𝑞1 of the nonstationary dominant sub-space is 3.
As in Aue, Rice and Sönmez (2018) and Nielsen, Seo and Seong (2019), we permute the selected 21
basis functions so that the shape of the nonstationary sub-space would not be affected by particular
shape and ordering of the polynomial basis functions. In Table 1 below, we report the number of
retained eigenfunctions for 1000 replications with the ratio criterion proposed in Section 4.1. In nearly
all the settings, there are more than 70% of times that the ratio criterion could correctly select the true
dimension 𝑞1 = 3. The estimation accuracy improves as the sample size 𝑛 increases.

𝑨𝑆=“diag" 𝑨𝑆=“band"

𝑛 𝑑1 𝑞1 = 2 𝑞1 = 3 𝑞1 = 4 𝑞1 = 6 𝑞1 = 2 𝑞1 = 3 𝑞1 = 4

500 0.75 451 547 1 1 456 544
1.00 237 760 3 239 759 2
1.25 286 703 11 270 719 11

1000 0.75 264 736 280 720
1.00 152 846 2 158 839 3
1.25 246 739 15 244 750 6

2000 0.75 114 886 128 872
1.00 111 886 3 111 882 7
1.25 220 771 9 224 759 17

Table 1.. The number of replications for 𝑞1 estimated by the ratio criterion for Example 5.1 (with 𝑞1 = 3 as the true
dimension)

To assess the sensitivity of the proposed local Whittle estimation to different choices of the function
𝜈, we consider the following three ways to construct the coordinate process: (i) 𝜈 = 𝜈1 (𝑽𝑛) defined in
Section 3 and consequently 𝑥𝜈𝑡 = ⟨𝑷1,𝑛𝜈, 𝑋𝑡 ⟩ = ⟨𝜈1 (𝑽𝑛), 𝑋𝑡 ⟩ which becomes the approximation of the
first score; (ii) 𝜈 = 𝜈1

★, the first-order polynomial basis function, and 𝑥𝜈𝑡 = ⟨𝑷1,𝑛𝜈
1
★, 𝑋𝑡 ⟩; and (iii) use the

coordinate process ⟨𝜈1
★, 𝑋𝑡 ⟩ in Algorithm 1. In Tables 2–4, we present mean, median, bias, variance and

MSE of the local Whittle estimates over 1000 replications (an integer-order differencing may be needed
in the estimation algorithm) for the three cases, respectively. In general, the bias (in absolute value),
variance and MSE of the estimates decrease as the sample size 𝑛 increases. The estimation bias tends to
be negative when 𝑑1 is either 1 or 1.25. Furthermore, the local Whittle estimation performance does
not differ significantly over Cases (i)–(iii). Meanwhile, the local Whittle estimation and the associated
algorithm proposed in Section 4.2 rely on selection of two tuning parameters: 𝑚 defined as in (33)
and 𝛾 that determines whether an integer-order differencing is needed. For simplicity, we consider the
following ad-hoc tuning parameter selection: 𝑚 = ⌊𝑛 𝜄⌋ + 1 with 𝜄 = 0.65 satisfying the restriction in
Theorem 4.2, and 𝛾 = 𝑐/log(𝑚) with 𝑐 = 0.4, which slowly tends to zero as the sample size increases.
In Appendix C of the supplement, we further perform the estimation sensitivity analysis for different
values of 𝜄 and 𝑐.
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𝑨𝑆 𝑑1 𝑛 Mean Median Bias Variance MSE

diag 0.75 500 0.7907 0.7965 0.0407 0.0049 0.0066
1000 0.7948 0.7957 0.0448 0.0032 0.0052
2000 0.7924 0.7931 0.0424 0.0022 0.0040

1.0 500 0.9584 0.9584 -0.0416 0.0055 0.0073
1000 0.9703 0.9726 -0.0297 0.0036 0.0044
2000 0.9816 0.9838 -0.0184 0.0020 0.0023

1.25 500 1.1695 1.1702 -0.0805 0.0058 0.0123
1000 1.1902 1.1920 -0.0598 0.0035 0.0071
2000 1.2079 1.2095 -0.0421 0.0019 0.0037

band 0.75 500 0.7886 0.7917 0.0386 0.0046 0.0061
1000 0.7937 0.7962 0.0437 0.0033 0.0052
2000 0.7924 0.7929 0.0424 0.0023 0.0040

