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Quantitative Elbow Spasticity Measurement Based

on Muscle Activation Estimation Using Maximal

Voluntary Contraction
Chao Wang, Manoj Sivan, Danyang Wang, Zhi-Qiang Zhang, Member, IEEE, Gu-Qiang Li,

Tianzhe Bao, and Sheng Quan Xie, Senior Member, IEEE

Abstract—Conventional measurement of spasticity in stroke
patients, e.g., Modified Ashworth Scale (MAS), has been chal-
lenged about its reliability issues. Surface Electromyography
(sEMG) has been used to identify neuromuscular abnormalities
since it directly measures electrical activity in the muscle, how-
ever its performance is affected by the placement of electrodes
and cross-talk, and it cannot detect the activities of deep muscles.
This study proposes a novel spasticity measurement method by
quantifying the difference between the impaired and unaffected
sides in the elbow maximal voluntary contraction (MVC) task.
Five inertial measurement units (IMUs) and a force sensor were
used to capture the movement dynamics for the MVC test, by
which a neuromusculoskeletal model is established to estimate the
muscle activation using the inverse dynamics and optimization
techniques. Normalized keeping time of peak activation is a
quantitative feature that identifies the disparity between the
impaired and unaffected side in the MVC test is defined as a
measurement of spasticity. Six stroke patients and eight healthy
subjects were recruited to evaluate the muscle activation estima-
tion model. The outcomes of our measurement for patients were
compared with the spasticity rated by an experienced physical
therapist (PT) using MAS. The estimated muscle activation shows
promising accuracy compared to the sEMG profiles (patients:
mean R2

≈ 0.705; healthy: mean R2
≈ 0.91). The outcomes

of our approach are highly correlated with MAS (Pearson’s
r ≈ 0.96, p < 0.05). These findings indicate that our approach
can provide a quantitative measure of spasticity and can be used
as a complementary measurement along with the existing clinical
methods. This approach will also enhance the efficiency of upper
limb robot-aided rehabilitation in stroke patients.

Index Terms—Biomedical engineering, spasticity measurement,
EMG, upper limb, stroke rehabilitation.

I. INTRODUCTION

Spasticity is a characteristic sensorimotor disorder following

stroke. The limitation of joint range of motion and exaggera-

tion of stretch reflexes increase with the severity of spasticity

[1], which impacts the life quality for stroke patients and
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brings challenges to rehabilitation therapies. Previous studies

demonstrated that comprehensive evaluation of spasticity im-

proved the efficiency of rehabilitation [2], [3]. Conventionally,

the most commonly used spasticity measurement methods in

practice are clinical scales, e.g., Modified Ashworth Scale

(MAS) [4], [5], and Australian Spasticity Assessment Scale

(ASAS) [6]. However, with the clinical scales, the grading de-

pends on assessors’ experience so that inexperienced clinicians

may not be able to have a precise evaluation [7], [8].

To measure the spasticity more reliably, various approaches

were proposed using quantitative measurements [8]–[10],

which can be divided into two groups: involuntary-contraction-

based and voluntary-contraction-based. Numerous studies uti-

lized the velocity-depended properties of involuntary contrac-

tion tasks to assess spasticity [8], [11], [12] based on Lance’s

definition [13]. Although later studies proposed alternative

definitions, Lance’s definition remains the most widely ac-

cepted one in the literature [14]–[16]. However, stroke patients

cannot voluntarily contract the spastic muscles as normal

people, which may lead to compensatory movements or even

functional impairments. Assessing activities of muscles during

voluntary contraction can help improve the understanding of

how spasticity affects voluntary contraction.

EMG has been frequently utilized to study the muscle

properties, e.g., synergy [17] and spasticity [18], [19], and

also muscles’ activity. There are two types of EMG de-

tection techniques: Surface Electromyography (sEMG) and

intramuscular EMG(iEMG). Although the signal-to-noise ratio

(SNR) of iEMG is supposed to be higher than sEMG, its

application is restricted due to the invasiveness. By contrast,

sEMG is safer and easier to use, and it can be used to

detect muscle activities. However, its detection performance

is affected by electrodes’ placement and cross-talk, thereby

it cannot accurately detect the activities of deep muscles

[20]. Therefore, a more convenient approach for characterizing

muscle activity is desirable. Musculoskeletal models were

developed to estimate muscle activation [21], [22]. Raikova

et al. presented an elbow musculoskeletal model by which

they predicted the muscle forces using the inverse dynamics

and optimization techniques based on motion dynamics [23].

