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Gravitational perturbations of rotating black holes in Lorenz gauge
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Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a
pair of gauge invariant components of the perturbed Weyl tensor are expressed in terms of separable
modes that satisfy ordinary differential equations. However, for certain applications it is desirable
to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field
equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the
linearised vacuum field equations on Kerr-NUT spacetimes in terms of homogeneous solutions to
the spin-2, spin-1 and spin-0 Teukolsky equations. We also derive Lorenz-gauge completion pieces
representing mass and angular momentum perturbations of Kerr spacetime.

The Kerr spacetime [1] is a fundamental vacuum solu-
tion of Einstein’s field equations which provides a math-
ematical description of the vast number of rotating black
holes in our universe. Key questions on black hole sta-
bility, cosmic censorship, and gravitational-wave genera-
tion are addressed via black hole perturbation theory [2],
in which Kerr’s solution sets the stage for the dynamics
of scalar, spinor, electromagnetic and gravitational field
perturbations playing out on a curved background.

The spacetime possesses obvious time-translation and
axial symmetries, but also a ‘hidden’ symmetry encoded
in a conformal Killing-Yano tensor [3]. This symmetry,
which is closely related to the existence of a doubled
pair of principal null directions (i.e. Petrov type D), un-
derpins some remarkable results including (i) Liouville-
integrability for the geodesic equations [4]; (ii) decoupling
and separability of certain Bianchi identities, allowing
the perturbed Weyl scalars Wy and ¥4 to be expressed
as a sum of modes governed by second-order ordinary
differential equations [5, 6]; and (iii) a complete sepa-
ration of variables for massive scalar [7], spinor [8] and
vector fields [9]. Exploitation of the hidden symmetry in
(n+1)-dimensional Kerr-NUT-(A)dS contexts is ongoing
[10-13].

A key result from 1975 is that a metric perturbation
hu can be constructed from a spin-2 scalar Hertz po-
tential ¢ in such a way as to satisfy the linearized Ein-
stein equations on the Kerr spacetime [14-17]. The met-
ric perturbation so obtained is in a radiation gauge (or
light-cone gauge [18]), such that h,,¢” = 0, where ¢”
is a principal null direction. In the presence of sources,
the construction generically leads to non-isotropic par-
ticle singularities and extended gauge discontinuities in
the metric perturbation [19-22]. This is an impediment
to extending perturbation theory to second order, be-
cause the source terms at second order are derived from
the metric perturbation at first order [23]. By contrast,
in the Lorenz gauge h,, is expected to be free from ex-
tended gauge discontinuities.

A metric perturbation h,, satisfying
vV, hH =0, (1)

is said to be in Lorenz gauge, also known as harmonic or
de Donder gauge. Here h,, = hy,, — %gwh is the trace-
reversed metric perturbation, h = h*  is its trace, and
V. denotes the covariant derivative on the background
metric g,,,,. Imposing the Lorenz-gauge condition on the
linearized Einstein equations leads to the (manifestly hy-
perbolic) Lichnerowicz tensor wave equation,

Ohy + 2R, oy = —167T, (2)

where T}, is the stress-energy tensor of matter sources,
and R, is the Riemann tensor of the background
spacetime which we take to be Ricci-flat (R, = 0).

The gravitational self-force (GSF) programme ad-
dresses the challenge of modelling Extreme Mass-Ratio
Inspirals for gravitational wave detectors. GSF calcula-
tions are naturally formulated and conducted in Lorenz
gauge [24-31]. On Schwarzschild spacetime, a Lorenz-
gauge formulation at first order [31] is an essential ingre-
dient in the recent calculation of the gravitational-wave
flux at second order in the mass ratio [32]. Lacking a
separable solution of the Lorenz-gauge equations on Kerr
spacetime in the literature (see Ref. [33] for discussion),
recent focus has shifted to constructing second-order per-
turbations in sufficiently-regular gauges [23, 34-39].