1.0 500 0.9555 0.9538 -0.0445 0.0055 0.0075
1000 0.9697 0.9721 -0.0303 0.0035 0.0044
2000 0.9817 0.9849 -0.0183 0.0021 0.0024

1.25 500 1.1671 1.1688 -0.0829 0.0057 0.0126
1000 1.1892 1.1896 -0.0608 0.0035 0.0072
2000 1.2081 1.2093 -0.0419 0.0019 0.0036

Table 2.. Mean, median, bias, variance and MSE of the local Whittle estimates with 𝑥𝜈𝑡 = ⟨𝜈1 (𝑽𝑛), 𝑋𝑡 ⟩ over 1000
replications

𝑨𝑆 𝑑1 𝑛 Mean Median Bias Variance MSE

diag 0.75 500 0.7776 0.7822 0.0276 0.0054 0.0061
1000 0.7841 0.7854 0.0341 0.0037 0.0048
2000 0.7852 0.7866 0.0352 0.0024 0.0036

1.0 500 0.9518 0.9555 -0.0482 0.0059 0.0082
1000 0.9653 0.9678 -0.0347 0.0036 0.0048
2000 0.9788 0.9812 -0.0212 0.0021 0.0026

1.25 500 1.1643 1.1690 -0.0857 0.0064 0.0138
1000 1.1873 1.1885 -0.0627 0.0037 0.0076
2000 1.2058 1.2066 -0.0442 0.0020 0.0040

band 0.75 500 0.7735 0.7755 0.0235 0.0050 0.0056
1000 0.7844 0.7882 0.0344 0.0036 0.0048
2000 0.7851 0.7860 0.0351 0.0024 0.0036

1.0 500 0.9475 0.9443 -0.0525 0.0053 0.0081
1000 0.9652 0.9674 -0.0348 0.0038 0.0050

Continued on next page
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𝑨𝑆 𝑑1 𝑛 Mean Median Bias Variance MSE

2000 0.9779 0.9814 -0.0221 0.0021 0.0026

1.25 500 1.1620 1.1641 -0.0880 0.0055 0.0132
1000 1.1867 1.1882 -0.0633 0.0036 0.0076
2000 1.2052 1.2082 -0.0448 0.0020 0.0040

Table 3.: Mean, median, bias, variance and MSE of the local Whittle estimates with 𝑥𝜈𝑡 =

⟨𝑷1,𝑛𝜈
1
★, 𝑋𝑡 ⟩ over 1000 replications

𝑨𝑆 𝑑1 𝑛 Mean Median Bias Variance MSE

diag 0.75 500 0.7783 0.7827 0.0283 0.0054 0.0062
1000 0.7841 0.7853 0.0341 0.0036 0.0048
2000 0.7853 0.7861 0.0353 0.0024 0.0036

1.0 500 0.9518 0.9552 -0.0482 0.0059 0.0082
1000 0.9653 0.9677 -0.0347 0.0036 0.0048
2000 0.9788 0.9812 -0.0212 0.0021 0.0026

1.25 500 1.1644 1.1690 -0.0856 0.0064 0.0138
1000 1.1871 1.1884 -0.0629 0.0038 0.0077
2000 1.2058 1.2066 -0.0442 0.0020 0.0040

band 0.75 500 0.7740 0.7758 0.0240 0.0048 0.0054
1000 0.7845 0.7878 0.0345 0.0036 0.0048
2000 0.7850 0.7856 0.0350 0.0024 0.0036

1.0 500 0.9476 0.9439 -0.0524 0.0053 0.0081
1000 0.9652 0.9674 -0.0348 0.0038 0.0050
2000 0.9779 0.9814 -0.0221 0.0021 0.0026

1.25 500 1.1619 1.1633 -0.0881 0.0055 0.0132
1000 1.1866 1.1879 -0.0634 0.0036 0.0076
2000 1.2051 1.2081 -0.0449 0.0020 0.0040

Table 4.: Mean, median, bias, variance and MSE of the local Whittle estimates using the coordinate
process ⟨𝜈1