Inertial measurement units (IMUs) were utilized for human

motion tracking, which is more convenient to use for home-

based rehabilitation environment [24], [25].

Wang et al. reported the difference in neuromechanical

characteristics for maximum isometrics voluntary contraction
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between the impaired and non-impaired arm of stroke patients

[9]. This method cannot quantify the difference across sub-

jects. Ang et al. proposed a neuromusculoskeletal model to

quantify the muscle spasticity by estimating the tonic stretch

reflex threshold, which only investigated the passive muscle

contraction [22]. Nevertheless, understanding how spasticity

impacts voluntary contraction is equally important. Moreover,

the measurement procedure involved manual operations, which

may lead to subjectivity. A recent study was carried out to

measure upper-limb spasticity based on the temporal features

of reaching movement, which only considered the overall

performance of the upper limbs [15]. This method cannot

identify spasticity-induced motor deficits of a specific muscle

or joint, which means the impact on the motion of a specific

muscle cannot be identified.

To overcome the drawbacks of previous spasticity mea-

surement techniques and improve the robustness of muscle

activation estimation, we propose a new quantitative spasticity

measurement method for the elbow joint on the basis of a

neuromusculoskeletal model together with real-time IMU and

force sensor measurements. The elbow is modeled as a 1-

degree-of-freedom (1-DoF) joint which consists of 5 muscles.

A set of IMUs and a force sensor are employed to record

the motion and contact force during MVC tests. The muscle

activation distribution is estimated with the movement dynam-

ics and the neuromusculoskeletal model. Then, the predicted

muscle activation is utilized to calculate the keep time of

peak activation, tk, by which the normalized keep time, t̄k
is figured out to evaluate the severity of spasticity. The main

contributions of this study are: 1) a novel measurement of

spasticity is developed on the basis of muscle activation

estimation; 2) a subject-specific neuromusculoskeletal model

is established to estimate the activation of each muscle in

the elbow during MVC tests using a set of IMUs and a

force sensor; 3) the preliminary validation of this model-based

spasticity measurement is presented.

The remaining paper is organized as follows: an overview

of the spasticity measurement is described in Section II-A; the

neuromusculoskeletal modeling is presented in Section II-B;

the spasticity measurement is defined in Section II-C; exper-

iment protocol and data processing is introduced in Section

II-D and II-E; validation result and discussion are stated in

Section III and IV. Section V summarizes the advantages and

limitations, and concludes this paper.

II. METHODOLOGY

A. Overview of Spasticity Measurement

The spasticity measurement method is established on the

foundation of muscle activation estimation. Firstly, an elbow

musculoskeletal model was created to estimate the joint torque

shared by all related muscles. Secondly, a static optimization

method was applied to address the muscle-sharing problem

so that the muscle force distribution can be determined.

Subsequently, the muscle activation is computed by inverting

the Hill’s muscle-tendon model [31]. Finally, a quantitative

measurement method of spasticity is defined as the normalized

keeping time of peak activation, see Section II-C for the

detailed definition, which is validated in Section III-B. The

procedure of the spasticity measurement method is shown in

Fig. 1.

Fig. 1. The four steps of the spasticity measurement based on muscle
activation estimation: step 1. collect the subject-specific parameters and
movement data; step 2. estimate the muscle force distribution; step 3. compute
the muscle activation distribution; step 4. test and validate the spasticity
measurement method in clinical practice.

B. Upper-Limb Model

1) Kinematics: Five muscles related to the joint of interest,

i.e., the elbow flexion/extension, are considered: biceps brachii

(BIC), brachioradialis (BRD), brachialis (BRA), triceps brachii

(TRI), and pronator teres (PRO). The joint’s range of motion

is from 0◦ to 130◦. The determination methods for the subject-

specific parameters in this model are summarized in Table.I.

TABLE I
DETERMINATION METHOD OF SUBJECT-SPECIFIC PARAMETERS OF THE

MUSCULOSKELETAL MODEL.

Properties Measurement/Calculation Note

M0 Measured Manually

lf Measured Manually
Lateral humeral epicondyle

to radial styloid process

Mfh 0.022 x M0 [26]

lr 0.468 x lf [26]

Note. M0 is the total body mass; lf is the length of forearm; Mh is
the mass of humerus; Mfh is the mass of forearm and hand; lr is
the distance between the rotation center of elbow joint and center of
mass of forearm and hand.

