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Abstract

In this paper, we provide clear direct evidence of multiple concurrent higher-order magnetohydrodynamic (MHD)

modes in circular and elliptical sunspots by applying both proper orthogonal decomposition (POD) and dynamic
mode decomposition (DMD) techniques on solar observational data. These techniques are well documented and
validated in the areas of fluid mechanics, hydraulics, and granular flows but are relatively new to the field of solar
physics. While POD identifies modes based on orthogonality in space and provides a clear ranking of modes in
terms of their contribution to the variance of the signal, DMD resolves modes that are orthogonal in time. The clear
presence of the fundamental slow sausage and kink body modes, as well as higher-order slow sausage and kink
body modes, have been identified using POD and DMD analysis of the chromospheric Hα line at 6562.808Å for
both the circular and elliptical sunspots. Additionally, for the various slow body modes, evidence for the presence
of the fast surface kink mode was found in the circular sunspot. All of the MHD mode patterns were cross-
correlated with their theoretically predicted counterparts, and we demonstrated that ellipticity cannot be neglected
when interpreting MHD wave modes. The higher-order MHD wave modes are even more sensitive to irregularities
in umbral cross-sectional shapes; hence, this must be taken into account for more accurate modeling of the modes
in sunspots and pores.

Unified Astronomy Thesaurus concepts: Sunspots (1653); Solar physics (1476); Wavelet analysis (1918);
Umbra (1744)

Supporting material: animations

1. Introduction

The qualitative and quantitative description of plasma dynamics

in the solar and space environment is one of the most challenging

aspects of solar physics. The variety of plasma motions subject to

restoring forces (e.g., pressure gradient, gravitational, Lorentz,

etc.) gives rise to magnetohydrodynamic (MHD) waves and

oscillations. In the absence of these restoring forces, perturbations

might evolve into laminar and turbulent flows, shocks, nonlinear

patterns, etc. Waves have the unique property of carrying energy

and information about the medium in which they propagate,

making them an ideal tool for plasma and field diagnostics.

However, their true diagnostic potential can be put to use only if

high-resolution observations are available that could determine the

accurate measurement of the wave properties and their true nature.

Sunspots are the most prominent manifestations of the emergence

of a magnetic field in the lower regions of the solar atmosphere,

and they are often the footpoints of active regions (ARs) that are

able to considerably influence the space weather. Although,

historically, sunspots are the most studied features in the solar
atmosphere, their dynamical properties are far from being
understood. Thanks to modern observational capabilities (from
visible to near-infrared wavelengths), waves and oscillations in
sunspots are observed from the photosphere to the corona. Over
this height, the properties of waves (amplitude, frequency, etc.)
can change due to the intrinsic changes in the plasma environment
and magnetic field, making their classification and study rather
difficult.
The presence of waves and oscillation of sunspots have been

known since the pioneering work by Beckers & Tallant (1969),
who evidenced oscillatory behavior in a sunspot by determining
the observational parameters of umbral flashes. Shortly after, the
3 minute oscillations in Doppler velocity in the umbral region
were identified by Beckers & Schultz (1972). Later on, it was
shown that the most dominant oscillations in sunspots and pores
have periods of 5 minutes at photospheric heights and 3 minutes
at chromospheric heights, while global oscillations of sunspots, as
a whole, have periods that range from hours to days (Nagashima
et al. 2007; Stangalini et al. 2011; Jess et al. 2012, 2015;
Khomenko & Collados 2015, to name but a few). In contrast,
Stangalini et al. (2021) showed that the dominant oscillations of a
magnetic pore observed with the Interferometric BIdimensional
Spectropolarimeter have periods of 3 minutes in the photosphere,
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instead of the expected 5 minute period, and this was the first time
reporting the 3minute oscillations in a pore photosphere. Using
high-resolution observations from the Solar Optical Telescope on
board Hinode, Nagashima et al. (2007) investigated the spatial
distribution of the power spectral density of the oscillatory signal
in and around an AR. The G-band data showed that in the umbra,
the oscillatory power is suppressed in all frequency ranges. On the
other hand, in Ca II H intensity maps, oscillations in the umbra,
so-called umbral flashes, are clearly seen with the power peaking
around 5.5mHz (3 minutes). The Ca II H power distribution
showed the enhanced elements with the spatial scale of the umbral
flashes over most of the umbra, with a region with suppressed
power at the center of the umbra. The relation between the 3 and
5 minute oscillation in sunspots was studied by Zhou & Liang
(2017), who showed that the running waves are propagating
across the umbra/penumbra as 3 minute oscillations when they
are located at the umbra region and 5 minute oscillations in the
penumbra region.

Magnetic structures observed in the solar atmosphere are
perfect environments for the propagation of guided waves.
Traditionally (considering only the pressure gradient and Lorentz
force as restoring forces), MHD waves propagating in plasmas are
classified according to their relative propagation speed (slow and
fast magnetoacoustic modes, Alfvén or intermediate modes),
radial structure (surface or body), and number of nodes in the
radial direction (fundamental or overtone). Within the high
plasma-β region, i.e., where sound speed, cS, is greater than
Alfvén speed, vA, slow modes are propagating within the tube,
mainly along magnetic field lines with the local Alfvén speed. The
fast modes are allowed to propagate in any direction. Along the
direction of the field lines, the fast mode travels with the sound
speed, and in the direction perpendicular to the field lines, it

propagates with the phase speed v c vS Aph
2 2= + . In the region

where the plasma-β is low (vA> cS), the slow mode propagates
approximately with the local sound speed, and the fast mode
propagates with the local Alfvén speed along the magnetic field
lines. The angular dependence for the phase speeds of the slow
and fast modes are identical in the high plasma-β region. Slow
waves are prohibited from traveling perpendicular to the magnetic
field lines for both high and low plasma-β regions. Surface waves
propagate in a way that their maximum amplitude is attained on
the boundary of the waveguide, and they are evanescent inside
and outside the magnetic flux tube. In contrast, body waves have
an oscillatory pattern in the radial direction inside the waveguide,
and their lowest amplitude is on the boundary of the waveguide.
In the external region, body waves are also evanescent (the wave
power is localized and concentrated within the waveguide). The
fundamental modes have only one radial node occurring at the
umbra/penumbra boundary; however, overtones have more than
one radial node. The MHD waves can also be classified according
to their motion with respect to the longitudinal symmetry axis of
the waveguide. While sausage modes propagate without perturb-
ing the symmetry axis, kink modes perturb the axis in a back-and-
forth motion. Finally, fluting modes have a complex way of
perturbing the axis. Sausage and kink modes are continuously
observed in solar magnetic structures (and their literature is vast);
however, higher-order modes, i.e., the fluting modes, are so far
elusive, and their existence is hypothetical.