★, 𝑋𝑡 ⟩ over 1000 replications
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6. Conclusions

In this paper, we have extended the fractionally integrated time series model from the classic univariate
or finite-dimensional setting to the infinite-dimensional functional setting. The proposed nonstationary
functional time series model framework is general, covering the functional unit root as a special case. We
project the functional process onto a finite number of sub-spaces with varying strength of nonstationarity.
The primary interest lies in the nonstationary dominant sub-space H1 on which the projection of the
original nonstationary functional time series retains most of the sample information and results in the
strongest signal. Under some technical conditions, we derive a weak convergence result for the projection
of the fractionally integrated functional process onto the sub-space H1, extending some existing results
developed by Marinucci and Robinson (2000) and Berkes, Horváth and Rice (2013). Applying the
classic FPCA to the sample variance operator, we obtain the eigenvalues and eigenfunctions which span
a sample version of the dominant sub-space H1. The dimension of H1 is consistently estimated by an
easy-to-implement ratio criterion and the relevant memory parameter is estimated by a semiparametric
local Whittle method. The Monte-Carlo simulation study shows that the proposed estimation techniques
have satisfactory finite-sample performance.

Appendix A: Proofs of the asymptotic results

In this appendix, we give the detailed proofs of Proposition 2.1, Theorems 3.1, 3.2 and 4.1, and sketch the proof of
Theorem 4.2. Throughout the proof, we let 𝐶 denote a generic positive constant whose value may change from line
to line.

Proof of Proposition 2.1. For 𝑡 = ⌊𝑛𝑟⌋ with 0 ≤ 𝑟 ≤ 1, we note that

𝑷1𝑋⌊𝑛𝑟 ⌋ =

𝑠0∑︁
𝑗=1

𝑷1𝑋⌊𝑛𝑟 ⌋, 𝑗 = 𝑷1𝑋
∗
⌊𝑛𝑟 ⌋,1 + 𝑷1𝑋

†
⌊𝑛𝑟 ⌋,1

+ 𝑷1𝑋⌊𝑛𝑟 ⌋,−1, (A.1)

where 𝑋𝑡 , 𝑗 is defined in (6), 𝑋∗
𝑡 ,1 and 𝑋†

𝑡 ,1 are defined as in (7) and 𝑋𝑡 ,−1 is defined in (8). Let

𝑋
∗
⌊𝑛𝑟 ⌋,1 =

1

𝑛𝑑1−1/2𝐿1 (𝑛)
𝑋∗
⌊𝑛𝑟 ⌋,1.

In order to prove (10), we only need to show that as 𝑛→∞,〈
𝑣, 𝑷1𝑋

∗
⌊𝑛𝑟 ⌋,1

〉
⇒

〈
𝑣,𝑊𝑑1 ,𝛀1

(𝑟)
〉

in D([0,1],R), (A.2)

sup
0≤𝑟≤1

���〈𝑣, 𝑷1𝑋
†
⌊𝑛𝑟 ⌋,1

〉��� = 𝑜𝑃 (
𝑛𝑑1−1/2𝐿1 (𝑛)

)
, (A.3)

sup
0≤𝑟≤1

���〈𝑣, 𝑷1𝑋⌊𝑛𝑟 ⌋,−1
〉��� = 𝑜𝑃 (

𝑛𝑑1−1/2𝐿1 (𝑛)
)
, (A.4)

where 𝑣 ∈ H1 is arbitrarily chosen.

Without loss of generality, we only consider the case of ⌊𝑛𝑟⌋ ≥ 2 in the remaining proof. For 𝑡 ≥ 2, by (9), we
readily have that

〈
𝑣, 𝑷1𝑋

∗
𝑡 ,1

〉
=

1

𝑛𝑑1−1/2𝐿1 (𝑛)

(
𝑡−1∑︁
𝑖=1

𝜓𝑡−𝑖,1
〈
𝑣, 𝑷1𝑩1,𝐴𝜀𝑖

〉
+ ⟨𝑣, 𝑷1𝑨𝜀𝑡 ⟩

)

=:
1

𝑛𝑑1−1/2𝐿1 (𝑛)