2) Equation of Motion: Fig. 2 demonstrates the construc-

tion of the elbow model, by which the dynamics of this model

can be mathematically described as:

τg + τload + τc +

m∑

i=1

τi(ai) = 0 (1)

where τi is the joint torque produced by the ith muscle; m
is the total number of muscles; τg is the gravitational term,

which can be calculated as:

τg = Mfhg × lr cos θ (2)

τc is the centrifugal term computed as:
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Fig. 2. 1-DoF biomechanical model of elbow joint where lf is the length of
forearm; lr is the distance from O to the mass center of forearm and hand; g
is the gravitational acceleration; α is the joint angle; θ is the angle between
the forearm and the horizontal axis; Fload is the contact force between hand
and the contact plane.

τc = Ifhα̈fe (3)

where Ifh is the moment of inertia of forearm-hand against

the elbow joint, Ifh = Mfhl
2
r ; αfe is the elbow flexion angle,

αfe = π − α.

The torque contributed by the ith muscle can be calculated

as:

τi = Fmt
i ×MAi (4)

where Fmt
i is the muscle-tendon force contributed by ith

muscle, which is formulated by the hill-type muscle-tendon

model (Detailed information is illustrated in section II-B4).

MAi is the corresponding moment arm against elbow joint

which is geometrically related to the muscle fiber length and

joint angle, [27]. However, due to the high computational cost,

the polynomial equations are used to calculate the moment

arms as an alternative in this paper [28].

The joint torque produced by the external force, Fload can

be written as:

τload = Fload × (lf + lh) cos θ (5)

3) Optimization: According to section II-B2, the total joint

torque contributed by all muscles,
m∑
i=1

τi(ai), can be figured

out. However, due to the redundancy of UL musculoskeletal

system, the solution of muscle force configuration cannot be

determined only based on the biomechanical model. In this

study, this problem is solved using the optimization technique

[29]. The muscle load sharing problem is formulated as:

min J(ai) =

5∑

i=1

(λiF
mt
i (ai))

2

s.t. T (ai) = 0

(6)

where J(ai) is to minimize the summation of squared muscle

stress; λi is reciprocal of physiological cross-sectional area

(PCSA) of the ith muscle, 1/PCSAi [30]; T (ai) is the equation

of motion, i.e., Equation (1).

4) Hill’s Muscle-tendon Model: Hill-type muscle-tendon

model is utilized to formulate the muscle contraction dynamics

[31]. The model contains three elements: 1). the contractile

element (CE) represents the muscle fibers; 2). the parallel

elastic element (PE) represents the passive elastic tissue; 3).

the series elastic element (SE) represents the muscle tendon,

see Fig.3. The force of CE is formulated as a function of

muscle activation, and the force of PE can be calculated based

Fig. 3. Hill-type Muscle Tendon Model: φ is the angle between muscle fibers
and the line action of the muscle, called pennation angle. s is the state variable
for the muscle contraction dynamics which can be calculated as: s = l cosφ.

on the optimal fiber length and muscle fiber length. Based

on the construction of this model, the muscle-tendon force

produced by the ith muscle can be written as:

Fmt
i = (FCE,i + FPE,i) cosφ (7)

where FCE,i and FPE,i are the force produced by CE and PE

of the ith muscle, respectively.

According to the earlier studies, the force produced by

CE is determined by the muscle activation level, a, maximal

isometric force, Fmax, muscle fiber length, li, and fiber

lengthening velocity, l̇i, together. The force produced by CE

is obtained as:

FCE,i = ai · Fmax,i · fa(l̄
a
i ) · ga(

¯̇
lai ) (8)

where l̄ai is the normalized muscle fiber length;
¯̇
lai is the

normalized muscle lengthening velocity; fa(·) and ga(·) are

the force-length-relation and force-velocity-relation for CE,

respectively [32], [33].

The passive force generated by PE is calculated as:

FPE,i = Fmax,i exp(10 ∗ Cpass(l̄
p
i − 1))/ exp(5) (9)

where Cpass is a term accounting the difference across subjects

while we set it as 1 for all subjects; l̄pi is the normalized muscle

fiber length [34], [36]. Consequently, the muscle activation

level, ai, can be estimated by combining Equation (8), (9),

and (6).

5) Parameters Tuning: The parameters in the hill’s model

are tuned manually in this model. The maximal isometric force

of muscles, Fmax,i, and the optimal fiber lengths of all muscles

are scaled from a generic model [37]. The scale factors are

calculated based on the manual measurement of related seg-

ments. While, Fmax,i is tuned empirically to minimize error

between the estimated biceps brachii activation and the sEMG-

based muscle activation, see Equation (11). Additionally, the

pennation angle of each muscle (angle between muscle fiber

and the line of action) is assumed as 0 (The pennation

angles are constant during the contraction so that the cosφ
are constant as well. Thus, the impact is linear and can be

countered by tuning other parameters like Fmax,i when we

set φ as 0).