Recently, Jess et al. (2017) detected slow body kink modes
propagating along the azimuthal direction in a sunspot by
implementing a k− ω Fourier filter (0.45–0.90 arcsec−1 and
5–6.3 mHz) on Hα images acquired by the Hydrogen-Alpha

Rapid Dynamics camera (HARDcam; Jess et al. 2012). More
recently, Albidah et al. (2021) applied the proper orthogonal
decomposition (POD; Pearson 1901) and dynamic mode
decomposition (DMD; Schmid 2010) techniques for the same
set of observations as Jess et al. (2017) to identify the
fundamental slow body sausage and kink modes.
Keys et al. (2018) showed the separate existence of surface and

body sausage modes in pores that have an approximately elliptical
cross-sectional shape. The authors took a 1D crosscut along the
pores and assumed that for sausage surface modes, the magnitude
of the power along the time series has its maximum at the
boundary and its minimum at the center, with the opposite for the
sausage body mode. However, it was recently shown (Aldhafeeri
et al. 2021) that the magnitude of the surface sausage mode has its
maximum amplitude at the boundary along the minor axis, while
it has its minimum amplitude at the boundary along the major
axis. Therefore, the assumption of Keys et al. (2018) may only
work for a pore that has a circular cross-sectional shape. Our
present study that involves the use of the POD/DMD techniques
will address this issue and show how reliable these methods are in
the identification of modes in waveguides of different cross-
sectional shapes.
The POD and DMD are methods that are commonly used in

fluid mechanics and granular flows (Murray & Ukeiley 2007;
Berry et al. 2017; Higham et al. 2017, 2020, 2021; Higham &
Brevis 2018). The POD technique allows the determination of
spatially orthogonal patterns from signals, while the DMD
technique allows the determination of temporally orthogonal
patterns, as the DMD provides a spatial pattern of the indicated
modes with a pure frequency (Tu et al. 2014). Both of these
methods are separately very useful and, when combined
following the method developed by Higham et al. (2018),
can be used to elucidate temporally and spatially orthogonal
structures from solar observations; see, e.g., Albidah et al.
(2021). For completeness, we provide a brief mathematical
overview of the methods in Section 3.
To a very large extent, the traditional analysis of oscillations

in sunspots involves applying Fourier analysis to provide the
power spectra, and that can be carried out by integration over a
region of interest (ROI) or even on a pixel-by-pixel basis. The
assumption of a sinusoidal basis in the spatial domain can be
taken as a disadvantage of using Fourier analysis, since we are
applying it in a cylindrical or even an elliptical model. In the
case of a cylindrical waveguide, the basis functions in the radial
direction are Bessel functions, which are orthogonal to each
other by definition and give the application of POD strength as
the method looks at the orthogonality in space. Furthermore,
POD and DMD have a further advantage over Fourier analysis,
as they cross-correlate individual pixels over the ROI in the
spatial and temporal domain, respectively. Moreover, the shape
of the sunspot may be affected by the surrounding background,
and, due to that, the shape may lose the property of
orthogonality in the spatial domain; hence, the advantage of
using POD will be lost, as it will not work very well anymore.
However, DMD can detect modes that are orthogonal in time.
Therefore, the best approach is to use the POD and DMD
techniques in combination.
The wavelet time series analysis has also been widely used

to study MHD wave modes and their properties in the sunspot
umbra region. Oʼshea et al. (2002) applied wavelet and Fourier
analysis on an umbral region of an observed sunspot using
different spectral lines of the umbral region that covers the

2

The Astrophysical Journal, 927:201 (23pp), 2022 March 10 Albidah et al.



range of temperatures from the low chromosphere to the corona
to show the appearance of oscillations at all investigated
temperatures, with frequencies in the range of 5.4–8.9 mHz.
Christopoulou et al. (2003) used this methodology for
identification of the 3 minute oscillations in the sunspot umbral
region. By using radio (Nobeyama Observatory) and extreme-
ultraviolet (EUV; TRACE, SDO/AIA) observations, Sych
et al. (2012) applied the wavelet analysis to study the amplitude
and frequency modulation of 3 minute oscillations of
microwave and EUV emission generated at different heights
of a sunspot atmosphere.

The existence of higher-order modes has so far mostly been
predicted theoretically (see, e.g., Edwin & Roberts 1983), and
the very few studies of these modes used indirect methods to
show their existence. Using the observations obtained with the
help of the Fast Imaging Solar Spectrograph installed at the
1.6 m Goode Solar Telescope (Kang et al. 2019) suggested that
the observed two-armed spiral wave patterns in pores could be
explained in terms of a superposition of slow sausage body
mode (corresponding to an azimuthal wavenumber n= 0) and a
fluting mode (n= 2). However, a correlation analysis between
the numerically simulated and observed modes to validate the
obtained results was not included in their study.

Our paper is organized as follows. A brief overview of the
observations of the sunspots we study is given in Section 2.

Section 3 contains a short but necessary description of the POD

and DMD techniques. The theoretical models that have been
used in our analysis (the cylindrical, elliptical, and irregular
shape models) are presented in Section 4. The modes’

identification methodology in the circular and elliptical
sunspots and the discussion of the nature of the modes are

presented in Section 5. Finally, our conclusions are presented
in Section 6.

2. Observations

The sunspot observations employed in the present study
were both acquired using the HARDcam, which is an upgrade
to the Rapid Oscillations in the Solar Atmosphere (Jess et al.

2010) imaging system available as a common-user instrument
at the National Solar Observatory’s Dunn Solar Telescope

(DST). Each observational image sequence was acquired

through a narrowband 0.25Å (FWHM) filter centered on the

chromospheric Hα absorption line at 6562.808Å. During each

of the observing sequences, high-order adaptive optics
(Rimmele 2004) were employed, with the acquired images

further improved through the application of speckle reconstruc-
tion algorithms (Wöger et al. 2008). Specific acquisition details
are provided below.