𝑡−1∑︁
𝑖=1

𝜓𝑡−𝑖,1𝜉
∗
𝑖,𝑣 +

1

𝑛𝑑1−1/2𝐿1 (𝑛)
𝜉
†
𝑡 ,𝑣
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for 𝑣 ∈ H1. By Assumptions 2.2 and 2.3, (𝜉∗
𝑖,𝑣

: 𝑖 ≥ 1) is a sequence of i.i.d. random variables with mean zero,
positive variance and E|𝜉∗𝑡 ,𝑣 |

𝑝 <∞, which together with Assumption 2.1, implies that Assumptions A and B in
Marinucci and Robinson (2000) are satisfied. Then, using Theorem 1 in Marinucci and Robinson (2000), (A.2) can
be proved if we can show that

max
1≤𝑡≤𝑛

���𝜉†𝑡 ,𝑣
��� = 𝑜𝑃 (

𝑛𝑑1−1/2𝐿1 (𝑛)
)
. (A.5)

By Bonferroni’s and Markov’s inequalities, we readily have for any 𝜖 > 0

P

(
max

1≤𝑡≤𝑛

���𝜉†𝑡 ,𝑣
��� ≥ 𝜖𝑛𝑑1−1/2𝐿1 (𝑛)

)
≤

𝑛∑︁
𝑡=1

P

(���𝜉†𝑡 ,𝑣
��� ≥ 𝜖𝑛𝑑1−1/2𝐿1 (𝑛)

)

≤ 𝜖−𝑝𝑛−𝑝 (𝑑1−1/2) 𝐿
−𝑝
1 (𝑛)

𝑛∑︁
𝑡=1

E

���𝜉†𝑡 ,𝑣
���𝑝

= 𝑂
(
𝑛1−𝑝 (𝑑1−1/2) 𝐿

−𝑝
1 (𝑛)

)
= 𝑜(1), (A.6)

as 1 − 𝑝(𝑑1 − 1/2) < 0 by noting that 𝑝 > 2/(2𝑑1 − 1) in Assumption 2.2. So (A.5) is proved and then (A.2) is
proved.

For any 𝑡, by Rosenthal’s inequalities and Assumption 2.2, we may show that

E |⟨𝑣, 𝜂𝑡 ⟩|
𝑝 ≤ 𝐶



(
∞∑︁
𝑖=0

E⟨𝑣, �̃�𝑖𝜀𝑡−𝑖⟩
2

) 𝑝/2

+

∞∑︁
𝑖=0

E

���⟨𝑣, �̃�𝑖𝜀𝑡−𝑖⟩���𝑝



≤ 𝐶



[
∞∑︁
𝑖=0

�̃�𝑖2 (
E∥𝜀𝑡−𝑖 ∥

2
)] 𝑝/2

+

∞∑︁
𝑖=0

�̃�𝑖𝑝 (
E∥𝜀𝑡−𝑖 ∥

𝑝 )
≤ 𝐶


(
∞∑︁
𝑖=0

�̃�𝑖2
) 𝑝/2

+

∞∑︁
𝑖=0

�̃�𝑖𝑝

(
E∥𝜀0∥

𝑝 ) <∞, (A.7)

noting that

∞∑︁
𝑖=0

�̃�𝑖2
≤

∞∑︁
𝑖=0

©
«

∞∑︁
𝑗=𝑖+1

∥𝑨 𝑗 ∥
ª®
¬

2

≤ 𝐶

∞∑︁
𝑖=0

∞∑︁
𝑗=𝑖+1

∥𝑨 𝑗 ∥ ≤ 𝐶

∞∑︁
𝑖=0

𝑖∥𝑨𝑖 ∥ <∞

and thus
∑∞
𝑖=0

�̃�𝑖𝑝 <∞ for 𝑝 > 2. Then, using (A.7) and the condition 𝑝 > max{2, 2/(2𝑑1 − 1)}, as in (A.6), we

readily have

max
1≤𝑡≤𝑛

|⟨𝑣, 𝜂𝑡 ⟩| =𝑂𝑃

(
𝑛1/𝑝

)
= 𝑜𝑃

(
𝑛𝑑1−1/2𝐿1 (𝑛)

