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ABSTRACT

Introduction: Although genome-wide association studies

have been conducted to investigate genetic variation of lung

tumorigenesis, little is known about gene-gene (G � G) in-

teractions that may influence the risk of non-small cell lung

cancer (NSCLC).

Methods: Leveraging a total of 445,221 European-descent

participants from the International Lung Cancer Con-

sortium OncoArray project, Transdisciplinary Research in

Cancer of the Lung and UK Biobank, we performed a large-

scale genome-wide G � G interaction study on European

NSCLC risk by a series of analyses. First, we used BiForce to

evaluate and rank more than 58 billion G � G interactions

from 340,958 single-nucleotide polymorphisms (SNPs).

Then, the top interactions were further tested by demo-

graphically adjusted logistic regression models. Finally, we

used the selected interactions to build lung cancer screening

models of NSCLC, separately, for never and ever smokers.

Results: With the Bonferroni correction, we identified eight

statistically significant pairs of SNPs, which predominantly

appeared in the 6p21.32 and 5p15.33 regions (e.g.,

rs521828C6orf10 and rs204999PRRT1, ORinteraction ¼ 1.17, p ¼

6.57 � 10�13; rs3135369BTNL2 and rs2858859HLA-DQA1,

ORinteraction ¼ 1.17, p ¼ 2.43 � 10�13; rs2858859HLA-DQA1 and

rs9275572HLA-DQA2, ORinteraction ¼ 1.15, p ¼ 2.84 � 10�13;

rs2853668TERT and rs62329694CLPTM1L,ORinteraction¼ 0.73, p¼

2.70 � 10�13). Notably, even with much genetic heterogeneity

across ethnicities, three pairs of SNPs in the 6p21.32 region

identified from the European-ancestry population remained

significant amonganAsianpopulation fromtheNanjingMedical

University Global Screening Array project (rs521828C6orf10 and

rs204999PRRT1, ORinteraction ¼ 1.13, p¼ 0.008; rs3135369BTNL2

and rs2858859HLA-DQA1, ORinteraction ¼ 1.11, p ¼ 5.23 � 10�4;

rs3135369BTNL2andrs9271300HLA-DQA1,ORinteraction¼0.89,p¼

0.006). The interaction-empowered polygenetic risk score that

integrated classical polygenetic risk score and G � G informa-

tion score was remarkable in lung cancer risk stratification.

Conclusions: Important G � G interactions were identified

and enriched in the 5p15.33 and 6p21.32 regions, which

may enhance lung cancer screening models.

� 2022 International Association for the Study of Lung

Cancer. Published by Elsevier Inc. This is an open access

article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Gene-gene interaction; GWAS; Lung cancer; Sin-

gle nucleotide polymorphism; Cancer risk; Genetic

screening model

Introduction
Lung cancer, as the leading cause of cancer-related

deaths worldwide, is a global epidemic. Non-small cell

lung cancer (NSCLC) accounts for 85% of all lung cancer

cases.1 It is well known that, in addition to environmental

exposures (e.g., tobacco smoking), genetic variants

contribute to NSCLC susceptibility.2–4 Although many

susceptible single-nucleotide polymorphisms (SNPs) have

been identified in genome-wide association studies

(GWAS) during thepast decade,5 together they explain only

a small proportion of variation in the risk ofNSCLC.6Hence,

recent research efforts have expanded to studies of rare

variants,7 copy number variants,8 gene-environmental

(G�E) interactions,9 and gene-gene (G�G) interactions.10
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The statistical interaction effect between two factors

on NSCLC risk can be defined as the marginal effect of one

factor on NSCLC risk varying across strata of another

factor.11 G � E interaction studies of NSCLC have pro-

vided additional genetic evidence of pathogenesis,

including gene-smoking interactions,9,12 gene-asbestos

interactions,13 and gene-occupation interactions.14 G �
G interactions or epistasis may also explain the missing

heritability of NSCLC.15,16 Nevertheless, owing to

computationally intensive G � G interaction analyses on a

genome-wide scale, only a small number of G � G inter-

action studies have been conducted for prostate can-

cer,17–19 colorectal cancer,20 breast carcinoma,21 and

nasopharyngeal cancer.22 For NSCLC, to our knowledge,

we were among the first few who ever performed

genome-wide G � G interaction analyses for lung cancer

susceptibility among a Han Chinese population and

identified a significant interaction between two SNPs in

the 2p32.2 region.5,10 For population of European

ancestry, by focusing on significant index SNPs within the

15q25.1 region, we scanned the entire genome to identify

SNPs that interacted with those 15q25.1 index SNPs and

detected evidence for G � G interactions involved in lung

cancer susceptibility.23 Nevertheless, there is still a

paucity of genome-wide G � G interaction studies among

European-descent population, and the genetic architec-

ture of lung cancer risk under a genome-wide G � G

interaction framework remains largely unclear.

Leveraging a total of 445,221 European-descent

participants from several international consortia, this

study registers the first attempt to conduct a genome-

wide G � G interaction study of lung cancer risk. Spe-

cifically, the study population includes 28,353 partici-

pants from the International Lung Cancer Consortium

OncoArray project (ILCCO-OncoArray),24 7253 partici-

pants from the Transdisciplinary Research in Cancer of

the Lung (TRICL),4 and 409,615 participants from the

UK Biobank.25 We conducted a series of analyses (a two-

phase study, meta-analysis and stratified analysis) to

identify significant G � G interactions, followed by trans-

ethnic validation of significant G � G interactions using

19,546 Asian participants from the Nanjing Medical

University (NJMU) Global Screening Array (GSA) project

(NJMU-GSA).26 We further developed lung cancer

screening models using both classic polygenetic risk

score (PRS) and the detected G � G interactions for

screening high-risk subpopulations.

Materials and Methods
Study Population in Global Consortiums
ILCCO-OncoArray. OncoArray Consortium is a network

created to increase understanding of the genetic archi-

tecture of common cancers. The OncoArray GWAS was

originally designed to profiled genotype information of

57,775 participants, obtained from 29 studies across

North America, Europe, and Asia.24 All participants

signed the informed consent, and the studies were

approved by the local internal review boards or ethics

committees and administered by trained personnel.

TRICL. TRICL Research Team is part of the Genetic Associ-

ations and MEchanisms in ONcology (GAME-ON) Con-

sortium.4 Tumors from patients were classified as

adenocarcinomas, squamous carcinomas, large-cell carci-

nomas, mixed adenosquamous carcinomas, and other NSCLC

histological types following either the International Classifi-

cation of Diseases for Oncology (ICD-O) or WHO coding. The

TRICL GWAS was originally designed to profiled genotype

information of 12,651 participants. All participants provided

informed written consent. All studies were reviewed and

approved by institutional ethics review committees.