Figure 1. The first column shows snapshots from the Hα time series of the circular (upper panel) and elliptical (lower panel) sunspot. The second column displays the
mean intensity of the time series of the circular (upper panel) and elliptical (lower panel) sunspot, the color bar displays the magnitude of the mean time series, the
solid black line shows the umbra/penumbra boundary with the intensity threshold level at 0.85 for the circular sunspot (and 0.4 for the elliptical sunspot), and the blue
box shows the region where we apply our POD and DMD analysis.
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2.1 2011 December 10

The sunspot formed part of NOAA 11366, which was

located at heliocentric coordinates (356″, 305″), or N18W22 in

the conventional heliographic coordinate system. A pixel size

of 0 138 pixel–1 was chosen to provide a field-of-view size

equal to 71″× 71″. Images were acquired over the course of

75 minutes (16:10–17:25 UT) at a cadence of 0.050 s. The data

set had previously been employed in a host of scientific studies

(Jess et al. 2013, 2016, 2017; Krishna Prasad et al. 2015;

Albidah et al. 2021) due to the excellent seeing conditions and
the highly circularly symmetric shape of the sunspot umbra.
Following speckle techniques, the final cadence for the
reconstructed images is 1.78 s. A sample Hα image of the
sunspot is displayed in the upper left panel of Figure 1.

2.2 2014 August 24

The sunspot formed part of NOAA 12146, which was
located at heliocentric coordinates (496″, 66″), or N10W32 in

Figure 2. The first row displays the spatial structure of the modes that were detected from the observational data: the first POD mode (middle) and the DMD mode that
corresponds to the frequency of 4.8 mHz (right) (Albidah et al. 2021). In the first column, we display the theoretical spatial structure of the fundamental slow body
sausage mode in the cylindrical magnetic flux tube model (middle) and the corresponding structure considering the realistic sunspot with irregular shape (bottom). The
rest of the panels show the cross-correlation between theoretically constructed and observationally detected modes, and the positive/negative numbers in the color bar
denote correlation/anticorrelation. The dashed circles show the boundary of the tube, and the solid black line shows the umbra/penumbra boundary. The 3D
visualization of this mode can be found in Figure 21 in the Appendix. The same configuration was used for Figures 3–6.
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the conventional heliographic coordinate system. A diffrac-

tion-limited pixel size of 0 108 pixel–1 was chosen to

provide a field-of-view size equal to 180″× 180″, which is

the maximum allowable by the DST optics. Images were

acquired over the course of 120 minutes (13:56–15:56 UT) at

a cadence of 0.017 s. The data set had previously been

employed in a study that examined the presence of Alfvén-

wave-driven shocks in sunspot atmospheres (Grant et al.

2018). Following speckle techniques, the final cadence for

the reconstructed images is 1.00 s. A sample Hα image of the

sunspot is displayed in the lower left panel of Figure 1.

3. POD and DMD Analysis of Observational Data

For both the POD and DMD, we consider a sequence of ROI

intensity snapshots of a time domain of size T and a spatial

domain of size X× Y, with each snapshot regularly temporally

spaced. Each snapshot is column vectorized such that N= XY,

and a matrix W is created from them such that W ä
N×T. To

apply the POD technique, we use a singular-value decomposi-

tion (SVD):

W SC . 1( )*F=

Figure 3. The 13th POD (top row, first panel) and DMD mode (top row, second panel) with a frequency of 6 mHz, which has an azimuthal symmetry of the
fundamental slow body kink mode (Albidah et al. 2021). The 3D visualization of this mode is shown in Figure 21 in the Appendix.
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The decomposition results in the spatial structure of each mode

are given in the form of columns of the matrix Φ, and their

temporal evolution is given by the columns of the matrix C,

where an asterisk denotes a conjugate transpose operation.

Modes are ranked according to their contribution to the total

variance of the snapshot series. This contribution is given by

the diagonal elements of matrix λ by means of the vector

λ= diag(S)
2/(N).

To perform DMD, analogously to POD, the snapshots are

organized in columns but in two matrices, WA and W
B, such

that WB is shifted by a snapshot of WA. Then, the matrix W
A is

decomposed using the SVD:

W SC . 2A ˜ ˜ ˜ ( )*F=

Using this result and the matrix W
B, the matrix

F W CS 3B 1˜ ˜ ˜ ( )F= -

is obtained. Using the matrix F, we can calculate its complex

eigenvalues, μi, and eigenvectors, zi, where i= 1 ... τ and

τ= T− 1. According to Schmid (2010), to create a robust set

of eigenvectors, a Vandermonde expansion of the eigenvalues

Figure 4. The 19th POD (top row, first panel) and DMD mode (top row, second panel) with a frequency of 5.6 mHz, which has an azimuthal symmetry of the slow
body sausage overtone mode. The 3D visualization of this mode is shown in Figure 21 in the Appendix.
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can be employed as

Q , 4i j i
j

,
1 ( )m= -

where i= 1 ... τ and j= 1 ... τ. The spatial modes of DMD are

calculated by

W Q , 5A ( )*Y =

and the frequencies associated with these modes can be

determined using

f f arg z 2 , 6i s i( ) ( )p=

where fs is the snapshot-sampling frequency. Following the

approach by Higham et al. (2017, 2018), modes are identified

based on their contribution to the variance via POD. This step

is followed by the calculation of a Fourier power spectrum of

the POD time coefficients associated with the dominant modes.

These spatially important frequencies can then be used to

identify temporally orthogonal modes determined by the DMD.

4. Models

The behavior of MHD waves in sunspots approximated by
magnetic configurations, such as a cylinder with a circular or an
elliptical cross section, can be understood by analyzing

Figure 5. The 20th POD (top row, first panel) and DMD mode (top row, second panel) with a frequency of 7.6 mHz, which has an azimuthal symmetry of the slow
body fluting mode (n = 2). The 3D visualization of this mode is shown in Figure 21 in the Appendix.
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dispersion relations derived from the full set of MHD
equations. More complicated cases (when the sunspot’s
cross-section shape is irregular) can be studied only numeri-
cally. In this study, we used all three types of models
describing MHD wave propagation in magnetic flux tubes
and compared the theoretically predicted waves’ signature with
observed data using correlation techniques.