)
, (A.8)

and furthermore, by Assumption 2.1,

max
2≤𝑡≤𝑛

�����
𝑡−1∑︁
𝑖=1

(
𝜓𝑡−𝑖,1 − 𝜓𝑡−𝑖−1,1

)
⟨𝑣, 𝑩1𝜂𝑖⟩

����� ≤ 𝑂𝑃
(
𝑛1/𝑝

)
max

2≤𝑡≤𝑛

(
𝑡−1∑︁
𝑖=1

��𝜓𝑡−𝑖,1 − 𝜓𝑡−𝑖−1,1
��
)

= 𝑂𝑃

(
𝑛1/𝑝

𝑛∑︁
𝑖=1

𝑖𝑑1−2 [
𝐿⋄1 (𝑖) + 𝐿1 (𝑖)

] )

= 𝑜𝑃

(
𝑛𝑑1−1/2𝐿1 (𝑛)

)
. (A.9)
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Meanwhile, it is obvious that

|⟨𝑣, 𝜂0⟩| =𝑂𝑃 (1) = 𝑜𝑃
(
𝑛𝑑1−1/2𝐿1 (𝑛)

)
, (A.10)

and as in (A.9),

max
2≤𝑡≤𝑛

�����
𝑡−1∑︁
𝑖=1

(
𝜓𝑡−𝑖,1 − 𝜓𝑡−𝑖−1,1

)
⟨𝑣, 𝑩1𝜂0⟩

����� = 𝑂𝑃 (1) max
2≤𝑡≤𝑛

(
𝑡−1∑︁
𝑖=1

��𝜓𝑡−𝑖,1 − 𝜓𝑡−𝑖−1,1
��
)

= 𝑂𝑃

(
𝑛∑︁
𝑖=1

𝑖𝑑1−2 [
𝐿⋄1 (𝑖) + 𝐿1 (𝑖)

] )

= 𝑜𝑃

(
𝑛𝑑1−1/2𝐿1 (𝑛)

)
. (A.11)

With (A.8)–(A.11), we can prove (A.3) uniformly for 0 ≤ 𝑟 ≤ 1.

Finally, combining the arguments in the proofs of (A.2) and (A.3), we can similarly show that

max
1≤𝑡≤𝑛

��〈𝑣, 𝑷1𝑋𝑡 , 𝑗
〉�� = 𝑜𝑃 (

𝑛𝑑1−1/2𝐿1 (𝑛)
)
, 𝑗 = 2, · · · , 𝑠0, (A.12)

as 𝑑1 > 𝑑2 > · · · > 𝑑𝑠0 , indicating that (A.4) holds. We have completed the proof of Proposition 2.1.

Proof of Theorem 3.1. By Proposition 2.1 and the continuous mapping theorem in Billingsley (1968), we readily

have (15). We next give the proofs of ∥𝑽𝑛𝑘 ∥ = 𝑜𝑃
(
𝑛2𝑑1𝐿2

1 (𝑛)
)

for 𝑘 = 2,3,4.

We first prove ∥𝑽𝑛2∥ = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
. By the definition of 𝑽𝑛2 and Proposition 2.1, we have

∥𝑽𝑛2∥ ≤

𝑛∑︁
𝑡=1

𝑷1𝑋𝑡
𝑷⊥1 𝑋𝑡 =𝑂𝑃

(
𝑛𝑑1−1/2𝐿1 (𝑛)

)
·

𝑛∑︁
𝑡=1

𝑷⊥1 𝑋𝑡. (A.13)

By (7) and (8) and noting that 𝑷⊥1 𝑩1,𝐴 = 0, we have

𝑷⊥1 𝑋𝑡 =

𝑡−1∑︁
𝑖=1

𝑷⊥1
(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
(𝜂0 − 𝜂𝑖) + 𝑷⊥1 (𝜂0 − 𝜂𝑡 ) + 𝑷⊥1 𝑨𝜀𝑡 + 𝑷⊥1 𝑋𝑡 ,−1. (A.14)

By Assumption 2.2, similar to (A.7), we may show that E ∥𝜂𝑡 ∥
2
=𝑂 (1). This indicates that

𝑛∑︁
𝑡=2

E

(
𝑡−1∑︁
𝑖=1

𝑷⊥1
(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
(𝜂0 − 𝜂𝑖) + 𝑷⊥1 (𝜂0 − 𝜂𝑡 )


)