All the duplicated samples between ILCCO-OncoArray

and TRICL have been removed from ILCCO-OncoArray

data set.

UK Biobank. The UK Biobank is a large prospective

study of individuals aged 40 to 70 years at assessment,25

who attended assessment centers between 2006 and

2010 and contributed blood samples for genotyping and

blood analysis and answered questionnaires about

medical history and environmental exposures. In the

years since assessment, health outcome data for these

individuals (e.g., diagnoses of cancer) have been accruing

through UK national registries and hospital records.

Lung cancer cases were collected on the basis of the

International Classification of Diseases, Tenth Revision,

code of cancer diagnosis (filed ID: 40006, 41202) or self-

reported lung cancer histological type (filed ID: 20001).

Genotyping and Quality Control of GWAS Data
Genotyping of 533,631 SNPs in ILCCO-OncoArray

was completed at the Center for Inherited Disease

Research, the Beijing Genome Institute, the Helmholtz

Zentrum München, Copenhagen University Hospital,

and the University of Cambridge in Illumina Infinium

OncoArray platform. Details of quality control (QC)

procedures were described in a previous study.27

Briefly, before standard QC, we removed the inten-

tionally duplicated samples and samples from unre-

lated OncoArray studies and HapMap control

individuals of European, African, Chinese, and Japanese

origins. Further excluded were those who lacked dis-

ease status, were second-degree relatives or closer

having identity by descent more than 0.2 or had low-

quality DNA (call rate < 95%), or sex inconsistency, or

were non-European-ancestry. SNPs were removed if
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meeting any of the following criteria: (1) sex chro-

mosome, (2) minor allele frequency less than 0.05, (3)

call rate less than 95%, and (4) Hardy-Weinberg

equilibrium (HWE) test p less than 1.00 � 10�7 in

controls or p less than 1.00 � 10�12 in cases. Finally,

a total of 28,353 participants (15,157 cases and

13,196 controls) with 340,958 qualified SNPs

remained in the subsequent association analysis. To

explore the potential functional variants, we extracted

the genotyped data in the flanking regions with the

imputed data.27

The genotype data of TRICL were generated from the

Affymetrix Axiom Array, which contained 414,504

markers. To estimate missing genotype information, we

phased haplotypes with Eagle version 2.3 using 1000

Genomes Project data (phase 3) as a reference panel28

and then performed imputations using the Minimac

(version 3) software. SNPs with an imputation quality

score R2 less than 0.4, minor allele frequency less than

0.01, or p less than 1 � 10�6 for the HWE test were

excluded from the analyses.

We analyzed the imputed genetic data from the full

UK Biobank cohort, consisting of 488,377 individuals

genotyped on the Affymetrix UK BiLEVE and UK Biobank

Axiom arrays, and applied the same quality control

procedures. We included 409,615 European participants

(3017 cases and 406,598 controls) as the independent

validation set.

A Two-Phase Study of G � G Interaction in
Europeans

We adopt a two-phase (discovery and validation)

study design to identify G � G interactions, while

controlling the number of false positives (Fig. 1). Sig-

nificant G � G signals identified in the discovery phase

using ILCCO-OncoArray and TRICL were further

confirmed in the validation phase using UK Biobank. In

view of more than 58 billion possible G � G in-

teractions considered in our study, we used Screening

before Testing for dimensional reduction in the dis-

covery phase.

Screening Step. BiForce is an entropy-based method,

and it is implemented in a Java program that integrates

bitwise computing with multithreaded parallelization

and allows rapid full pairwise genome scans.29 BiForce

was applied to scan billions of G � G interactions

exhaustively in ILCCO-OncoArray and select potential

G � G interactions by using the criterion of the log-

likelihood difference between two log-linear models

with and without the interaction term, defined as

n
P

i;j;kbpijk logðbpijk =bpijkÞ, where n is the sample size, bpijk

is the observed frequency of subjects with SNP1 coded i

(0, 1, and 2), SNP2 coded j (0, 1, and 2), and disease

status coded k (0 and 1). In addition, bpijk was the ex-

pected frequency under null hypothesis. BiForce used

Kirkwood superposition approximation (KSA) instead of

likelihood estimation to calculate bpijk . KSA, without an

iterative process, enables BiForce to quickly scan all

pairs of SNP combinations, while capturing positive

signals to the extent possible.

Testing Step. Because of computational constraints, it

was unrealistic to use logistic regression models directly

to exhaustively test all 58 billion G � G interactions.

Instead, we used the top SNP pairs selected by BiForce,29

with the default setting to filter noises (PBiForce � 1.00 �
10�6). The top pairs were retested through logistic

regression model adjusted for covariates.

logitðpÞ ¼ b0 þ b1 � SNP1 þ b2 � SNP2

þ b3 � SNP1 � SNP2 þ
X

ai � Covi

Where, b1, b2, and b3 were the main effects of SNP1
and SNP2 and their interaction effect, respectively. Spe-

cifically, following the common practice as in the

genomic studies of lung cancer risk,24,25 we included age,

sex, smoking status, and the top three principal compo-

nents (derived from GWAS data for population struc-

ture) in the logistic regression model. In another sense,

the interaction is the deviation between the joint effect of

two SNPs and sum of their main effects, indicating a

synergistic or antagonistic effect. Through a logistic

regression model, we can have the estimate of interac-

tion effect (b3).

b3 ¼ ln

�
ORjoint effect

ORmain effect; 1 � ORmain effect; 2

�

¼ bjoint effect � ðb1 þ b2Þ

The interaction effect was estimated in ILCCO-

OncoArray and TRICL, respectively. Meta-analysis

pooled the estimates from ILCCO-OncoArray and TRICL

for a more robust and efficient estimate. Normally,

the genome-wide significance level using the Bonferroni

correction method was defined as 8.60 � 10�13 ¼ 0.05O

C(340,958, 2), where C(n,r) is the combination formula

and 340,958 was the number of qualified SNPs that

passed QC. All the significant G � G interactions in the

discovery phase will be independently validated in the

validation phase. SNP pairs with a p value less than or

equal to 0.05 and a consistent direction in the validation

phase were defined as overall significant G � G signals.