The first model is the cylindrical model with a circular cross
section, and the predictions of this model are compared with
the modes that are observed from the circular sunspot (see
Figures 2–6). The second model describes the possible wave
modes in a waveguide with an elliptical cross section. The
predictions of this model are compared with the observational
data derived using the sunspot with an approximately elliptical

shape (see Figures 8–13). Finally, the third model assumes an
irregular cross-sectional shape. The theoretical predictions were
compared to both sunspot types, i.e., the circular (see
Figures 2–6) and elliptical (see Figures 8–13).

4.1. Cylindrical Model

Following the standard approach, we assume a magnetic flux
tube with a circular cross section of radius a. The axis of the
tube is oriented along the vertical z-axis. We will denote the
quantities that correspond to each of the internal and external
regions with the indices i and e, respectively. The plasma is
permeated by a homogeneous magnetic field directed along the
longitudinal symmetry axis (Bi and Be, respectively) and

Figure 6. The 26th POD (top row, first panel) and DMD mode (top row, second panel) with a frequency of 7.4 mHz, which has an azimuthal symmetry of the slow
body fluting mode (n = 3). The 3D visualization of this mode is shown in Figure 21 in the Appendix.
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characterized by constant plasma densities (ρi and ρe) and
kinetic pressures (pi and pe). Assuming a regular solution along
the symmetry axis and a localized dynamics inside the flux tube
(i.e., exponentially decaying solutions outside the magnetic
cylinder), the dispersion relations of the surface and body
modes can be given as (see Edwin & Roberts 1983, for more
details)

k v m
K m a

K m a

k v m
I m a

I m a
, 7

i z A e
n e

n e

e z A i
n i

n i

2 2 2

2 2 2
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where kz is the wavenumber in the vertical direction;

v Bi i iA 0m r= and v Be e eA 0m r= are the Alfvén speeds

inside and outside the flux tube; ω is the frequency of the

waves; In, Jn, and Kn are the Bessel functions of order n; μ0 is

the permeability of free space; and the dash denotes the

derivative of the Bessel functions with respect to their

argument. The magnetoacoustic parameters, mi and me, are

defined as

m
k c k v

c v k c

m
k c k v

c v k c

and

. 9
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The signs of these parameters determine the nature of the MHD

waves, e.g., Equation (7) with m 0i
2 > corresponds to the

Figure 7. The PSD of the time coefficients of the POD 19 (left panel), POD 20 (middle panel), and POD 26 (right panel) modes. The vertical colored dashed lines
represent the values in the frequency domain that correspond to the peaks of the PSD, and the values of the peaks’ locations are shown in the legend of each figure.
The PSD of POD 1 and POD 13 (the fundamental sausage and kink modes) can be found in our earlier study (Albidah et al. 2021).

Table 2

Summary of the MHD Wave Properties that Were Detected by the POD and DMD Techniques in the Sunspot with an Elliptical Cross Section

MHD Wave Mode mi˜ f (mHz) kz (Mm−1) λ (Mm) Vph (km s−1)

Fundamental slow body sausage 1.1644 3.5 2.24887 2.7939 9.77

Fundamental slow body kink 1.6368 5.88 3.7696 1.6667 9.80

Slow body overtone kink 3.1698 5.3 3.412798 1.8410 9.75

Slow body fluting (n = 2) 2.6328 5.61 3.6166 1.7373 9.74

Slow body fluting (n = 3) 2.7837 6.2 3.995553 1.5725 9.74

Note. The first column contains the types of the modes, and the value of the magnetoacoustic parameter, mi˜ , is shown in the second column (see Equation (13)). The

third column contains the frequency of the waves, as determined from the DMD analysis. The fourth column contains the wavenumber along the vertical direction of

the sunspot, and it is calculated using Equation (13), with ω = 2πf, ci = 10 km s−1, v c4A ii = , and σ2 = 0.4174. The fifth column shows the wavelength (λ = 2π/kz)
of the waves, while the sixth column contains the phase speed (Vph = fλ) of the waves. All units of physical quantities are shown in the table.

Table 1

Summary of the Properties of the MHD Modes Detected by the POD and DMD Techniques in the Sunspot with a Circular Cross Section

MHD Wave Mode mi f (mHz) kz (Mm−1) λ (Mm) Vph (km s−1)

Fundamental slow body sausage 1.0353 4.8 3.0022 2.0928 10.04

Fundamental slow body kink 1.6765 6 3.73754 1.6811 10.08

Slow body overtone sausage 2.3754 5.6 3.395 1.8507 10.36

Slow body fluting (n = 2) 2.214 7.6 4.7294 1.3285 10.09

Slow body fluting (n = 3) 2.7471 7.4 4.55619 1.3790 10.20

Note. The first column contains the names of the modes, while the second column shows the value of the magnetoacoustic parameter, mi (see Equation (9)). The third

column contains the frequency determined from the DMD analysis. The fourth column contains the wavenumber along the vertical direction, calculated by means of

Equation (9), with ω = 2πf, ci = 0.01 (Mm s−1), and v c4A ii = . The fifth column shows the wavelength (λ = 2π/kz), while the sixth column gives the phase speed

(Vph = fλ) of the identified modes.
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dispersion relation of surface waves, and Equation (8) with

m 0i
2 < describes the body waves. In the case of both modes, the

condition m 0e
2 < ensures an exponentially decaying solution

outside the magnetic flux tube. In the above expressions,

c pSi i ig r= and c pSe e eg r= are the adiabatic sound

speeds, γ is the ratio of specific heats, and the quantities cTi and

cTe are the characteristic speeds of the slow magnetoacoustic

mode (tube) speeds in the two regions, defined as

c
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The values of the parameter n determine the symmetry of the

mode with respect to the axis of the magnetic flux tube; that is,

n= 0 corresponds to sausage modes, n= 1 to kink modes, and

n� 2 to fluting modes.