= 𝑂

(
𝑛∑︁
𝑡=2

𝑡−1∑︁
𝑖=1

(𝑡 − 𝑖)𝑑1−2 [
𝐿⋄1 (𝑡 − 𝑖) + 𝐿1 (𝑡 − 𝑖)

] )
+𝑂 (𝑛)

=



𝑂 (𝑛), 1/2 < 𝑑1 < 1,
𝑜(𝑛1+𝜁1 ), 𝑑1 = 1,

𝑂
(
𝑛𝑑1𝐿★(𝑛)

)
, 𝑑1 > 1,

(A.15)

where 0 < 𝜁1 < 𝑑1 − 1/2 and 𝐿★(·) = max
{
|𝐿1 (·) |, |𝐿

⋄
1 (·) |

}
. It is straightforward to prove that

𝑛∑︁
𝑡=1

E

(𝑷⊥1 𝑨𝜀𝑡
) =𝑂 (𝑛). (A.16)



Nonstationary Fractionally Integrated Functional Time Series 19

By (A.12) and the assumption 𝑑1 > 𝑑2 > · · · > 𝑑𝑠0 , we have

𝑛∑︁
𝑡=1

𝑷⊥1 𝑋𝑡 ,−1
 = 𝑜𝑃 (

𝑛𝑑1+1/2𝐿1 (𝑛)
)
. (A.17)

With (A.13)–(A.17), we complete the proof of ∥𝑽𝑛2∥ = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
. The proof of ∥𝑽𝑛3∥ = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)

can be done in exactly the same way.

We finally turn to the proof of ∥𝑽𝑛4∥ = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
. By the definition of 𝑽𝑛4, we have

∥𝑽𝑛4∥ ≤

𝑛∑︁
𝑡=1

𝑷⊥1 𝑋𝑡2
. (A.18)

Similar to (A.15), we can show that

𝑛∑︁
𝑡=2

E
©
«

𝑡−1∑︁
𝑖=1

𝑷⊥1
(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
(𝜂0 − 𝜂𝑖) + 𝑷⊥1 (𝜂0 − 𝜂𝑡 ) + 𝑷⊥1 A𝜀𝑡


2ª®
¬

≤ 2
𝑛∑︁
𝑡=2

E


𝑡−1∑︁
𝑖=1

𝑷⊥1
(
𝚿𝑡−𝑖,1 −𝚿𝑡−𝑖−1,1

)
(𝜂0 − 𝜂𝑖)


2

+2
𝑛∑︁
𝑡=2

E
𝑷⊥1 (𝜂0 − 𝜂𝑡 ) + 𝑷⊥1 𝑨𝜀𝑡

2

= 𝑂
©«
𝑛∑︁
𝑡=2

{
𝑡−1∑︁
𝑖=1

(𝑡 − 𝑖)𝑑1−2 [
𝐿1 (𝑡 − 𝑖) + 𝐿

⋄
1 (𝑡 − 𝑖)

]}2ª®¬
+𝑂 (𝑛)

=



𝑂 (𝑛), 1/2 < 𝑑1 < 1,
𝑜(𝑛1+𝜁2 ), 𝑑1 = 1,

𝑂
(
𝑛2𝑑1−1𝐿2

∗ (𝑛)
)
, 𝑑1 > 1,

(A.19)

where 0 < 𝜁2 < 2𝑑1 − 1. On the other hand, as in (A.17), we have

𝑛∑︁
𝑡=1

𝑷⊥1 𝑋𝑡 ,−1
2

= 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
. (A.20)

Using (A.14) and (A.18)–(A.20), we can complete the proof of ∥𝑽𝑛4∥ = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
.

Proof of Theorem 3.2. Let

𝑽⋄
𝑛1 =

𝑛∑︁
𝑡=1

𝑷1𝑋
⋄
𝑡 ,1 ⊗ 𝑋⋄

𝑡 ,1𝑷1 with 𝑋⋄
𝑡 ,1 =

𝑡−1∑︁
𝑖=1

𝜓𝑡−𝑖,1𝑩1,𝐴𝜀𝑖 .