Meta-Analysis of G � G Interaction in Europeans
Owing to the population heterogeneity caused by

different demographic and clinical characteristics (e.g.,

4 Zhang et al Journal of Thoracic Oncology Vol. - No. -



smoking versus nonsmoking), there might exist

different types of lung cancer etiology.24,30 In addition

to detection of G � G signals for NSCLC, we aim to

explore subpopulation-specific signals. Thus, to detect

G � G interactions having weak-to-moderate effect

sizes among these subpopulations with limited sample

sizes, we meta-analyzed the ILCCO-OncoArray, TRICL,

and UK Biobank cohorts by using fixed effect model in

several NSCLC subgroups, including lung adenocarci-

noma (LUAD), lung squamous cell carcinoma (LUSC),

male, female, never smoker, ever (current and former)

smoker, and all histological types of lung cancers.

Figure 1. The workflow diagram of this study. We adopt a two-phase design in genome-wide G � G interaction study. In the
discovery phase, a two-step strategy, Screening before Testing, was used for high-dimensionality reduction using European-
ancestry participants from ILCCO-OncoArray and TRICL. In the validation phase, Bonferroni-corrected significant G � G in-
teractions were further confirmed in the UK Biobank. Meanwhile, meta-analysis of ILCCO-OncoArray, TRICL, and UK Biobank
and stratified analysis were performed to identify weak effect G � G signals. Trans-ethnic validation of G � G interactions
was conducted using Asian participants from NJMU-GSA. An improved lung cancer screening model incorporating polygenetic
risk score and G � G interaction score was also developed. eQTL, expression quantitative trait loci; ILCCO-OncoArray, In-
ternational Lung Cancer Consortium OncoArray project; KEGG, Kyoto Encyclopedia of Genes and Genomes; LUAD, lung
adenocarcinoma; LUSC, lung squamous carcinoma; NJMU-GSA, Nanjing Medical University-Global Screening Array; TRICL,
Transdisciplinary Research in Cancer of the Lung.

--- 2022 G 3 G Interaction in Lung Cancer Susceptibility 5



Trans-Ethnic Validation of Significant G � G
Signals in Asians and Europeans

We extracted all SNPs having significant G � G

interaction in a Han Chinese population from NJMU-GSA,

including 19,546 participants (10,248 cases and 9298

controls).26 QC procedures for genotypes were similar to

those in OncoArray, except for the HWE test with p less

than 1.00 � 10�5 in all participants. G � G interactions

were analyzed through logistic regression models

adjusted for the same covariates aforementioned. False

discovery rate (FDR) correction using the Benjamini and

Hochberg method31 was applied to adjust p values for

multiple comparisons.

In Silico Functional Validation of the SNPs With
G � G Interaction

We used an in silico approach through SNPinfo,32

RegulomeDB,33 and HaploReg version 4.1,34 to predict

potential functions of the identified SNPs. Expression

quantitative trait loci (eQTL) was analyzed using the 578

lung tissues in the GTEx project.35 To concordantly

analyze expression profiles from tumor and healthy lung

tissues, we collected data from Gene Expression

Omnibus (GEO) repository, including GSE43458 (80

cases and 30 controls) and GSE12428 (34 cases and 28

controls). We statistically normalized the data before

analysis and used Student’s t test to compare the dif-

ferences between tumor and normal tissues.

Development of an iPRS Enhanced Lung Cancer
Screening Model in ILCCO-OncoArray Population

PRS is constructed as the sum of the number of

minor alleles one carries, weighted by effect coefficient

as the per allele logarithmic odds ratio (OR).36 In this

study, we developed an enhanced lung cancer

screening model incorporating demographic factors

and interaction-empowered polygenetic risk score

(iPRS) in never and ever smokers, respectively. iPRS

was a linear combination of the following three com-

ponents: (1) PRS constructed by 128 SNPs.36 These

SNPs are collected from the known susceptibility loci

of lung cancer and conditions related to lung cancer

(such as lung function impairment) previously identi-

fied through literature curation and NHGRI-EBI GWAS

catalog and additional loci that passed the suggestive

significance level in GWASs. When correlation exists,

variants representing independent loci with the

strongest statistical significance were retained. (2)

Score of significant G � G interactions identified in the

two-phase study and meta-analysis of ILCCO-

OncoArray, TRILC, and UK Biobank, meanwhile,

reached nominal significance level (p < 0.05) in never

or ever smoking subgroups by fixed effect meta-

analysis. (3) Score of G � G interactions also selected

among SNP pairs with pinteraction less than or equal to

5 � 10�8 in the meta-analysis by group least absolute

shrinkage and selection operator (groupLASSO) with

the tuning parameter lambda determined by five-fold

cross-validation,37 and the coefficients were estimated

by demographically adjusted logistic regression

models. Score of G � G interaction in (2) and (3) was

defined by the following scoring process, where b1i and

b2i denoted the main effects of the two G � G SNPs and

b3i denoted their interaction effect:

ScoreG�G ¼
XK

i¼1

ðb1i � SNP1i þ b2i � SNP2i þ b3i � SNP1i

� SNP2ibigÞ

The iPRS, composed of classic PRS and G � G inter-

action score, was used to generate an enhanced lung

cancer screening model together with age, sex, and pack-

years of smoking.

First, with the ILCCO-OncoArray population, we

categorized the continuous iPRS score to a 10-level cat-

egorical variable by its decile values and included the

discretized iPRS in the demographically adjusted logistic

regression model and computed the ORs and 95% con-

fidence intervals (CIs) for each level with the lowest

group set as the reference. We then repeated the same

analysis for PRS scores and compared the performance

of iPRS and PRS by using their ORs across 10 groups.

Validation of the iPRS Enhanced Lung Cancer
Screening Model in UK Biobank Population

We adopted the same weights as used in ILCCO-

OncoArray for SNPs to generate iPRS and PRS with the UK

Biobank population and compared their performances simi-

larly by using a Cox proportional hazards regression model:

hðt;G; CiÞ ¼ h0ðtÞexp
�
bG �Gþ

X
bi � Ci

�

where G indicated the genetic risk score (iPRS or PRS) and Ci
indicated the covariates, including age, sex, source of region,

and smoking. For the UK Biobank survival analysis, time zero

for each patient was defined to be the date of baseline

attendance, and the follow-up time was defined from the date

of baseline attendance to the date of diagnosis of an invasive

primary lung cancer or censoring date (September 30, 2021),

whichever occurred first.

