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ARTICLE OPEN

Full-spin-wave-scaled stochastic micromagnetism for

mesh-independent simulations of ferromagnetic resonance

and reversal
Harald Oezelt1✉, Luman Qu2, Alexander Kovacs 1,3, Johann Fischbacher 1,3, Markus Gusenbauer1,3, Roman Beigelbeck1,

Dirk Praetorius 4, Masao Yano5, Tetsuya Shoji5, Akira Kato5, Roy Chantrell 6, Michael Winklhofer 7, Gergely T. Zimanyi2 and

Thomas Schrefl 1,3

In this paper, we address the problem that standard stochastic Landau-Lifshitz-Gilbert (sLLG) simulations typically produce results
that show unphysical mesh-size dependence. The root cause of this problem is that the effects of spin-wave fluctuations are
ignored in sLLG. We propose to represent the effect of these fluctuations by a full-spin-wave-scaled stochastic LLG, or FUSSS LLG
method. In FUSSS LLG, the intrinsic parameters of the sLLG simulations are first scaled by scaling factors that integrate out the spin-
wave fluctuations up to the mesh size, and the sLLG simulation is then performed with these scaled parameters. We developed
FUSSS LLG by studying the Ferromagnetic Resonance (FMR) in Nd2Fe14B cubes. The nominal scaling greatly reduced the mesh size
dependence relative to sLLG. We then performed three tests and validations of our FUSSS LLG with this modified scaling. (1) We
studied the same FMR but with magnetostatic fields included. (2) We simulated the total magnetization of the Nd2Fe14B cube. (3)
We studied the effective, temperature- and sweeping rate-dependent coercive field of the cubes. In all three cases, we found that
FUSSS LLG delivered essentially mesh-size-independent results, which tracked the theoretical expectations better than unscaled
sLLG. Motivated by these successful validations, we propose that FUSSS LLG provides marked, qualitative progress towards
accurate, high precision modeling of micromagnetics in hard, permanent magnets.

npj Computational Materials            (2022) 8:35 ; https://doi.org/10.1038/s41524-022-00719-5

INTRODUCTION

Finite element micromagnetic modeling has been proven to be a
reliable tool to describe many magnetic phenomena at finite
temperatures. Usually, the micromagnetic model utilizes a form of
the Landau–Lifshitz–Gilbert (LLG) equation. If the computation
requires varying the temperature, as for example in simulations of
heat-assisted magnetic recording or permanent magnets in
electric motors and generators, thermal excitations and fluctua-
tions need to be represented in the LLG method.
The most popular approach to deal with thermal excitations in

micromagnetics is to use a Landau–Lifshitz–Bloch (LLB) based
equation1,2 which combines the LLG equations for low tempera-
tures and the Bloch equations for high temperatures. In contrast
to the LLG equations, in LLB the magnetization magnitude is no
longer conserved, moreover, the transversal and longitudinal
components have different damping parameters. The LLB gives
good results for temperatures close to and higher than the Curie
temperature, but it achieves this success by introducing several
additional temperature-dependent parameters. At high tempera-
tures, the magnetization reverses linearly by changing its length
and orientation, a process which can be perfectly described using
the LLB equation3. Constructing these parameters involves a
considerable amount of effort, though, as it requires a multi-scale
simulation approach including ab initio methods and atomistic
simulations, typically necessitating additional assumptions and
phenomenologies4,5.

In this paper, we focus on the stochastic Landau–Lifshitz–Gilbert
equation (sLLG). For temperatures far smaller than the Curie
temperature, as in the case of permanent magnet applications, the
magnetization will fluctuate at the surface of its unit sphere.
Switching will not occur by linear reversal. Hence, the sLLG is a
good choice. However, unless we do a scaling of the parameters,
the result will strongly depend on the mesh size. The here
presented FUSSS version of the LLG fixes this problem. A key
advantage of sLLG for finite-temperature micromagnetism is that
it requires less phenomenological considerations6,7. In the sLLG
approach, the thermal perturbations are represented by adding
white noise to the LLG equation, turning it into a Langevin-type
stochastic differential equation8. The white noise is added to the
effective field of the equation in the form of a stochastic field.
However, simulating magnetization dynamics with sLLG still

requires either an accurate computation of atomistic-level spin
models9,10, or an approximate finite element (FE) calculation with
mesh size of atomistic length scales. The intrinsic properties
serving as input parameters for such finite element calculations
are fixed on the single spin level at 0 K and are usually taken from
ab initio calculations. Sadly, due to the high demand of such
calculations on computing resources, simulations at the atomistic
scale are limited to a sample size of few nanometers.
To calculate magnetic behavior of samples on the micromag-