C. Spasticity Quantification

Based on Section II-B3, the muscle activation of MVC test

can be estimated:

An = arg min
T (ai,n)=0

J(ai,n) (10)
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where An is{a1, a2, a3, a4, a5}, n is the frame number which

is from 1 to N (N is the total frame number of one test).

Then, the peak activation is defined as: ai,peak = max{ai,n}.

The keeping time of peak activation of the spastic arm was

found to be shorter than the healthy arm [9]. This is probably

because the exaggeration of stretch reflexes increases with the

severity of spasticity so that the affected muscles would tire

quicker than non-affected muscles. The method we proposed

is modified to match the UL model in Section II-B whose

output is muscle activation. As shown in Fig. 4, the peak

activation of one muscle is used to define the muscle strength

represented by apeak. The time length of keeping the peak

activation (above the 40% of peak activation, 0.4apeak), tk
is extracted to account for the patients’ ability to contain the

spasticity.

Fig. 4. Description of the features extracted from the predicted muscle force.

However, due to the difference across subjects, tk can not be

used to assess the severity of spasticity directly. In this study,

tk of patients’ affected side is normalized to their healthy side,

which is obtained as: t̄k = tk,a/tk,h, where tk,a is the tk for

affected side, tk,h is the tk for healthy side. In the rest of this

paper, we will use t̄k,1, and t̄k,2 to represents the feature, tk
of biceps brachii and brachialis, respectively.

D. Experimental Setup

1) Testing Protocol: The demographics of the participants

are documented, including the name, age, gender, affected side

(patients only), time from stroke onset (patients only), and

the severity of spasticity (patients only) of the elbow joint

is evaluated by an experienced Physical Therapist(PT) using

MAS. The five IMUs and a sEMG sensor are attached to the

subject as shown in Fig.5(a).

The MVC test has four tasks to be completed for each side

of the subject. The data from the first task is used to tune

the parameters in the neuromusculoskeletal model, and the

rest of the data is used for the validation of the spasticity

measurement method. In each task, the subjects are required

to do the MVC task by holding and pressing the contact plate

of the force measurement device for as long as possible, see

Fig. 5(b). After each task, the subjects have 5 minutes break

to allow the muscle force and endurance to recover [38]. The

contact force is measured at 90 Hz by a force sensor. The

muscle activity of the biceps brachii is recorded by an sEMG

sensor at 2000 Hz, and kinematic data of the tested side is

captured by 5 IMUs at 200 Hz. Both sides of the arm are

repeated for all the subjects. This study has been reviewed

and approved by the Ethics Committee of the Yantai Affiliated

Hospital of Binzhou Medical University.

Fig. 5. (a) The placement of IMUs and sEMG sensors: three IMUs for the
arm of each side, and two IMUs are placed at 7th cervical vertebra (C7)
and 10th thoracic vertebra (T10), respectively. The sEMG sensor is attached
on biceps brachii. (b) Experimental setup for spasticity measurement: subject
sits in front of the force measurement device with a seatbelt fastened to avoid
compensatory movements. A force sensor is installed on the side of the table
plate facing the ground, and it is synchronized with the IMUs and sEMG
sensor through a trigger signal generator.

TABLE II
INFORMATION OF THE STROKE PATIENTS

Sub ID Gender Age H (cm) W (kg) Affected side ton

S1 M 45 173 87.8 R ≥12

S2 M 66 160 75.5 R ≥12

S3 F 53 158 60.5 L ≥12

S4 M 44 162 68.5 L ≥12

S5 M 48 167 81.0 R ≥12

S6 M 55 175 90.0 L ≥12

Note. H is the height; W is the weight; ton is the time since stroke
onset (month).

2) Participant Information: Six post-stroke patients were

enrolled in this study, aged 44-66 years. The admission criteria

of stroke participants were: (1) at least six months from onset

of stroke; (2) being able to complete the experimental tasks

independently; (3) elbow spasticity score(MAS) of the affected

side is 0, or 1, 1+ or 2(patients with severer spasticity generally

cannot contract the related muscles voluntarily); (4) being

able to read the study information and give informed consent;

(5) right-dominant. The patients with the following conditions

were excluded: (1) cognitive dysfunction, (2) both sides are

affected. Additionally, eight healthy subjects are recruited

to investigate the healthy patterns and verify the muscle

activation estimation model’s performance. The summarized

information of the patients and healthy participants are listed

in Table.II and Table. III, respectively.