Gene Enrichment Pathway Analysis
We collected the pathway information with gene

sets from the KEGG database, containing a total of
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186 pathways up to July 2021. All enrichment ana-

lyses were performed using the R package

clusterProfiler.38

All statistical analyses were performed using R

version 3.6.3 (The R Foundation for Statistical

Computing, Vienna, Austria). p values were two-sided,

and p less than 0.05 was considered statistically signif-

icant, unless otherwise specified.

Results
Two Significant G � G Interactions Identified by
a Two-Phase Study Among Europeans

Table 1 presents the characteristics of NSCLC cases

and controls in ILCCO-OncoArray (15,157 cases and

13,196 controls), TRICL (3288 cases and 3965 controls),

and UK Biobank (3017 cases and 406,598 controls). In

the discovery phase, we observed that two pairs of SNPs

(rs521828, intronic of C6orf10 at 6p21.32, and

rs204999, 6.2 kb 3’ of PRRT1 at 6p21.32, ORinteraction ¼

1.20, 95% CI: 1.14–1.26, p ¼ 6.10 � 10�13; rs2853668,

4.8 kb 5’ of TERT at 5p15.33 and rs62329694, intronic of

CLPTM1L at 5p15.33, ORinteraction ¼ 0.69, 95% CI: 0.63–

0.77, p¼ 6.08� 10�13) reached the Bonferroni-corrected

significance level (p < 8.60 � 10�13) using subjects from

ILCCO-OncoArray and TRICL. In the validation phase, we

confirmed the significance of these two G � G signals by

using independent participants from UK Biobank

(rs521828 and rs204999: ORinteraction ¼ 1.09, 95% CI:

1.00–1.18, p ¼ 0.044; rs2853668 and rs62329694:

ORinteraction ¼ 0.83, 95% CI: 0.69–0.98, p ¼ 0.034).

To understand better the interaction between

rs521828 and rs204999, we also evaluated the

association of rs521828 with NSCLC risk stratified by

rs204999 using all three cohorts combined. The A allele

of rs521828 was significantly associated with a lower

odds among subjects carrying the wild genotype (AA) of

rs204999 (OR ¼ 0.86, 95% CI: 0.80–0.92, p ¼ 1.64 �

10�5); the effect was reversed among those carrying the

heterozygous AG genotype of rs204999 (OR ¼ 1.09, 95%

CI: 1.01–1.17, p ¼ 2.09 � 10�2), and the effect became

more detrimental among those with the homozygous GG

genotype of rs204999 (OR ¼ 1.23, 95% CI: 1.06–1.43,

p ¼ 5.24 � 10�3). Thus, the effect of rs521828 on NSCLC

was modified by rs204999, clearly indicating the exis-

tence of their interaction. The pattern was further

investigated by a series of stratified analyses (Fig. 2A).

Similar patterns were observed between rs2853668 and

rs62329694. The G allele of rs2853668 was associated

with a higher NSCLC odds (OR ¼ 1.30, 95% CI: 1.14–

1.49, p ¼ 1.10 � 10�4) among subjects carrying GG ge-

notype of rs62329694. But the effect was reversed

among subjects carrying the GA (OR ¼ 0.87, 95% CI:

0.78–0.99, p ¼ 2.74 � 10�2) and AA (OR ¼ 0.75, 95% CI:

0.59–0.99, p ¼ 2.64 � 10�2) genotypes of rs2853668,

respectively. The pattern was confirmed by sensitivity

analyses (Fig. 2B).

In addition, we evaluated the interaction pattern (syn-

ergetic versus antagonistic) for these two pairs of SNPs

coded in the genetic dominant model (Supplementary

Tables 1 and 2). For rs521828 and rs204999, subjects

carrying the twowild genotypes (GG genotype of rs521828

and AA genotype of rs204999)were set to be the reference

group. The main effects of GA or AA genotype of rs521828,

and AG or GG genotype of rs204999 were protective, with

an OR of 0.90 and 0.89, respectively. Nevertheless, their

Table 1. Demographic and Clinical Descriptions of NSCLC Cases and Controls in ILCCO-OncoArray, TRICL, and UK Biobank

Characteristics

ILCCO-OncoArray TRICL UK Biobank

Case
(n ¼ 15,157)

Control
(n ¼ 13,196)

Case
(n ¼ 3288)

Control
(n ¼ 3965)

Case
(n ¼ 3017)

Control
(n ¼ 406,598)

Age 63.66 ± 10.75 61.72 ± 11.38 61.76 ± 10.56 58.7 ± 9.53 61.89 ± 5.88 56.88 ± 8.00

Sex (%)

Male 9778 (64.5) 7967 (60.4) 1643 (50.0) 2028 (51.1) 1398 (46.3) 219,979 (54.1)

Female 5376 (35.5) 5228 (39.6) 1641 (50.0) 1937 (48.9) 1619 (53.7) 186,619 (45.9)

Smoking status (%)

Never 1403 (9.4) 3981 (30.9) 264 (8.0) 1023 (25.8) 357 (11.9) 161,959 (40.0)

Ever 13,461 (90.6) 8908 (69.1) 3024 (92.0) 2942 (74.2) 2642 (88.1) 243,356 (60.0)

Smoking pack-years (mean ± SD) 35.84 ± 34.77 16.42 ± 27.41 40.96 ± 30.9 26.26 ± 26.96 39.76 ± 24.93 23.18 ± 18.55

Histological type (%)

NSCLC 10,997 (87.5) - 1952 (86.3) - 1731 (87.3) -

LUAD 6158 (49.0) - 1296 (57.3) - 944 (47.6) -

LUSC 3886 (30.9) - 513 (22.7) - 569 (28.7) -

Others 953 (7.6) - 143 (6.3) - 218 (11.0)

LSCC 1564 (12.5) - 310 (13.7) - 252 (12.7) -

Ever smoker was composed of former and current smokers.

ILCCO-OncoArray, International Lung Cancer Consortium OncoArray project; LSCC, lung small cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung

squamous carcinoma; TRICL, Transdisciplinary Research in Cancer of the Lung.
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joint effectwasharmful,withanORof1.04, greater than the

product of twomain effects (0.90� 0.89¼ 0.80), indicating

an antagonistic effect between rs521828 and rs204999

(ORinteraction¼ 1.28, 95% CI: 1.18–1.39, pinteraction¼ 1.23�

10�9). Similarly, for rs2853668 and rs62329694, their

joint effect conferred anORof 1.03, whichwas significantly

less than the product of their main effects (1.30 � 1.16 ¼
1.51), also indicating an antagonistic effect between them

(ORinteraction¼ 0.68, 95% CI: 0.61–0.76, pinteraction¼ 1.18�

10�10).