4.2. Elliptical Model

The model describing the wave propagation in a cylindrical
magnetic flux tube (Edwin & Roberts 1983) can be expanded

to a more general case of a magnetic waveguide with an
elliptical cross section (see Aldhafeeri et al. 2021, for more
details). In this configuration, dispersion equations for MHD
surface and body waves can be represented as
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Figure 8. The first row displays the spatial structure of the first POD mode (left panel) and the DMD mode that corresponds to 3.4 mHz (right panel). The first column
displays the theoretical modes of the fundamental slow body sausage mode in an elliptical magnetic flux tube (middle) and the theoretical modes of the fundamental
sausage body mode in the irregular shape that corresponds to the actual sunspot shape (bottom). The rest of the panels show the cross-correlation between theoretically
constructed and observationally detected modes, and the positive/negative numbers on the color bar denote correlation/anticorrelation. The dashed ellipse shows the
boundary of the flux tube, and the solid black line shows the umbra/penumbra boundary. The 3D visualization of this mode is displayed in Figure 22 in the Appendix.
The same configuration is used for Figures 10–13.
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where σ is the distance from the center of the ellipse and its

focal points. Although the forms of the dispersion relations

(Equations (11) and (12)) are rather similar to the case of a

waveguide with a circular cross section, the functions involved

in Equations (11) and (12) are Mathieu functions, rather than

Bessel functions. In the above dispersion relations, m
E O,X , m

E O,Q ,

and m
E O,Y denote the internal solution for the body wave, the

internal solution for the surface wave, and the external solution,

respectively. The superscripts E and O denote the even and odd

solutions, and the prime denotes the derivative of the Mathieu

function with respect to the confocal elliptic variable, s.
The study by Aldhafeeri et al. (2021) revealed that the cross-

sectional shape introduces significant changes in the behavior

of waves, as this depends on the polarization along the major or

minor axis of the ellipse. It was also found that higher-order

modes are strongly influenced by the change in the eccentricity
of the waveguide.

4.3. Irregular Shape Model

In reality, the cross section of sunspots is far from being
regular. The dispersion relations for regular circular and
elliptical cross sections reveal that these relations are sensitive
to the transversal geometry of the waveguide (Aldhafeeri et al.
2021). In order to determine the property of waves and their
oscillatory patterns in waveguides with an irregular cross
section, a numerical approach was used to determine the
eigenfunctions and associated eigenvalues. For this problem,
we used a Cartesian coordinate system, assuming the photo-
spheric level to be the xy-plane and the vertical direction to
be along the vertical z-axis. The spatial structure of the

Figure 9. The PSD of the time coefficients of the POD 1 (top left panel), POD 14 (top right panel), POD 13 (middle left panel), POD 30 (middle right panel), and POD
18 (bottom panel) modes. The colored dashed vertical lines represent the value in the frequency domain that corresponds to the peaks of the PSD, where the
frequencies are shown in the legend.
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eigenfunctions is physically constrained by the cross-sectional
shape of the waveguide. The governing equation of the
longitudinal velocity perturbation, vz, was derived and solved
by using the observed cross-sectional shape, where the shape is
obtained by taking the threshold level of the umbra and setting
vz= 0 at the umbra/penumbra boundary to be consistent with
the observational data.

By assuming linear MHD perturbations, the time-indepen-
dent Helmholtz equation was derived for the vertical comp-
onent of velocity perturbation, vz, of the form

v

x

v

y
m v 0, 14

z z
i z

2

2

2

2

2 ( )
¶
¶

+
¶
¶

- =

where mi
2 is the eigenvalue defined by Equation (9).

Equation (14) was solved by assuming a Dirichlet-type

boundary condition, i.e., at the boundary of the magnetic

waveguide, the z-component of the velocity perturbation

vanishes. With this type of boundary condition, the numerical

solution describes only slow body modes, which constitutes a

limitation of this model. Body waves are guided waves whose

longitudinal velocity amplitude is zero on the boundary of the

waveguide, while taking their maximum value inside the

waveguide. By choosing this type of boundary condition, we

disregard those modes (known as surface modes) whose

velocity amplitude is not zero on the boundary. Of course,

the POD/DMD techniques can also recover surface waves; see

Section 5.1.
In order to apply the above approach to observations (line

intensity), it is more convenient to write Equation (14) in terms
of density perturbation, ρ. The relationship between the density
and longitudinal velocity component is

v
k c

, 15z
z i

2

0

( )
wr

r=

where ρ0 is the unperturbed density that corresponds to the

equilibrium state (Aldhafeeri et al. 2021). From Equation (15),

it follows that the evolution of the density perturbation is

governed by a similar Helmholtz equation. In general, all of the

dominant compressive variables are proportional to each other;

therefore, they can be assumed to be governed by a Helmholtz-

type equation.

5. MHD Wave Mode Identification and Discussion

The POD and DMD techniques were applied on the two data
sets associated with the sunspots, shown in Figure 1. The

Figure 10. This figure displays the 14th POD (top row, left panel) and DMD modes (top row, right panel) with a frequency of 5.8 mHz, which has an azimuthal
symmetry corresponding to the fundamental slow body kink mode. The 3D visualization of this mode is shown in Figure 22 in the Appendix.
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oscillatory pattern of the modes recovered with the help of
these techniques is compared with the results drawn from
theoretical models constructed for a waveguide with cylind-
rical, elliptical, and irregular cross sections. The comparison is
quantified by means of a cross-correlation analysis (Di Stefano
et al. 2005; Tahmasebi et al. 2012) calculated on a pixel-by-
pixel basis. The result of the correlation is a number between 1
and −1, where 1 means that the two pixels have a linear
correlation, while −1 denotes a linear anticorrelation.

Furthermore, as POD provides information about the
temporal evolution of the coefficients of the POD modes, we
can determine the power spectrum density (PSD), which will
show the most dominant frequencies of the modes. Since DMD
identifies modes in terms of their frequency, and by using the
magnetoacoustic parameters mi and mi˜ for the cylindrical and
elliptical models, respectively, the longitudinal wavenumber,
kz, was obtained by using Equation (9) for the sunspot with a
circular cross-sectional shape (see Table 1) and Equation (13)
for the sunspot with an elliptical cross-sectional shape (see
Table 2). Here ω= 2πf is the angular frequency, f refers to
frequency in hertz, ci= 10 km s−1 is the assumed sound speed,
v c4A ii