E. Data Preprocessing

1) Surface EMG: The muscle activation interpreted from

sEMG data is compared with the predicted muscle activation.

Firstly, the raw sEMG signals are rectified [34] after being

filtered by a 4th order bandpass filter from 20 to 500 Hz.

Then, a moving average filter is applied with the time window

Tw=88 ms, and the filtered signals are low-pass filtered by

a 2rd order Butterworth filtered at 2 Hz. Subsequently, the

signals are normalized to the peak value, and the resultant

muscle activation level can be formulated by the following

equation:
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Fig. 6. Comparison of the muscle activation predicted by the model and interpreted from sEMG signals of biceps brachii of 8 healthy subjects. Blue line:
muscle activation interpreted from sEMG data; red line: muscle activation predicted by the model. The cross-correlations between the two lines of subject H1
to H8 are: 0.98, 0.96, 0.98, 0.94, 0.96, 0.95, 0.98, and 0.91, respectively.

TABLE III
INFORMATION OF THE HEALTHY PARTICIPANTS

Sub ID Gender Age H (cm) W (kg)

H1 M 22 187.5 102.0

H2 M 23 175.0 76.5

H3 M 22 186.0 74.5

H4 M 24 181.0 71.0

H5 F 24 158.0 45.0

H6 F 25 169.5 66.0

H7 F 26 164.0 60.5

H8 M 23 158.0 66.5

Note. All healthy participants are right-dominant.

ai(t) =
eAUi(t) − 1

eA − 1
(11)

where Ui(t) is the processed sEMG signals for ith muscle, A
is the corresponding nonlinear shape factor which is allowed

to vary between -3 and 0 [33]–[35]. In this study, A is

tuned empirically to minimize the errors between the muscle

activation extracted from biceps brachii sEMG signals and the

model’s output (only the data of the first motor task is used

to tune A, and other parameters, which will not be used for

the validation of muscle activation estimation and spasticity

measurement).

2) Contact Force & IMU: To apply the force signals and

IMU signals together with the model, the raw force signals

are interpolated to match the length of sEMG signals using

B-spline algorithm. Then, a 2nd order low-pass Butterworth

filter is applied with the corner frequency at 10 Hz. The motion

data captured by IMUs is processed to extract the joint motion.

III. RESULTS

A. Validation of Muscle Activation Estimation Model

As the muscle forces are not measurable, there is no

standard and direct way to validate the muscle force/activation

estimated by the models. According to the literature [21], [22],

we evaluate the prediction result by comparing the model’s

output against the sEMG data. The comparison result (cross-

correlation) of 8 healthy individuals and 6 patients is shown

in Fig. 6, and Fig. 7, respectively. In addition, the root-mean-

squared-error (RMSE) and coefficient of determination (R2)

between them are calculated to evaluate the amplitude error
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Fig. 7. Comparison of the muscle activation predicted by the model and interpreted from sEMG signals of biceps brachii of 6 patients. Blue line: muscle
activation interpreted from sEMG data; red line: muscle activation predicted by the model. The cross-correlations between the two lines of subject S1 to S6
are: 0.82, 0.81, 0.91, 0.92, 0.92, and 0.91, respectively.

Fig. 8. (a) Mean R2 of both sides of the healthy individuals; (b)Mean R2 of both sides of the patients.

and goodness of fit. RMSE and R2 are obtained by the

following equations:

RMSE =

√√√√ 1

N

N∑

i=1

(ai − âi)
2

(12)

R2 = 1−

∑N

i=1(ai − âi)
2

∑N

i=1(ai − ai)2
(13)

where N is the total frame number, ai is the muscle activation

of ith muscle interpreted from sEMG, âi is the corresponding

estimated muscle activation, ai is the mean of ai.

The R2 validation result of patient and healthy participants

are shown in Fig.8(a) and Fig. 8(b), respectively. Table. IV and

V shows the RMSE between the muscle activation interpreted

from sEMG and the model’s estimation. For most patients, the

mean R2 is higher than 0.6 with RMSE lower than 0.25. In

the healthy participants, the mean RMSE of every subject is

lower than 0.15; and the mean R2 is higher than 0.87.

Although the estimated muscle activation shows a good

correlation with sEMG in the healthy participants, we still

need to verify if the estimation and sEMG are consistent in t̄k.

t̄k is computed from predicted muscle activation to compare

with that extracted from the sEMG data.
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Fig. 9. (a) Mean error rate between sEMG-based t̄k and estimation-based t̄k for both sides of the healthy individuals. (b) Mean error rate between sEMG-based
t̄k and estimation-based t̄k for both sides of the patients.