Figure 2. Forest plot of G � G interactions for (A) rs204999 � rs521828 and (B) rs2853668 � rs62329694 using the
European-ancestry participants from ILCCO-OncoArray, TRICL, and UK Biobank. The three-dimensional G � G interaction
signal map for association results of all epistatic pairs upstream and downstream of the identified G � G interaction
using imputed data in (C) 6p21.32 and (D) 5p15.33 regions. The p values were derived from the logistic regresssion
model adjusted for covariates and pooled by meta-analysis of ILCCO-OncoArray, TRICL, and UK Biobank. p values were
plotted on a negative log10-transformed scale. CI, confidence interval; ILCCO-OncoArray, International Lung Cancer
Consortium OncoArray project; TRICL, Transdisciplinary Research in Cancer of the Lung.
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All SNPs within the approximately 500 KB flanking

regions of the significant epistatic pairs were further

tested by logistic regression models, which detected a

cluster of G � G signals enriched in close proximity to

the identified pairs (Fig. 2C and D).

Six More Significant G � G Interactions
Identified by Meta-Analysis Among Europeans

G� G signals with pinteraction less than 5� 10�8 derived

from meta-analysis from different subpopulations were

summarized in Supplementary Tables 3 to 10. A total of

eight pairs of SNPs reached the Bonferroni-corrected

threshold (p < 8.60 � 10�13) in various subpopulations

(Table 2). Among them, two pairs of SNPswere the same as

those identified by the two-phase study. Furthermore,

among the six newly detected G� G interactions, four pairs

appeared in the 6p21.32 region, including rs3135369 and

rs9271300, rs3135369 and rs2858859, rs2858859 and

rs9275572, rs2858859 and rs9275596 (Supplementary

Fig. 1). With a moderate level of linkage disequilibrium

(LD) between rs9271300 and rs2858859 (r2 ¼ 0.66, D’ ¼

0.996) and rs9275596 and rs9275572 (r2 ¼ 0.72, D’ ¼

0.998), these four G� G signals were likely to be the result

of the following three SNPs: rs3135369, rs2858859, and

rs9275572. All other SNPs in the 6p21.32 region were

relatively independent of each other, regardless of LD-r2 or

D’ statistics (Supplementary Table 11). The other two pairs

of SNPs resided in different regions, including rs28591443

in 8p23.3 and rs9265981 in 6p25.2, rs589027 in 1q32.2,

and rs713395 in 2p24.2.

Although each of these six SNP pairs was identified

from a specific subpopulation, all exhibited nominal

significance across all the subpopulations considered but

never smokers with limited sample size (Supplementary

Figs. 2–4), except for one pair (rs589027 and rs713395)

which seemed to be significant only for female

(Supplementary Fig. 4B).

Sensitivity Analyses
We further performed sensitivity analyses to evaluate

these eight G � G interactions. (1) We evaluated the

unadjusted effects of the eight G � G signals by not

including any other covariates in the logistic regression

model and found that all G � G interactions still reached

a significance level with p less than 5 � 10�7 in various

subpopulations (Supplementary Table 12). (2) To ac-

count for type I error inflation caused by imbalance of

cases and controls in the UK Biobank population, we

applied SAIGE (version 0.44.6.5) in the validation phase

to reconfirm these eight signals. SAIGE uses saddlepoint

approximation to account for case-control imbalance,

which can efficiently analyze large sample data, con-

trolling for case-control imbalance and sample related-

ness.39,40 All G � G interactions remained nominally

significant (Supplementary Table 13), except one pair

(rs521828 and rs204999) that was marginally signifi-

cant (p ¼ 0.056). These results by sensitivity analyses

indicated a satisfactory robustness of the eight G � G

interactions.

Successful Trans-Ethnic Validation of Significant
G � G Interactions in Asians and Europeans

First, we evaluated the eight G � G interactions iden-

tified from the European-ancestry population by using an

Table 2. The Eight Pairs of SNPs That Reached the Bonferroni-Corrected Significance Threshold in the Meta-Analysis of
ILCCO-OncoArray, TRICL, and UK Biobank

SNP 1 SNP 2

Population OR 95% CI pRegion SNP
Nearest
Gene EAF Region SNP

Nearest
Gene EAF

5p15.33 rs2853668 TERT 0.276 5p15.33 rs62329694 CLPTM1L 0.051 NSCLCa 0.73 0.67–0.79 2.70 � 10�13

Allb 0.74 0.68–0.80 5.39 � 10�13

6p21.32 rs521828 C6orf10 0.290 6p21.32 rs204999 PRRT1 0.257 NSCLCa 1.17 1.12–1.22 6.57 � 10�13

6p21.32 rs3135369 BTNL2 0.266 6p21.32 rs9271300 HLA-DQA1 0.447 NSCLC 0.86 0.82–0.89 1.93 � 10�14

Allb 0.86 0.83–0.90 1.59 � 10�13

Smoker 0.84 0.80–0.88 6.12 � 10�15

6p21.32 rs3135369 BTNL2 0.266 6p21.32 rs2858859 HLA-DQA1 0.452 NSCLC 1.17 1.12–1.21 2.43 � 10�13

Allb 1.16 1.11�1.20 8.51 � 10�13

6p21.32 rs2858859 HLA-DQA1 0.452 6p21.32 rs9275572 HLA-DQA2 0.394 Smoker 1.15 1.11–1.20 2.84 � 10�13

6p21.32 rs2858859 HLA-DQA1 0.452 6p21.32 rs9275596 HLA-DQA2 0.318 Smoker 1.16 1.11–1.21 4.41 � 10�13

8p23.3 rs28591443 CSMD1 0.066 6p25.2 rs9265981 HLA-B 0.275 LUAD 1.50 1.35–1.68 6.11 � 10�13

1q32.2 rs589027 HHAT 0.328 2p24.2 rs713395 AC008069.1 0.251 Female 0.78 0.73–0.83 6.85 � 10�13

aThese G � G signals reached the Bonferroni-corrected significance threshold (p < 8.60 � 10�13) in the discovery phase by meta-analysis of ILCCO-OncoArray

and TRICL and remained significant (p < 0.05) in the validation phase using UK Biobank.
bAll includes lung cancer cases with all histological types.