= is the Alfvén speed, and σ2= 0.4174. With the help
of these quantities, the wavelength (λ= 2π/kz) of the waves
and the phase speed (Vph= fλ) were calculated for the MHD

modes identified by our analysis. The 3D visualizations of the

POD and DMD modes for the circular and elliptical sunspots

are provided in the Appendix (see Figures 21 and 22). The 3D

surface was immersed in the volume rendering of the

theoretical MHD wave model of the irregular cross-sectional

shape.
Let us start with the sunspot with a circular cross-section

shape shown in the upper left panel of Figure 1. The analysis

was applied on the ROI represented by the blue box in the

upper right panel of the same figure, where the umbra/
penumbra boundary is shown by a solid black line with an

intensity threshold level of 0.85. In addition to the fundamental

slow body sausage mode (shown in Figure 2) and the

fundamental slow body kink mode (Figure 3) identified

previously (see, e.g., Albidah et al. 2021), the POD and

DMD analysis reveals the existence of the higher-order MHD

wave modes.
The POD mode that can be interpreted as an MHD wave

mode is the 19th mode, which has the azimuthal symmetry of a

slow body sausage overtone mode, i.e., a mode with more than

one radial node, and the DMD mode that corresponds to the

spatial structure has a frequency of 5.6 mHz, as shown in

Figure 4. The PSD of the time coefficient of POD 19 has a mix

Figure 11. This figure displays the 30th POD (top row, left panel) and DMD mode (top row, right panel) with a frequency of 5.3 mHz, which has an azimuthal
symmetry of the slow body kink overtone mode. The 3D visualization of this mode is shown in Figure 22 in the Appendix.
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of peaks around 4.3, 5.4, and 6.5 mHz on its frequency domain,
as shown in the left panel of Figure 7.

The next POD mode that can be interpreted as an MHD
wave mode is the 20th component of the POD ranking, and it is
visible in the DMD, too. This mode has a frequency of 7.6 mHz
and an azimuthal symmetry corresponding to a slow body
fluting mode (n= 2), as shown in Figure 5. The PSD of the
20th POD mode shows a mix of peaks around 3.7, 5.8, and
7.4 mHz, as shown in the middle panel of Figure 7. Finally, the
last mode that was detected by the POD and DMD analysis that
shows an azimuthal symmetry of a slow body fluting mode
(n= 3) is the 26th POD component and the DMD mode that
corresponds to 7.5 mHz, as shown in Figure 6. The PSD of the
26th POD mode shows a mix of peaks at around 3.2 and
7.2 mHz, as shown in the right panel of Figure 7.

It is expected that some of the PSDs of the POD modes may
have a mix of peaks in their frequency domain, and this is one
disadvantage of the POD technique, making it difficult to
decide which frequency is relevant for the mode identification.
However, this ambiguity is resolved by the DMD technique by
taking the peaks and finding the DMD mode that corresponds
to the peaks, allowing us to make a decision on which DMD
mode has a spatial structure similar to the mode recovered by

means of POD; hence, we consider the distinct frequency of
that DMD mode.
The sunspot with an elliptical cross-sectional shape is shown

in the lower left panel of Figure 1. The POD and DMD analysis
was applied to the ROI shown by the blue box in the lower
right panel of the same figure, where the umbra/penumbra
boundary is shown by a solid black line with an intensity
threshold level at 0.4. The first POD mode that can be
interpreted as an MHD wave is the first POD mode that shows
the symmetry of the fundamental slow body sausage mode, and
the associated DMD mode corresponds to 3.4 mHz, as shown
in Figure 8. The PSD of the time coefficient of POD 1 shows
peaks around 3.5 and 6.8 mHz, as shown in the top left panel of
Figure 9. The next mode that can be identified in our data is the
fundamental slow body kink mode, and the POD mode that
shows a high correlation with this mode of oscillation is POD
14, as shown in Figure 10. The PSD of the time coefficient of
POD 14 shows a clear peak at 5.88 mHz (top right panel of
Figure 9). The DMD mode that shows an azimuthal symmetry
with the fundamental kink is the DMD mode that corresponds
to 5.8 mHz, as shown in Figure 10.
It is important to note that in the case of fundamental modes

(both sausage and kink body modes), the change in the shape

Figure 12. This figure displays the 13th POD (top row, left panel) and DMD mode (top row, right panel) with a frequency of 5.6 mHz, which has an azimuthal
symmetry of the slow body fluting mode (n = 2). The 3D visualization of this mode is shown in Figure 22 in the Appendix.
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of the cross section (from cylindrical, to elliptical, and, finally,

to an irregular shape) does not introduce significant changes in

the morphology of waves, meaning that these modes can be

confidently studied in regular shapes. The above statement

proves to be incorrect for higher-order modes. The 30th POD

mode and the DMD mode that corresponds to 5.3 mHz show a

high correlation with the slow body kink overtone mode, as

shown in Figure 11. The PSD of the time coefficients of the

30th POD shows a peak around 5.6 mHz, as displayed in the

right panel of the middle row of Figure 9. The difference in the

morphology of this wave between the pattern prediction of an

elliptical and realistic (irregular) waveguide is remarkable,

making the identification of the mode from observation

misleading. Next, the 13th POD mode and the DMD mode

that corresponds to 5.6 mHz are the modes that can be

interpreted to have a higher correlation with the slow body

fluting mode (n= 2), as shown in Figure 12. The PSD of POD

13 shows a peak at 5.8 mHz, visible in the left panel of the

middle row of Figure 9. Finally, the last mode is the slow body

fluting mode (n= 3), identified as the 18th POD mode and the

associated DMD mode with a frequency of 6.2 mHz, as shown

in Figure 13. The PSD of the POD 18 mode has a peak around

6.08 mHz, as shown in the bottom left panel of Figure 9.

Apart from the sensitivity of the modes on the cross-

sectional shape of the magnetic waveguide, it is also important

to note that there is a higher correlation between the observed

modes and the predictions of the model corresponding to the

irregular shape. We should also note that there is no complete

agreement between the observed modes in either the circular or

elliptical cross-section sunspot and the theoretical models, and

this disagreement can be attributed to the assumptions made in

the theoretical models regarding the constant values of the

temperature, density, pressure, and magnetic field inside the

magnetic flux tube. In reality, the magnetic flux tubes are

inhomogeneous in the transversal direction (see, e.g., observa-

tions of intensity provided by high-resolution observations by,

to name but a few, Gopalakrishnan et al. 2013 and Fritts et al.

2017). Furthermore, in the theory of guided MHD waves (see,

e.g., Edwin & Roberts 1983), modes are monochromatic, and

the lower-order MHD wave modes have a lower frequency

than the higher-order modes; however, this holds true only

when the wavenumber, kz, is constant. In the family of

identified modes in the present study, there are some higher-

order modes having a lower frequency than the lower-order

modes; however, they have different wavenumbers, as shown

in Tables 1 and 2.