TABLE IV
RMSE BETWEEN THE MUSCLE ACTIVATION INTERPRETED FROM SEMG

SIGNALS AND ESTIMATED BY THE MODEL FOR PATIENTS

Non-affected Affected

ID Mean RMSE std. Mean RMSE std.

S1 0.1711 0.0298 0.1399 0.0091

S2 0.1385 0.0176 0.1992 0.0152

S3 0.1842 0.0105 0.1443 0.0293

S4 0.2473 0.0264 0.1949 0.0208

S5 0.0978 0.0098 0.1607 0.0156

S6 0.1538 0.0069 0.1032 0.0151

std. = standard deviation

TABLE V
RMSE BETWEEN THE MUSCLE ACTIVATION INTERPRETED FROM SEMG

SIGNALS AND THE MODEL’S ESTIMATION FOR HEALTHY PARTICIPANTS

Right Left

ID Mean RMSE std. Mean RMSE std.

H1 0.103 0.006 0.089 0.002

H2 0.093 0.018 0.114 0.005

H3 0.114 0.019 0.107 0.001

H4 0.141 0.006 0.122 0.011

H5 0.116 0.012 0.119 0.016

H6 0.105 0.005 0.096 0.007

H7 0.089 0.007 0.094 0.008

H8 0.107 0.011 0.127 0.021

In the healthy participants, the error rate of the estimation-

based t̄k is calculated and shown in Fig. 9(a). The mean error

rate of every single subject is lower than 6%. In the patient

group, the comparison result is summarized in Fig. 9(b). The

mean error rate of t̄k is lower than 14% for every subject. The

error rate of t̄k is defined as:

ER =
|t̄k,sEMG − t̄k,estimation|

t̄k,sEMG

(14)

The Analysis of Variance (ANOVA) test was used to vali-

date the difference in the muscle activation estimation model’s

performance between the two sides of healthy individuals and

the two sides of patients. The difference between healthy indi-

viduals and patients was also validated. The three hypotheses

were: H0: the difference between the two sides of healthy

individuals is not significant; H1: the difference between the

two sides of patients is not significant; H2: the difference

between patients and healthy individuals is not significant.

Table VI shows the result of ANOVA test, which indicates that

the muscle activation estimation model’s performance is at the

same accuracy level for healthy individuals and the patients’

two sides, while the difference between healthy individuals

and patients is significant.

TABLE VI
THE ANOVA-TEST RESULT OF THE HYPOTHESIS, H0 , H1 AND H2

Pair f p Result

H two sides 0.538 0.475 Accept H0

S two sides 0.838 0.382 Accept H1

H and S 37.044 1.97× 10−6 Reject H2

H: healthy individuals; S: stroke patients.

Additionally, the difference in the error rates of the esti-

mated t̄k between the two sides of healthy individuals, the

two sides of patients, and the two groups are validated based

on ANOVA test. Three more hypotheses are made: H0,tk: the

difference of the error rates of the t̄k between the two sides of

healthy individuals is not significant; H0,tk: the difference of

the error rates of the t̄k between the two sides of healthy

individuals is not significant; H1,tk: the difference of the

error rates of the t̄k between the two sides of the patients

is not significant; H2,tk: the difference of the error rates of

the t̄k between the two groups is not significant. The result

illustrates that the error rates of estimated t̄k between healthy

individuals’ two sides are at the same level, as well as the

patients. However, the difference in error rates between the

two groups is significant.

TABLE VII
THE ANOVA-TEST RESULT OF THE HYPOTHESIS, H0 , H1 AND H2

Pair f p Result

H two sides 1.770 0.205 Accept H0,tk

S two sides 0.787 0.396 Accept H1,tk

H and S 10.362 0.003 Reject H2,tk
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B. Validation of Spasticity Measurement Using the Estimated

Muscle Activation during MVC

The most commonly used spasticity measurement method

in clinical practice is MAS. As a result, it is adapted as

a benchmark by the recent studies [9], [22]. In this study,

MAS is utilized to verify the proposed spasticity measurement

method in Section II-C. With the muscle activation prediction

model, the neuromechanical feature, t̄k,1 and t̄k,2, is calculated

based on the estimated muscle activation of the biceps brachii

and brachialis, respectively. Table VIII summarizes the sub-

TABLE VIII
t̄k,1 AND t̄k,2 CALCULATED BASED ON THE ESTIMATED MUSCLE

ACTIVATION AND MAS SCORES OF PATIENTS. THE RANK OF t̄k,1 AND t̄k,2
ARE DETERMINED BY THE ABSOLUTE VALUE OF THEIR DIFFERENCE TO 1,

THE SMALLEST DIFFERENCE IS RANKED AS 1. MAS IS RANKED

ACCORDING TO THE SCORE (0 > 1 > 1+).