CI, confidence interval; EAF, effect allele frequency; ILCCO-OncoArray, International Lung Cancer Consortium OncoArray project; LUAD, lung adenocarcinoma;

SNP, single-nucleotide polymorphism; TRICL, Transdisciplinary Research in Cancer of the Lung.
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external Asian population from NJMU-GSA

(Supplementary Table 14). We were able to validate

three pairs of SNPs in the 6p21.32 region in several of its

subpopulations. They included rs521828 and rs204999

among NSCLC (ORinteraction¼ 1.13, 95% CI: 1.03–1.24, p¼

0.008, q-FDR¼ 0.022), rs3135369 and rs9271300 among

NSCLC (ORinteraction ¼ 0.89, 95% CI: 0.83–0.96, p¼ 0.006,

q-FDR ¼ 0.022) and smoker (ORinteraction ¼ 0.82, 95% CI:

0.72–0.92, p¼ 0.001, q-FDR¼ 0.005), and rs3135369 and

rs2858859 in NSCLC (ORinteraction ¼ 1.11, 95% CI: 1.04–

1.17, p ¼ 5.23 � 10�4, q-FDR ¼ 0.005) (Supplementary

Table 15). No significant results were available for the

other pairs, possibly owing to differences in effect allele

frequency for SNPs between these two ethnic populations

(Fig. 3).

Conversely, we validated the only pair of SNPs at

2p32.2 (rs16832404 and rs2562796) that reached

genome-wide significance among the Asian population,20

using the European-ancestry population. This pair

indeed exhibited a significant G � G interaction effect on

NSCLC odds among the European-ancestry population

(ORinteraction ¼ 1.11, 95% CI: 1.01–1.22, p ¼ 0.028)

(Supplementary Table 16).

SNPs With G � G Interactions Potentially
Involved in Biological Regulatory Function

In the RegulomeDB database, the abundant biolog-

ical regulatory function was observed for 10 of 13

SNPs, including eQTL, transcription factor binding site,

or DNase peak. Numerous enhancer histone marks and

motifs changed were observed for the SNPs

(Supplementary Table 17). In the eQTL analysis using

the GTEx database of lung tissues, abundant regulatory

relations in the human leukocyte antigen (HLA) region

were identified for all eight SNPs in 6p21.32 and

6p25.2 (Supplementary Table 18), whereas no signifi-

cant eQTLs were found for the others. Furthermore,

we performed differential expression analysis with the

GEO repository. For the three genes (C6orf10,

CLPTM1L, and TERT) identified in the two-phase study,

their expression levels were significantly up-regulated

in the tumor tissues (Supplementary Fig. 5). In addi-

tion, BTNL2, which was also identified by the meta-

analysis, was significantly differentially expressed be-

tween lung cancer tumor and normal tissues

(Supplementary Fig. 6). By tumor mutational burden

analysis of these 10 genes in tumor tissues with the

LUAD- and LUSC-TCGA databases, on the basis of so-

matic mutations by next-generation sequencing, we

have found that three genes, specifically, TERT,

CLPTM1L, and CSMD1, presented high proportions of

somatic mutations in the tumor cells (Supplementary

Fig. 7). The findings may inspire novel targeted ther-

apies of lung cancer.

G� G Interaction Score Effectively Distinguishes
Population at High Risk in UK Biobank

We developed lung cancer screening models among

never smokers and ever smokers because of their sub-

stantially different genetic backgrounds. For each sub-

group, considered for risk screening were the following:

(1) the PRS comprising 128 SNPs with significant mar-

ginal effects identified by GWAS in Europeans so far

(Supplementary Table 19); (2) score of G � G in-

teractions (Table 2), of which p is less than 0.05 in never

or ever smoking subgroups by meta-analysis of three

data sets; and (3) score of G � G interactions selected by

groupLASSO using ILCCO-OncoArray (training set) with

the largest sample size of cases in our study

(Supplementary Tables 20 and 21). The iPRS

(Supplementary Table 22) has remarkable stratification

performance while we categorized subjects into 10

groups by the deciles of the score in ILCCO-OncoArray

(Supplementary Fig. 8).

Figure 3. The comparison of G � G interaction association results and effect of allele frequency between Europeans and
Asians. Star symbol (*) indicates that G � G interaction is significant in both Europeans and Asians. CI, confidence interval;
EAF, effect allele frequency; LUAD, lung adenocarcinoma.
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iPRS was externally validated among 162,316 never

smokers and 245,998 ever smokers with available

follow-up time of lung cancer from UK Biobank. The

median of follow-up time was 9.45 years, and its

interquantile range was from 8.48 to 10.52 years. Each

subject was assigned an iPRS score, and all subjects

Figure 4. Participants in the UK Biobank were divided into 10 equal groups according to the PRS and iPRS, respectively. HR
and 95% CI of each group were derived from Cox proportional hazards model adjusted for covariates by setting the lowest
group as reference for never (A) and ever smokers (B). Cumulative lung cancer incidence curves were illustrated for subjects
at different overall risk score groups calculated from demographic variables (age, sex, and pack-years) and iPRS for never (C)
and ever smokers (D). HR and 95% CI were derived from proportional hazards model adjusted for covariates by setting the
lowest group as reference. The absolute lung cancer incidence rates were presented for subjects at different iPRS, pack-
years, and age groups (E). CI, confidence interval; HR, hazard ratio; iPRS, interaction-empowered polygenetic risk score;
PRS, polygenetic risk score; Ref, reference group.
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were categorized into 10 groups by the deciles of the

score. Subjects at the high-risk group (top 10%) had a

significantly higher risk of lung cancer than those at

the low risk group (bottom 10%), with a hazard ratio

(HR) equals to 5.31 (95% CI: 3.11–9.07, p ¼ 8.60 �

10�10, Fig. 4A) for never smokers and HR equals to

6.21 (95% CI: 5.01–7.70, p < 2.2 � 10�16, Fig. 4B) for

ever smokers. Compared with PRS [top 10% versus

bottom 10%: HR ¼ 1.72 (95% CI: 1.09–2.72) for never

smokers; HR ¼ 1.80 (95% CI: 1.49–2.15) for ever

smokers],26 iPRS was found to have a better discrimi-

nation power. Meanwhile, we validated the lung cancer

screening model composed of demographic variables (age,

sex, and pack-years of smoking) and iPRS, ofwhichweights

of SNPswere retained fromthe training set. The cumulative

lung cancer risk curves distinguished obviously from each

other across the five groups categorized by the quintiles of

the overall risk scores of (p < 0.001), indicating the iPRS

enhancedmodel servedas a good risk classifier (Fig. 4C and

D).