In the context of electromagnetism, a vector poten-
tial A* is said to be in Lorenz gauge if it satisfies
V,A* = 0. Imposing the Lorenz gauge condition ren-
ders the Maxwell field equation into a wave equation,
OA* = j*. Recent work [10-13, 40-42] has identified
a separable method for obtaining solutions to Maxwell’s
equations in Lorenz gauge on spacetimes that include
Kerr. In this work, we show that a similar approach may
also be applied in the context of Lorenz-gauge gravita-
tional perturbations, by obtaining a set of solutions for
the Lorenz-gauge equations (2) on Kerr spacetime in the
absence of sources (T}, = 0) for the first time.



Preliminaries.— The Kerr metric can be written in

terms of a null tetrad,
g = 21" 4 2mm?), (3)

where [* and n” are aligned with the principal null direc-
tions, m* is a complex null vector and m" is its complex

conjugate. In Boyer-Lindquist coordinates {t,r,0,¢},

the Kinnersley null tetrad is I* = I, nt = ——l“
mt = \/1§§m+ and m* = (mt)* = f%cm* with

I = [£(r* +a®)/A,1,0,£a/A], (4a)

m!ly = [+iasin®,0,1,+7 /sin6], (4b)

where A =72 —2Mr +a?, ¥ = (( =% + a®cos? 0 and

¢ =r—1tacosf. (5)

The parameters M and a represent the mass and specific
angular momentum of the black hole.

In the absence of sources, the spin-2 perturbed Weyl
scalars satisfy the homogeneous Teukolsky equations
[5, 6, 43] (see [2] for a review with conventions consistent
with those used here), O¥y = 0 = O’V = (1O V,.
The Teukolsky equations admit a separation of variables:
working with the Kinnersley tetrad and inserting the
ansatz (40, = R_o(r)S_o(0)e~w!ime yields

Oy =t [ADLD Lo Lh — 6iwC] (M) =0,

(6)

where the directional derivatives are D = [0, Dt =

"0, L' =md,, L=m"0, with D,, = D+n(d,A)/A

and £, = £+ ncotd. The functions R_5(r) and S_2(0)

therefore satisfy a set of decoupled ordinary differential
equations. A similar result also holds for W¥y.

There is substantial gauge freedom in perturbation the-
ory, linked to the freedom to make an infinitesimal coor-
dinate transformation x* — x* + € £, where e = 1 is an
order-counting parameter. Under such a transformation,
a tensor field T = T + € §T changes at perturbative order
as T — T +¢€ (0T — £¢T) 4+ O(€?), where £¢ denotes the
Lie derivative along the gauge vector £#. Applying this
rule to the perturbed metric g,, = g, + €hy, yields a
transformation law for the metric perturbation h,, under
a change of gauge, namely, hy,, — hy, — 2§, Where
a semi-colon denotes the covariant derivative and paren-
theses indicate symmetrization over the indices.

On a vacuum black hole background (R, = 0), the
perturbed Ricci tensor 6 R, is gauge-invariant at linear
order (as £¢R,, = 0). Consequently, any pure-gauge
metric perturbation h,, = —2&(,.,) satisfies the vacuum
field equations; furthermore if the vector satisfies OJ&# =
0 then h,, is in Lorenz gauge and the metric perturbation
satisfies Eq. (2) with T),, = 0.

In principle, given a vacuum metric perturbation h,,,
one may apply a gauge transformation to transform it to
Lorenz gauge, such that

hﬁu = hyw = 2§ (7)

satisfies Eq. (1). It follows that the gauge vector £&# must
satisfy a sourced wave equation,

0" =V, hi. (8)

Reconstruction of Lorenz gauge solutions from scalar
potentials.— Our main result is that one can construct
solutions to the Lorenz gauge equations from separable
solutions of the Teukolsky equation. These solutions are
divided into scalar (spin-0), vector (spin-1), and tensor
(spin-2) type, alongside “completion” pieces [44, 45] as-
sociated in the Kerr case with infinitesimal changes in
the mass and angular momentum of the black hole. In
the absence of sources, the spin-0 and spin-1 perturba-
tions are pure-gauge modes. In the presence of sources,
we anticipate that solutions of all types (s =0, 1, 2) will
be required to construct a physical solution that is free
from gauge discontinuities, as is found to be the case on
Schwarzschild spacetime [27].