Sub ID t̄k,1 Rank t̄k,2 Rank MAS Rank

S1 0.5317 5 0.5335 5 1+ 4

S2 0.8796 2 0.8833 2 0 1

S3 1.0111 1 1.0075 1 0 1

S4 0.8378 3 0.8564 3 1 3

S5 0.6137 4 0.6421 4 1+ 4

S6 0.2367 6 0.2358 6 2 6

ject’s MAS score, t̄k,1 and t̄k,2, and their corresponding rank

among all subjects. The rank is determined by how the t̄k
is closer to 1, and the closest one is ranked as 1. Among the

healthy subjects, t̄k is very close to 1, see Table IX. The result

illustrates that the ranks of both are well correlated to MAS

scores, both with Pearson’s r ≈ 0.96 (p < 0.05).

TABLE IX
t̄k,1 CALCULATED BASED ON THE EMG DATA OF THE HEALTHY

SUBJECTS.

Sub ID t̄k,1

H1 0.9620

H2 1.1270

H3 1.0834

H4 0.9494

H5 0.9757

H6 1.0012

H7 0.8525

H8 0.9023

TABLE X
THE T-TEST RESULT OF THE HYPOTHESIS, H3 WITH SIGNIFICANCE LEVEL

α AT 0.05, CRITICAL VALUE tcritical = 2.353, AND NUMBER OF SAMPLE

n = 5.

Pair n r α tcritical t Result

t̄k,1 and MAS 5 0.96 0.05 2.132 7.251 Reject H3

t̄k,2 and MAS 5 0.96 0.05 2.132 7.251 Reject H4

The correlation is tested via t-test. There are two null

hypotheses: H3, there is no correlation between the severity

rankings between ¯tk,1 and MAS; H4, there is no correlation

between the severity rankings between ¯tk,2 and MAS. The

result is shown in Table. X. Both H3 and H4 are rejected,

which indicates that the outcome of the model-based spasticity

measurement method is highly correlated with MAS.

IV. DISCUSSION

Spasticity is commonly measured based on passive con-

traction. However, identifying the impact of spasticity on

voluntary contraction is also important for planning the reha-

bilitation training and needs to be further studied. Many recent

studies try to evaluate the spasticity using sEMG, while the

outcome of sEMG is significantly affected by the placement

of electrodes and cross-talk. Moreover, sEMG cannot detect

the activity of deep muscles. To this end, we propose the

spasticity measurement method based on the muscle activation

estimation of MVC to investigate the impacts of spasticity

on voluntary contraction. Although the recruited subjects of

the two groups are distributed at different age ranges, it will

not cause derogatory effect on the spasticity measurement

since the model is subject-specific and both the estimation of

muscle activation and t̄k for each subject are independent from

others. The performance of the muscle activation prediction

model and the model-based spasticity measurement method is

discussed in the following two sections.

A. Muscle Activation Estimation

The error between estimation and reference muscle acti-

vation is relatively high at the initial and final phases of

the MVC test, see Fig. 6. The reason might be that the

model does not include the translational movements of both

phases. However, the related muscles are activated to drive UL

during the UL translation. Consequently, sEMG shows that the

muscles are activated at this stage while the estimation result

does not. Nevertheless, the estimated muscle activation and

sEMG profiles are on the same trend in general, especially in

the middle phase, during which they are highly correlated with

promisingly low errors, see Fig. 6. Correspondingly, the mean

R2 of both sides of all healthy participants is encouragingly

high(lowest mean R2 ≥ 0.80), see Fig. 8(a), and the mean

RMSE is relatively low (highest mean RMSE ≤ 0.15),

see Table. V, which illustrates the model can well predict

the muscle activation during the MVC test for both sides of

healthy participants. In the patient group, the result demon-

strates a relatively accurate estimation of muscle activation,

and the mean R2 is higher than 0.6 with mean RMSE
being lower than 0.25 for most of the patients. Moreover,

the standard deviations of both R2 and RMSE are low,

which indicates that the model can predict muscle activation

reliably. However, both R2 and RMSE of healthy participants

are better than patients, and the standard deviations of R2

and RMSE are lower for healthy participants than patients.

These are confirmed by the ANOVA tests, see Table. VI.