Age and smoking pack-years were two well-recognized

factors used to define the high-risk population for low-dose

computed tomography (LDCT) screening of lung cancer.41

Therefore, we illustrated the absolute incidence of lung

cancer in various subpopulations classified by iPRS, age,

and pack-years of smoking (Fig. 4E). Clinically, the iPRS

enhanced model may change the practice of lung cancer

screening. For example, subjects aged less than 55 years or

smoked less than 30 pack-years (including never smokers),

but with a high iPRS, may be suggested as the high-risk

population for lung cancer screening; for those with a

high iPRS (top 20%) and smoked more than 60 pack-years,

lung cancer screening may be better to start as early as 50

years old; and for those with a low iPRS, screening can be

postponed (Fig. 4E).

The Liverpool Lung Project lung cancer risk model

version 3 (LLPv3), using several demographic and clin-

ical factors (age, sex, smoking duration, history of res-

piratory disease, previous malignancy, family history of

lung cancer, and exposure to asbestos), is a well-known

and validated model for lung cancer risk stratification.42

In addition, the iPRS could further stratify subjects into

different risk groups even at the same subgroup strati-

fied by LLPv3 (Supplementary Fig. 9), indicating iPRS

could enhance the screening ability of classical lung

cancer risk model.

Genetic Variants Significantly Enriched in
Biological Pathways

To biologically understand the genes mapped to

epistatic SNPs in the screening models, we performed

gene enrichment pathway analyses with the KEGG

database for ever and never smokers separately. A total

of 16 pathways were significant among never smokers,

such as cell adhesion molecules and allograft rejection

(Supplementary Fig. 10). For ever smokers, 22 pathways

were identified, including the well-known pathways such

as TH1 and TH2 cell differentiation, Notch signaling

pathway, and leishmaniasis, indicating more biological

pathways were involved in smoking behaviors leading to

tumorigenesis (Supplementary Fig. 11).

Discussion
To our knowledge, this is the largest and the most

comprehensive G � G interaction study of NSCLC risk on

the genome-wide scale. We identified a total of eight

pairs of SNPs that predominantly appeared in the

6p21.32 and 5p15.33 regions. Even with ethnic differ-

ences between the European and Asian populations, our

trans-ethnic validation found that three of five pairs of

SNPs in the 6p21.32 region remained significant in both

populations. Furthermore, we developed an iPRS

enhanced lung cancer screening model by incorporating

G � G signals, which outperformed the classic model

with PRS only, and can facilitate screening high-risk

subpopulations.

Strategy of Data Analysis and Controlling of
False Positives

Owing to computational constraints, very few

genome-wide G � G interaction studies are available

for a limited number of diseases (Supplementary

Table 23), including prostate cancer,17–19 colorectal

cancer,20 nasopharyngeal cancer,22 breast cancer,21

and our previous Asian lung cancer study.10 To

address the computing challenge, we adopted a

Screening before Testing strategy17,19,21 to efficiently

extract G � G signals from more than 58 billion of

SNP pairs, while maintaining the type I error and

increasing the statistical power. Though focused on

lung cancer, we envision broad applications of this

strategy to the other diseases.

A multiphase study design is another most often used

strategy to increase the reproducibility of association

results. Thus, we used a two-phase study, which involves

discovery and validation phases, to identify two pairs

of SNPs associated with NSCLC risk. To detect

subpopulation-specific G � G interactions with weak-to-

moderate effect sizes, we resorted to meta-analysis by

pooling subpopulations of interest from all three cohorts

to boost substantially statistical power.24,43 As a result,

we identified six more pairs of SNPs, of which five pairs

exhibited acceptable significance across all the sub-

populations considered, except for one female-specific

epistasis, the mechanism of which warrants further

research.
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To address the multiple comparison issue, first, we

detected that the number of “independent” (LD-r2 < 0.1)

SNPs is 108,951 by using the PLINK prune function.44,45

Then, considering eight possible subsets (e.g., LUAD,

LUSC) in our G � G interaction study, the theoretical

genome-wide significance level should be 1.05 �

10�12 ¼ 0.05 O C(108,951, 2) O 8, which was greater

than 8.60 � 10�13. Thus, the overall false positive rate

should be well controlled in the entire study if we stick

to the level of 8.60 � 10�13.

Independent Contribution by G � G Interactions
to Lung Cancer Screening

Because most patients in the study were smokers,

either former or current, that we did not observe sig-

nificant G � G interactions in never smokers might be

due to a small sample size of lifelong nonsmokers, which

did not equip the subgroup analysis with enough power.

Nevertheless, when fitting the regression models to

assess the significance of the G � G interactions on the

basis of the entire population, we did adjust for the

smoking status. We further performed the chi-square

test to assess the associations between the SNPs

involved in these G � G interactions and the smoking

status in the ILCCO-OncoArray, TRICL, and UK Biobank

populations, respectively. For these 13 SNPs reported in

Table 2, 11 were independent with the smoking status

(Supplementary Table 24).

Because smoking is a well-established risk factor for

lung cancer risks and mortality, smoking cessation is

never too late for smokers and the sooner the better; our

results did not contradict this. Nevertheless, because

lung cancer is such a complex disease, it is driven by

multiple environmental, clinical, and genetic factors.46

Hence, smoking cessation alone may not be sufficient

for lung cancer prevention. For example, previous res-

piratory diseases can also increase lung cancer risks,

including emphysema and chronic obstructive pulmo-

nary disease.47,48 Our study identified 212 SNPs that

were associated with respiratory diseases (e.g., chronic

obstructive pulmonary disease and asthma) using the

GWAS Catalog database (Supplementary Table 25).

These identified biomarkers can share the same role in

the common pathogenetic pathways both for respiratory

diseases and lung cancer,49 contributing to lung cancer

risks in the presence or the absence of smoking.

PRS is a popular approach for identifying individual-

level genetic risks of lung cancer.26,50 Nevertheless, with

weak marginal effects of individual SNPs, the stratifica-

tion performance of PRS based models is generally un-

satisfactory,51 resulting in a severe missing heritability

issue. By incorporating two-way G � G interactions into

the screening model, the discrimination ability has

improved much, as confirmed in all three independent

cohorts. Therefore, as pointed out in our previous

prognostic prediction of lung cancer,52 complex associ-

ation patterns (e.g., G � G interactions) among multiple

factors should be factored in for studies of complex

diseases (e.g., lung cancer).