Spin-2 solutions.— To obtain Lorenz gauge solutions
derived from spin-2 scalars, we start with the ingo-
ing radiation-gauge solution of Chrzanowski (Ref. [14],
Table 1) and seek a transformation to Lorenz gauge.
Chrzanowski’s solution can be expressed in covariant
form as [46]

_ 1 4 —4 a
P N (o |
where
HHorE = 4o 1l mP, (10)

and where 1) is a spin-weight —2 potential. In the absence
of sources it satisfies a homogeneous s = —2 Teukolsky
equation, Oy = 0.

The metric perturbation in Eq. (9) is manifestly trace-
free (h = 0). The inclusion of ¢* is required in order
to satisfy the linearised Einstein equation but violates
the Lorenz gauge condition; without it the metric per-
turbation would automatically satisfy the Lorenz gauge
condition but not the linearised Einstein equation [16].
Finally, in order to obtain a real metric perturbation that
generates a physical Weyl tensor one typically adds the
complex conjugate of this metric perturbation; for now
we omit the complex conjugate and will return to it later.

We now seck to transform h,, to Lorenz gauge by
solving Eq. (8), while preserving the trace-free condition.
That is, we seek a gauge vector £ satisfying

V=0, (11)

This we recognise as a well-formed electromagnetic field
equation in (vector) Lorenz gauge. The effective four-
current j/ is divergence-free (V,j* = 0) by virtue of the
fact that h*” in Eq. (9) satisfies V,V,h*" = 0. The
above becomes clearer when written in terms of forms:

OeH = —j# = V,hH,

sd¢ =4, 66=0, §j=0. (12)



Here d is the exterior derivative, § = *d* is the coderiva-
tive, * is the Hodge dual operation, (1§ = dé€ — dd€ on a
Ricci-flat spacetime, and a key identity is dd = 0 = §4.

By Poincaré’s lemma, a divergence-free vector is locally
the coderivative of a (non-unique) two-form. A short
calculation establishes that j = d.J, that is, j#* = V,J*
with the two-form

T =V [UHP] = gl[ﬂm"] L} —iasindD|

(13)

where U, = —V,1In(. Equation (12) can be written as
§(d€ — J + *ds) = 0, where < is an arbitrary vector field
(i.e. a gauge vector of the third kind [47]). The recent
work of Green et al. [48, 49] suggests the ansatz

¢ = (%0H — dx, (14)

where H is a two-form and y is a scalar; and we choose
the gauge vector of the third kind to be ¢ = —i(?6H so
that the field equation becomes [50]

§ ((1—14*)d¢?6H — J) = 0. (15)

The operator d(2§ generates decoupled equations for the
three anti-self-dual degrees of freedom in the two-form H
[48]; and the operator (1 — ¢*) annihilates the self-dual
components of the equation [48, 51]. The ansatz

HY = \éﬁl[“m”]a (16)

then leads to a single decoupled second-order equation,
(ADTCZD + £<2£{) a=—C (c; — jasin 9D) v, (17)

Assuming harmonic time dependence e~ ™! for 1, and
by application of the vacuum Teukolsky equation (6), we
find that Eq. (17) has an elementary solution,

1
61w(

DL (18)

o =

To obtain the gauge vector in Eq. (14) we must also solve
Sdy = Oy = (V,C2)V, H " that is,

1
Ox = ¢ (EJ{ —iasin GD) a. (19)
This also has an elementary solution,
1
X = 48w27>7>/:1£;¢. (20)

In summary, the gauge vector that transforms the
radiation-gauge solution (9) to Lorenz gauge via (7) is
£ = PV, HM — g, x, (21)

where the key ingredients are in Eqs. (16), (18) and (20).