Similarly, in the estimation of t̄k, both the error rate between

healthy individuals’ and the patients’ two sides do not have

a significant difference, while the difference between the two

groups is significant, see Table VII. The reason might be: 1. the

patients cannot complete the MVC tasks as stable as healthy

subjects, thereby the displacement of uninvolved UL segments

influences the estimation result of patients more than healthy

participants; 2. The experiments of patients were taken in the

clinical environment where more magnetic noise was detected,

which may affect the IMUs detection. Additionally, R2 of the
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non-affected side of subject S1 is much lower than any other

subject, and the standard deviation of R2 is relatively high, see

Fig. 8(b). The reason might be that S1 performed more UL

displacements than other subjects (the recorded motion data

confirmed this conjecture).

Fig. 10. The median power frequency of the sEMG data changes through
time.

The error between estimation and reference is relatively

higher in the early stages of the middle phase of the MVC

test than in other stages. The reason might be that the muscle

fatigue decreases the Fmax,i [39]. However, as mentioned in

section II-B4, Fmax,i of all muscles are considered as constant,

while the value of Fmax,i will decrease if the muscle fatigue

happens. More specifically, the activation level required to

produce the same joint torque would change with the changes

in muscle fatigue conditions. Thus, the correlation between

the prediction and reference muscle activation changes with

different stages of the MVC test. The power spectrum is

computed to investigate muscle conditions during the MVC

test. The result illustrates that the median power frequency

(MPF) [40] decreases with the increase of time after reaching

the maximal MPF at the beginning of the test, which illustrates

the change in muscle fatigue condition, see Fig. 10.

The tk computed from the muscle activation prediction

shows promising high accuracy compared with that from the

sEMG data. The mean error rate of tk for the healthy subject is

lower than 6%. In the patient group, this number is lower than

14%. The results suggest that the predicted muscle activation

can be used to determine tk. However, Fig. 9(a) and Fig. 9(b)

show that std of the error rate of the tk obtained from the

prediction result is relatively higher for some of the subjects.

The reason might be that the estimation results are affected

by the movements of unconsidered UL segments at the initial

stage of the test. Therefore, the muscle activation in the

estimation profile is close to zero in the initial stage when

the related muscles are actually activated, which can be seen

in the sEMG profile. It means the mean error rate of tk for

the subject heavily depends on the time length of the initial

stage. Thus, the error rate would be high if the subject moves

too slow initially; conversely, the error rate would be low if

the subject moves faster (but does not impact the estimation

result of the middle phase).

B. Correlation Between Model’s Outcome and Clinical Scale

The model-based outcomes show a high correlation (r ≈
0.95, with p < 0.05) with MAS scores rated by the PT. This

indicates that: 1. The estimated muscle activation is relatively

accurate for predicting t̄k; 2. t̄k can be a potential benchmark

for measuring the severity of spasticity. However, only patients

rated as 0, 1, 1+ and 2 (MAS) are involved as it would be

too hard for patients rated as 3 or above to complete the as-

sessment tasks. Thus, this model-based spasticity measurement

method can be used to identify the muscle’s state of voluntary

contraction. Especially in the home-based environment, this

method is easier and more affordable than other spasticity

measurement techniques that require clinical knowledge and

expensive devices.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel quantitative spasticity

measurement method, including a neuromusculoskeletal model

and a spasticity assessment technique based on muscle acti-

vation estimation. The experimental results showed that the

estimation of muscle activation is highly correlated with the

sEMG profiles (with mean R2 ≈ 0.705 for the patient group

and 0.91 for the healthy participant group). The results also

showed that the outcome of our method is well correlated with

the MAS scores given by the PT(with Pearson’s r ≈ 0.96,

p < 0.05). This indicated the proposed model-based quantita-

tive spasticity measurement method provides accurate clinical

assessment for stroke patients. This method does not require

a clinic setting for users, which will potentially benefit home-

based rehabilitation. There are two main limitations to the

proposed method. Firstly, the translational movement is not

accounted for in the dynamic model. Secondly, muscle fatigue

and muscle co-activation factors are not considered in the mus-

cle dynamics. They will affect the muscle activation estimation

and reduce the accuracy of the spasticity measurement. The

proposed method will be computationally expensive in order

to tune the parameters of the neuromusculoskeletal model. To

address this issue, our future work will include new tuning

techniques with less computational cost, investigation of the

complexity of the model and its relation to the computational

cost, and a sensitivity study on the parameters of the proposed

model. Further studies will also need to be carried out to

improve the accuracy of the muscle activation estimation

model.
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