Benefit and Prospect of Applying iPRS in Lung
Cancer Screening

Confirmed by a recent randomized trial,53 LDCT

screening of asymptomatic subjects with high lung can-

cer risk is a well-recognized way to reduce cancer

morbidity and mortality by detecting very early stage

cases or those predisposed to lung cancer and then

leading to early treatment and intervention strategies.

Nevertheless, identifying suitable subpopulations for

LDCT screening is quite essential to maximize the cost-

effectiveness of the screening project.54,55 The Centers

for Medicare and Medicaid Services and the U.S. Pre-

ventive Services Task Force guideline recommends to

target subjects merely on the basis of their age and

smoking history,56 which is convenient and effective in

real-word practice but still lacks precision. Therefore,

more than 20 lung cancer risk prediction models have

been created in the last couple of decades,57 by incor-

porating more clinical factors to distinguish high-risk

populations (e.g., LLPv342). In recent years, emerging

evidence has revealed that PRS unitizing genetic factors

improved the ability of targeting subjects at high risk of

lung cancer.26 Because the proposed iPRS outperformed

PRS (Supplementary Fig. 8 and Fig. 4A and B), iPRS

possessed the additional capability to substantially

enhance the guideline- and model-based lung cancer

screening strategies (Fig. 4E and Supplementary Fig. 9).

Though genome-wide SNP genotyping is not widely

applied in real-word clinical practice currently, we

envision that simple and fast biotechnology for the

detection of target genes with SNPs is opening up genetic

research and diagnostics beyond laboratory settings.58

Therefore, as time and cost of SNP genotyping dramati-

cally reduced in the future, we suspect that a custom-

designed chip may make iPRS readily accessible and

eventually maximize cost-effectiveness of lung cancer

screening.

Potential Biological Functions of Genes to Which
These Identified SNPs Were Mapped

Of eight significant pairs of SNPs, six were found to be

located in the 6p21.32 and 5p15.33 regions. For

example, one pair mapped to TERT and CLPTM1L is in

5p15.33, a well-known region reported by GWAS of lung

cancer risk in Asians, African Americans,59 European,60
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and for lung cancer prognosis.61 A GWAS by McKay

et al.62 suggested two genes, TERT and CLPTM1L, that

play a role in the development of lung cancer. This

current study reported their interaction effect for the

first time. Interestingly, the two genes are all involved in

tumor antiapoptosis.63,64 TERT plays a role in cellular

senescence because it is normally repressed in postnatal

somatic cells, resulting in shortening of telomeres, and,

therefore, aging and antiapoptosis. Deregulation of telo-

merase expression in somatic cells may be involved in

oncogenesis.65 CLPTM1L is a most often overexpressed

antiapoptotic factor in lung tumors and is associated

with DNA damage measured by bulky aromatic and hy-

drophobic DNA adducts.66 Knockdown of CLPTM1L

transcript in NSCLC cells results in increased sensitivity

to genotoxic stress-mediated apoptotic killing and di-

minishes the expression of Bcl-xL in a manner depending

on CLPTM1L expression.67

Another five pairs of SNPs reside in 6p21.32, where

HLA-DQA1, HLA-DQA2, and BTNL2 are located. This re-

gion was reported to be associated with lung cancer risk

among Asians,68,69 and we now report the G � G signals

in this region for Europeans. PRRT1 and C6orf10 (also

known as TSBP1) are located on the major histocom-

patibility complex (MHC) region, widely recognized as an

important regulatory region for multiple diseases.70 The

two SNPs (rs3135369 and rs2858859) also have abun-

dant eQTL relationship with the genes in HLA, known as

a critical mediator in disease defense through presenting

intra- or extra-cellular peptides on the cell surface in a

form, which can be recognized by the T-cell receptors

(TCRs) and activate a specific T-cell response.71 Thus,

identifying polymorphism signals controlling the ex-

pression of specific HLA molecules and affecting the

peptide binding groove or the contact surface with the

TCR may help disentangle lung cancer MHC associations,

shedding new light on cancer risk and possible immu-

notherapy targets.72

The last two pairs of SNPs (rs9265981 and

rs28591443; rs589027 and rs713395) were mapped to

HLA-B, CSMD1, HHAT, and AC008069.1 in four different

regions. HLA-B belongs to the HLA class I heavy-chain

paralogues; deregulation of CSMD1 is associated with

cancer progression and poor survival through the NF-kB

pathway in gastric cancer73; HHAT regulates the prolif-

eration of estrogen receptor cells in breast cancer and

the HHAT inhibitor plays a critical role for therapeutic

benefits.74 Nevertheless, biological functions of lncRNA

AC008069.1 remain unknown.

Strengths and Limitations
Our study has several strengths. First, this is

perhaps the largest G � G interaction study of lung

cancer risk by using consortium resources and the

first G � G interaction study among the European-

ancestry population, providing evidence beyond an

Asian population.10 Second, to address the issue of

analyzing an extremely large number of G � G in-

teractions, we performed data mining by integrating

various statistical and machine learning tools, and to

investigate the robustness of the results, we conducted

a series of stratified analyses. Although we used the

conservative Bonferroni method to control the false

positives and to ensure the reproducibility of the re-

sults, our stringent procedure detected eight signifi-

cant pairs of SNPs. Third, even with ethnic differences

between the European and Asian populations, we

performed trans-ethnic validation of significant G � G

signals identified in this study that focuses on Euro-

peans and a previous Asian study and found that four

pairs of SNPs maintained statistical significance in both

populations. Finally, we developed an iPRS enhanced

lung cancer screening model with independent vali-

dation in the UK Biobank among never and ever

smokers. The model may lay a theoretical groundwork

for precision prevention of lung cancer among

Europeans.

There are some limitations with this study. First, we

only focused on two-way interactions in the study, as the

computation burden of high-order interactions is prohib-

itive (e.g., there are 6606 trillion three-way interactions

from the SNPs considered in this work) and the inter-

pretation of high-order interactions is more complex.

Second, we did not verify the biological mechanisms of the

SNPs involved in the identified G � G interactions, which

may warrant further functional studies. Third, because

this study was primarily designed for a European-ancestry

population with most participants being Europeans in

ILCCO-OncoArray, TRICL, and UK Biobank, future G � G

interaction studies on subjects with African American

ancestry are needed. Fourth, some of these G � G in-

teractions included in the screening models were

selected by groupLASSO in ILCCO-OncoArray, without

being further validated in the UK Biobank.

In summary, we have identified several novel G � G

interactions, which were internally and externally vali-

dated by multiethnic populations. The developed iPRS

may enrich the screening tool box for physicians.
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