Reformulation in terms of GHP calculus.— We now
rewrite the previous results using the Geroch-Held-
Penrose (GHP) formalism [52] (see Sec. 4.1.1 of Ref. [2]
for a review). This allows us to: reformulate the results
in a compact and coordinate-independent way; eliminate
the need for a mode ansatz; and extend the results to
the full Kerr-NUT class of Petrov type-D spacetimes. It
also allows us to obtain a similar result for the gauge
transformation from outgoing radiation gauge by apply-
ing the GHP prime operator along with the identifica-
tions ¢/ = ORG /= yORG and H, = HEVRG. Trans-
lating the key ingredients in the gauge transformation to
GHP expressions and introducing the Lie derivative, £,
along the time-translation Killing vector, T, we get

Fx =5 0P, (22a)

£TH,uu = Z[MmV]?)LCQEiCpﬁ)' (22b)

Metric perturbation from Weyl scalars.— We now seek
to express the Lorenz-gauge metric perturbation hﬁu in
terms of the Weyl tensor that it generates. In particular,
we consider projections Vg = Cipum and ¥y = Chmnm
which are invariant under gauge and infinitesimal tetrad
transformations. For the metric perturbation (9) or its
conjugate, prime, or prime conjugate, one finds after im-
posing the Teukolsky equation that, respectively, (see

e.g- [2])

Wy = {0, PY, BM LR, B, (230)

U, = i{—zaM,eTg—‘*w, 3", 0, P} (23b)
If we work with a metric perturbation h,, + fLW or
n,, + h,, alone, then we recover the standard radia-
tion gauge relations between the Hertz potentials and the
Weyl scalars [2]. Alternatively, we can choose the “anti-
symmetric” combination h,, = 3[h/,,+h!,,—(hu+hu)].
After imposing the Teukolsky-Starobinsky identities, this
leads to the remarkably simple relations [46, 53]

3M 3M
Yy = T£T<_4¢/, vy = T£T<_4¢~ (24)

Note in particular that v and v’ are not the same as the
radiation gauge potentials, and similarly the h,, and h’W
appearing in h,, are also different to the radiation gauge
metric perturbations. We can thus reinterpret this as

1
M£Lrh,, = —§V/3[<4VQC(MQU)B] +cc (25)

where CHVF = 4(Uo nltmAnlvmsl — Wy l[“ma]l[”mﬁ]) is
the spin-2 part of the self-dual Weyl tensor with the sign
of U, flipped. Since ¥y and ¥, are gauge invariant, these
relations also hold after transforming to Lorenz gauge
using (21) (or its prime, conjugate, or prime conjugate).



In all three cases, imposing the Teukolsky-Starobinsky
identities and the Teukolsky equation reduces four com-
ponents of the Lorenz-gauge metric perturbation to
second-order operators acting on Wy and Wy,

£l = S [T + )], (260)
£k, = 5 [0 + ), (260)
it = S [CPPAEY) + (PP, (260)
Ehl = — LD W) + CPPAC) (260)

A fifth component is obtained from the fact that this
metric perturbation is traceless,

h=2(hk_ —hE)=0. (26e)

No such simplification appears possible for the remaining
five components, but they can be written in terms of a
sixth order operator acting on ¥y and Wy.

Spin-1 solutions.— A set of spin-1 solutions satisfying
0&* = 0 and V,£* = 0 were obtained in Ref. [41, 42]
(see also Ref. [9, 40]). They take the form

Elomt) = (CH (5= 1)) + c.c., (27)

where
MY, = 267" [oombin®) — gallim)] . (28)

Here, ¢g and ¢o are Maxwell scalars that satisfy the
Teukolsky equations for s = +1 and s = —1, respec-
tively (i.e. Ogg =0 = O’¢s), and which are linked by the
spin-1 Teukolsky-Starobinsky identities. A traceless spin-
1 Lorenz-gauge metric perturbation can be constructed

(s=1)
from § (s=1) () *

Spin-0 solutions.— So far, we have only considered
trace-free solutions, h = 0. The trace of the metric per-
turbation must satisfy

in the now-familiar way, bl ") = —2¢

Oh =0 (29)

in the homogeneous case by virtue of the contraction of
Eq. (2). It is natural to ask: what (non-unique) ho-
mogeneous Lorenz-gauge metric perturbation generates
a trace h? A suitable metric perturbation is pure-gauge,
ie.,

s=0) s=0)
Gy = -2, (30)

and is generated by a gauge vector that satisfies

@ 1 (e
Vaf(szo) - _§h, Df(S:U) == 0 (31)