From (18) and the arguments in the proofs of Proposition 2.1 and Theorem 3.1, we readily have that

1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽𝑛 =
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽𝑛1 + 𝑜𝑃 (1) =
1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽⋄
𝑛1 + 𝑜𝑃 (1). (A.21)

Note that the dominant 𝐼 (𝑑1) subspace H1 is spanned by the 𝑞1 eigenvectors corresponding to the non-zero
eigenvalues of 1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽⋄
𝑛1. By the definition of 𝑷1 (𝑽𝑛) and (A.21), we prove the first assertion in (20), which

then together with the definitions 𝑷⊥1 (𝑽𝑛) = 𝑰 − 𝑷1 (𝑽𝑛) and 𝑷⊥1 = 𝑰 − 𝑷1, leads to the second assertion in (20).



20

We next turn to the proof of (21). By (A.21), invoking the classic Skorokhod representation theorem as in Chang,
Kim and Park (2016), we may show that  1

𝑛2𝑑1𝐿2
1 (𝑛)

𝑽𝑛 −𝑽

 = 𝑜𝑃 (1),
which together with Lemma B.1 in Appendix B of the supplement, implies that (21) holds.

Proof of Theorem 4.1. By (A.21), Assumption 2.3 and Lemma B.1 in the supplement, we may show that there
exists a positive constant 𝜒0 such that

P
©
«
����𝜆𝑘+1 (𝑽𝑛)

𝜆𝑘 (𝑽𝑛)

���� =
�������
𝜆𝑘+1 (𝑽𝑛)/

[
𝑛2𝑑1𝐿2

1 (𝑛)
]

𝜆𝑘 (𝑽𝑛)/
[
𝑛2𝑑1𝐿2

1 (𝑛)
]

������� > 𝜒0
ª®®
¬
→ 1, 𝑘 = 1, · · · , 𝑞1 − 1. (A.22)

On the other hand, for 𝑘 = 𝑞1 + 1, · · · , 𝐾, the 𝑘-th largest eigenvalue of 1
𝑛2𝑑1𝐿2

1 (𝑛)
𝑽⋄
𝑛1 (defined in the proof of

Theorem 3.2) is zero by Assumption 2.3. Furthermore, by (A.21) and Lemma B.1, we can prove that

𝜆𝑘 (𝑽𝑛) = 𝑜𝑃

(
𝑛2𝑑1𝐿2

1 (𝑛)
)
, 𝑘 = 𝑞1 + 1, · · · , 𝐾,

which together with (21), indicates that

P

(����𝜆𝑘+1 (𝑽𝑛)

𝜆1 (𝑽𝑛)

���� ≥ 𝛿
)
→ 0, (A.23)

where 𝛿 > 0 is a very small constant. By (25) and (A.23), we may show that

P

(����𝜆𝑘+1 (𝑽𝑛)

𝜆𝑘 (𝑽𝑛)

���� =
����𝜆𝑘+1 (𝑽𝑛)/𝜆1 (𝑽𝑛)

𝜆𝑘 (𝑽𝑛)/𝜆1 (𝑽𝑛)

���� = 0
0
= 1

)
→ 1 (A.24)

for 𝑘 = 𝑞1 + 1, · · · , 𝐾 , and ����𝜆𝑞1+1 (𝑽𝑛)

𝜆𝑞1 (𝑽𝑛)

���� =
����𝜆𝑞1+1 (𝑽𝑛)/𝜆1 (𝑽𝑛)

𝜆𝑞1 (𝑽𝑛)/𝜆1 (𝑽𝑛)

���� = 𝑜𝑃 (1). (A.25)

We then prove Theorem 4.1 combining (A.22), (A.24) and (A.25).

Proof of Theorem 4.2. The main idea used in this proof is similar to that in Robinson (1995) and Phillips and
Shimotsu (2004). In fact, using Theorems 3.1 and 3.2 in Phillips and Shimotsu (2004), we may show that the
infeasible local Whittle estimator 𝑑1 is consistent when 1/2 < 𝑑1 ≤ 1, but is biased and convergent to unity when 𝑑1
exceeds 1. Hence, the main step in the proof is to show that replacement of 𝑥𝜈𝑡 by 𝑥𝜈𝑡 in the local Whittle estimation
has an asymptotically negligible effect in proving the consistency property. As the detailed proof is tedious, we
provide it in Appendix B of the supplement.
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