Figure 13. This figure displays the 18th POD (top row, left panel) and DMD mode (top row, right panel) with a frequency of 6.2 mHz, which has an azimuthal
symmetry of the slow body fluting mode (n = 3). The 3D visualization of this mode is shown in Figure 22 in the Appendix.

15

The Astrophysical Journal, 927:201 (23pp), 2022 March 10 Albidah et al.



One advantage of using the POD and DMD techniques for
the identification of MHD modes in sunspots is the opportunity
to detect a high number of MHD wave modes in one single
sunspot, as these techniques provide a number of modes equal
to the number of snapshots of the data set. The challenge is,
however, to select and identify those modes that are physical.

Other techniques have their own limitation in identifying MHD
waves in a sunspot. For example, the limitation of Fourier
filtering is that it applies a wide range of bandpass filters. In the
case of the circular sunspot, our earlier study (Albidah et al.
2021) identified the fundamental slow body kink mode with a
frequency of 5.88 mHz and the slow body sausage overtone

Figure 14. Intensity fluctuations in the circular sunspot. The top panel shows the time coefficient, C, for the POD modes identified as MHD waves: slow body (SB)

sausage overtone, SB fundamental sausage, SB fundamental kink, SB fluting (n = 2), SB fluting (n = 3). The colors of the lines and circles depict the detected MHD
wave modes, and the position of the circles indicates the time used for the plots in the bottom panels. The bottom left panel presents a 3D surface plot of the umbra
where the z-direction describes the oscillations in the Hα observations, and it is colored by the observed intensity fluctuations at time t = 1450.7 s. The bottom right
panel is the 3D surface of the POD reconstruction of the intensity fluctuations using only the POD modes identified as MHD waves. The 3D surface is colored by the
intensity fluctuations at time t = 1450.7 s. An animation of this 3D visualization can be found in the online Journal.

(An animation of this figure is available.)

Figure 15. Intensity fluctuations in the elliptical sunspot. The top panel shows the time coefficient, C, for the POD modes identified as MHD waves: slow body (SB)

fluting (n = 2), SB fundamental sausage, SB fundamental kink, SB overtone kink, SB fluting (n = 3). The colors of the lines and circles depict the detected MHD
wave modes, and the position of the circle indicates the time used for the plots in the bottom panels. The bottom left panel presents a 3D surface plot of the umbra
where the z-direction describes the oscillations in the Hα observations, and it is colored by the observed intensity fluctuations at time t = 202 s. The bottom right panel
is the 3D surface of the POD reconstruction of the intensity fluctuations using only the POD modes identified as MHD waves. The 3D surface is colored by the
intensity fluctuations at time t = 202 s. For the POD reconstruction, we only used the POD modes identified as MHD waves. An animation of this 3D visualization can
be found in the online Journal.

(An animation of this figure is available.)
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with a frequency of 5.61mHz. However, in the original
analysis by Jess et al. (2017), using the same sunspot,
they applied a k− ω Fourier filter (0.45–0.90 arcsec−1 and
5–6.3 mHz) that resulted in the identification of only the slow
body kink mode. In general, higher-order modes cannot be
detected, and this can be attributed to the fact that these modes
have less energy than the fundamental modes, so it is expected
that the spectrum is dominated by the fundamental modes. The
POD and DMD techniques are able to address this shortcoming.

Figures 14 (for the circular sunspot) and 15 (for the elliptical
sunspot) illustrate the ability of the POD technique to capture the
portion of the umbral oscillations that are due to MHD wave
modes among the observed intensity fluctuations. The top panel
displays the POD time coefficient for the five detected MHD
wave modes within a given time interval: 1000 s for the elliptical
sunspot and 2016 s for the circular one. The lines and circles are
color coded by the MHD wave mode, and the position of the
circles indicates the value of time used for the plots in the bottom
panels. The bottom left panels show the 3D surface representation
of the original sunspot oscillations, while in the right panels, we
see the reconstructed oscillations using the POD modes identified
as MHD wave modes. The POD technique separates the effects of
oscillations that are due to wave propagation, enhancing the
expected wave pattern in the umbra. Animated movies for
Figures 14 and 15 are available in the online Journal.10 The

analyzed sunspots present a considerable discrepancy for the
values of the time coefficients, as the dynamics of the spatial
modes changes considerably for different umbra geometry and
size. Although there is a considerable difference between the
POD-reconstructed oscillation intensity and the original
perturbations, this discrepancy is expected, as the POD modes
have less energy than the other “nonphysical” modes detected
by POD. The low contribution of wave propagation to the
observed oscillations may be a consequence of different issues
(i.e., global modes, locally excited fluctuations) for the global
variance of the oscillatory field in a sunspot. This reinforces the
POD as a valuable tool to apply to wave detection in sunspots,
as other methodologies require properly filtering the data in
order to disentangle and detect the resonant modes.

5.1. Surface Wave Identification

The POD and DMD techniques can also be applied to
identify surface modes. In the POD analysis performed on the
circular sunspot, it was found that there were two modes that
have the characteristics of surface waves: the POD 10 mode
(see the middle panel of Figure 18), which shows the azimuthal
symmetry corresponding to the fundamental (slow or fast)
surface sausage mode, and the POD 6 mode (see the middle
panel of Figure 19), which has a pattern close to the
fundamental (slow or fast) surface kink mode. Our theoretical
model is restricted to the identification of slow body modes,
i.e., modes corresponding to vz= 0 at the umbra/penumbra
boundary (see Section 4.3). Therefore, in the framework of this

Figure 16. Sausage mode (first row) and kink mode (second row) of the cylindrical magnetic flux tube, where the first column shows the slow body mode, the second
column shows the slow surface mode, and the third column shows the cross-correlation between the first and second columns.

10
Copies of the animations are also available on the University of Sheffield

Plasma Dynamics Group’s visualizations Google Sites webpage: https://sites.
google.com/sheffield.ac.uk/pdg/visualisations.
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study, cross-correlation with possible surface modes detected

with POD/DMD and their direct theoretical counterparts

cannot be performed. Nevertheless, the cross-correlation

between the theoretical slow body and slow surface modes in

a magnetic cylinder produces a distinctive closed ring for the

sausage mode and a broken ring for the kink mode (see

Figure 16) with a clear in-phase relationship. Moreover, the

cross-correlation between the slow body mode and the fast

surface mode also provides an in phase, but the spatial structure

is very close to the slow body eigenmode shown in Figure 17.