A vector with precisely these properties is

1 — « Neid
§(s=0) = §fT1f Phip + 25, (32)

where

fap = (C+ Onpalg) — (= Om (33)

is the conformal Killing-Yano tensor (we follow here the
definition of [54], which differs from that of Ref. [3] by
an overall sign), and where x is a scalar field satisfying

Ok = %h. (34)

It is straightforward to show that the requirements (31)
are satisfied by using the properties of the conformal
Killing-Yano tensor, namely

= %f aﬁ;ﬁ'
(35)

In the Schwarzschild case, the two spin-0 degrees of
freedom, h and k, map on to those identified by Berndt-
son [27] (see also Khavkine [55]).

Completion pieces on Kerr spacetime.— In addition to
spin-s contributions, the metric perturbation may also
contain “completion” pieces [44, 45, 56] associated in the
Kerr case with infinitesimal changes in the mass and an-
gular momentum of the black hole. Completion pieces
are constructed from varying the mass M and specific
angular momentum a = J/M parameters, viz.,

fa(B;’y) = gﬂwTa - ga(ﬁT—y)» fozﬁ = f[ozﬁ]a T

Og Og
poM) — 98uw p0a) — Y8uv
w oM |0 da |, (36)

where g, is the Kerr metric. Moreover, the conformal
mode hff,,g ) =9 g automatically satisfies the linearised
vacuum field equations. These three pieces are linearly
related by the equation
oM )
W29 = MREM) + ahldY + 2N .0, (37)

with the gauge vector N#0,, =t 0y + r0,.

Unlike the conformal mode, the perturbations hfﬁ,M)
and hg?,a) (for a # 0) are not in Lorenz gauge. To shift
to Lorenz gauge, we apply a gauge transformation,

hL(aM) _

v B = 2¥ ) (38)

As hLBVM) is traceless, it follows that (JY,, = V”hLBVM) =
20, /A. Since the right-hand side is a gradient, the gauge
vector is also a gradient, Y,, = V,y, and using (V,y) =
V. (8y), the potential y must satisfy

2 2 T—Try
Oy = —dr = 1 .
Yy /Adr (r+r_> n(rr_>+const (39)

This equation can be solved by separation of variables.

The Lorenz-gauge mode h L) follows via Eq. (37).

The mass and angular momentum content of the h(aM)
and hfta,ja) modes is assessed by evaluating the conserved
charges associated with the background Killing vectors



(see Sec. IIE in Ref. [29], and Ref. [57]); we find Q) =
1, Qg = —a and Q) = 0,Q gy = —M, respectively.

Discussion.— We have obtained a set of Lorenz-gauge
metric perturbations which satisfy the vacuum field equa-
tions [Eq. (2) with 7}, = 0]. In the frequency domain,
the spin-0, spin-1 and spin-2 metric perturbations can
be expressed in terms of separable modes, that is, radial
and angular functions s Rgme (1) and ¢Spmw (0) satisfying
the vacuum Teukolsky equations for s = 0, s = £1 and
s = +2. It is notable that, although the construction of
the spin-2 modes starts with the radiation-gauge poten-
tials ¢, the Lorenz-gauge metric components in Eq. (26)
can be written in terms of Weyl scalars only, without ref-
erence to . We also note however that it is likely that
the zero frequency modes of the spin-2 case will need to
be treated separately, as has been done for the spin-1
case [42].

Several extensions of this work suggest themselves.
First, extending the Lorenz-gauge formalism to include
source terms (T}, # 0). Second, constructing solutions
for GSF particle-inspiral scenarios by demanding global
regularity (in vacuum regions) on a metric perturbation
constructed from a sum over a complete set of vacuum
modes. Third, the application of these Lorenz-gauge so-
lutions in second-order GSF applications [32, 58, 59],
ultimately leading to the production of waveforms for
extreme mass ratio systems with a spinning primary
(larger) black hole.
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