These distinctive signatures at least provide an indirect way of

detecting slow and fast surface modes in the observational data.
The POD modes that appear most likely to be surface modes

have been correlated with the fundamental slow body sausage

and kink modes as shown in Figures 18 and 19, respectively. In

Figure 18 (middle panel), the red ring is present, indicating a

slow surface sausage mode, but the blue regions of antiphase

inside the red ring and on the outer left edge cannot be

Figure 17. Sausage mode (first row) and kink mode (second row) of the cylindrical magnetic flux tube, where the first column shows the slow body mode, the second
column shows the fast surface mode, and the third column shows the cross-correlation between the first and second columns.

Figure 18. Fundamental slow body sausage mode as shown in Figure 2 (left panel), the spatial structure of POD 10 (middle panel), and the cross-correlation between
the left and middle panels (right panel).
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explained by the theoretical model. The antiphase regions are

even more prominent in Figure 18 (right panel) and are also not

predicted for the theoretical fast surface mode. The cross-

correlation for the POD 6 mode shows stronger agreement with

a fast surface kink mode as shown in Figure 19, although there

are still some small antiphase regions that are not consistent

with the theoretical model. Figure 20 shows the PSD of the

time coefficient of POD 6, which shows a mix of peaks.

6. Summary and Conclusions

The present study provides clear evidence of MHD

sausage (n= 0) and kink mode (n= 1) overtones and

higher-order (n� 2) fluting modes in sunspots. The results

obtained are a significant extension of the previous studies

by Jess et al. (2017) and Albidah et al. (2021), where MHD

modes were recovered for the case of an approximately

circular sunspot. First, the mode detection was carried out by

means of the POD and DMD techniques. Our results were

compared with their theoretical counterparts obtained

assuming a cylindrical magnetic flux tube, as well as with

the model of a magnetic flux that corresponds to the actual
irregular shape of the umbra boundary.
Second, the same techniques were also applied to a sunspot

whose shape is close to an elliptical cross section and compared
the obtained results with the theoretical predictions of waves in
an elliptical waveguide, as well as an irregularly shaped
magnetic flux tube corresponding to the actual shape of the
umbra boundary. The comparison between modes detected in
observational data and in theoretical models was carried out by
means of cross-correlation analysis calculated on a pixel-by-
pixel basis. The correlation results demonstrate that the higher-
order MHD modes are more strongly affected by irregularities
in the sunspot shape.
The vertical wavenumber, kz, and mode frequencies have

been calculated by using the magnetoacoustic wave parameter
(mi) and Equation (9) for sunspots with a circular cross-
sectional shape and Equation (13) for sunspots with an
elliptical cross-sectional shape (see Tables 1 and 2).
The existence of these MHD waves was theoretically

predicted almost 40 yr ago (see, e.g., Edwin & Roberts 1983),
so our study offers what is probably one of the first pieces of
observational evidence for the existence of higher-order
modes in the chromosphere. Only a few papers reported their
observational presence (see, e.g., Yuan 2015; Kang et al.
2019; Stangalini et al. 2022). These waves offer an
unprecedented diagnostic tool for describing the dynamical
state of the plasma and the structure of the magnetic field,
since they are carrying information about the medium in
which they are propagating, and seismological techniques
can be applied to compare observationally determined
quantities with theoretical predictions to infer values that
cannot be (directly or indirectly) measured. Seismology using
a single wave is a sort of underdetermined system because
many variables are implicit, and the variables that can be
extracted are not independent (similar to a system of
equations having n� 2 variables, but only n− 1 equations
are given). The observation of at least two or more modes in
the same structure helps resolve this degeneracy.
Concurrent observations of different kinds of waves

(including the higher-order modes presented in our study)
could allow us to more fully understand the true nature of the
dynamics and comprehensively describe the plasma state and
structure of the magnetic field. Potentially, our results could

Figure 19. Fundamental slow body kink mode as shown in Figure 3 (left panel), the spatial structure of POD 6 (middle panel), and the cross-correlation between the
left and middle panels (right panel).

Figure 20. The PSD of the time coefficients of the POD 6 mode.
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help us better understand the nature and properties of modes in

more realistically structured waveguides, where the sound and

Alfvén speeds are spatially varying, which would modify the

eigenvalues and eigenfunctions, especially of the higher-order

modes.
Higher-order modes also give a more complete description

of subsurface drivers. It is clear that in the present situation, we

are dealing with a broadband driver. However, slow body

modes are weakly dispersive, and their phase speeds are

confined to a narrow band between the tube speed and internal

sound speed. This means that the helioseismological approach

of exploiting detected p-modes, where modes in ω− k space

correspond to distinct clear ridges, would certainly be a

challenge.
In addition, due to the presence of the higher-order modes

(as these are the most sensitive to the shape of the waveguide),

we demonstrated that using the exact cross-sectional shape of

the waveguide is essential for the correct interpretation of

waves.
The current study and techniques used for wave detection

have important implications for the interpretation of

observational data from next-generation ground-based observing

facilities (in particular, the new 4m DKIST solar telescope).
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Appendix

The 3D visualizations of the observed modes, as well as a

volume rendering of the theoretical MHD wave model, are

shown in Figures 21 and 22 for the circular and the elliptical

sunspot, respectively.
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Figure 21. The 3D surface plot of the POD (first column) and DMD (second column) modes obtained for the case of a circular sunspot, as well as a volume rendering
of the theoretical MHD wave model, which uses the same color code as the POD and DMD modes. Rows refer to particular identified MHD modes, that is, the
fundamental slow body sausage mode (first row), fundamental slow body kink mode (second row), slow body sausage overtone (third row), n = 2 slow body fluting
mode (fourth row), and n = 3 slow body fluting mode (fifth row).
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Figure 22. The visualization techniques are the same as in Figure 21, but here the rows refer to the MHD wave mode recovered in the elliptical sunspot, that is, the
fundamental slow body sausage mode (first row), fundamental slow body kink mode (second row), slow body overtone kink mode (third row), n = 2 slow body
fluting mode (fourth row), and n = 3 slow body fluting mode (fifth row).
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