netic scale, usually ranging from nanometers up to a few
micrometers, the mesh size has to be increased. The term mesh
size is used here to describe the average edge length of the
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elements in the mesh. Since micromagnetism is a continuum
theory, its parameters represent thermal averages over the finite
elements that are much larger than the material’s unit cell.
Simulations that use a coarser FE mesh but retain the atomistic
parameters fail to include fluctuations on length scales between
the interatomic spacing and the mesh size. A class of such
fluctuations is the short wavelength spin waves that reduce the
magnetization of the mesh-elements, a key parameter of the sLLG
simulation. Therefore, the saturation magnetization Ms computed
with the sLLG equation using the atomistic magnetization on a
coarse mesh is too high. Such discrepancies increase with
increasing temperatures. Many works address this problem by
adopting phenomenological, effective parameters to match the
sLLG simulations on a finite difference or finite element mesh with
experiments. Without such adaptation, the sLLG results are
reliable only at low temperatures.
Another undesirable consequence of the naive sLLG methods

that do not account for the fluctuations on intra-mesh length
scales is that the results of the simulations are dependent on the
mesh size: larger meshes ignore more fluctuations. This is clearly
an unphysical state of affairs.
An inspired, quantitative method to account for intra-mesh

fluctuations is to construct and to use renormalization group
equations to integrate out intra-mesh fluctuations and represent
them with scale-dependent, renormalized mesh parameters in
sLLG FE simulations11–14. Grinstein and Koch11 demonstrated the
power of this method by modeling the temperature dependence
of the magnetization of iron with a Heisenberg model. They used
the Heisenberg renormalization group equations to generate
scale-dependent, renormalized mesh parameters, which then they
used in their sLLG simulations of the magnetization of large
samples. Subsequently, Kirschner et al.15 performed Monte Carlo
simulations on an atomistic level and calculated the average
spontaneous magnetization for much coarser cells at different
temperatures. These cell/mesh size dependent macro-spins were
then used in sLLG simulations on length scales two orders of
magnitude larger than the unit cell. Finally, some papers use
simplified versions of the renormalization group and call the
procedure coarse graining, such as Behbahani et al.14 for their
sLLG calculation of hysteresis loops for magnetite nanorods.
However, these renormalization group approaches still have

limitations. For example, renormalization group works only in the
leading logarithmic approximation, which holds only if the spin
waves have a gapless, purely quadratic dispersion. The need to use
this idealized dispersion forced the incorporation of the anisotropy
Ku and the magnetic field h only as perturbative corrections.
Further, the effect of the actual crystal symmetries on the spin-
wave dispersion were also ignored when the momentum integrals
were performed in idealized, isotropic spheres. When used for
asymptotic calculations, such as near the critical temperature and
at very long length scales, these approximations are justified.
However, in most sLLG simulations the system is far from criticality,
and the length scales of the FE mesh are intermediate, only a few
nanometers. For both of these reasons, the quadratic gapless spin-
wave dispersion approximation is quite poor. It is especially poor
for hard, permanent magnets because of their large anisotropy Ku.
It gets worse still when the magnetic fields are high. And finally,
reducing the analysis to the leading logarithmic approximation is
justified if the renormalization group equations are integrated out
to a very long correlation length, which is the case only very close
to criticality. In contrast, the justification and therefore the accuracy
of this leading logarithmic approximation is limited when only a
limited range of wavelengths/length scales need to be integrated
out, such as in the present case, when the integration proceeds
from the atomistic scale only to the mesh size. For all the above
reasons, for hard magnets in high fields with typical mesh sizes, the
accuracy of sLLG simulations with renormalization group-corrected
parameters is limited. This is consistent with the fact that the

original verification of these renormalization group ideas was
performed only for the soft magnet iron, in zero field, and at
temperatures approaching the critical temperature Tc

11, where the
approximations are the most defensible, as properly discussed in
that paper.
To address the above limitations and challenges, in the present

paper we report the development of an improved renormalization
group, or scaling, method. (1) Instead of the exchange-only,
gapless, quadratic spin-wave dispersion, forced by the leading
logarithmic approximation, we retain the full-spin-wave dispersion
with the anisotropy Ku and finite magnetic field h in it. This way
we avoid treating these latter terms only perturbatively. Specifi-
cally, we use the spin-wave dispersion of the hard magnetic
compound Nd2Fe14B at 300 K temperature, determined and
confirmed by experiments16. (2) Using these experimental
dispersions also retains the proper, real spin-wave dispersion that
represents the crytalline symmetry of the magnetic material. With
these two modifications, we integrate out the intra-mesh spin-
wave fluctuations from the atomistic scale to the mesh size. Please
note that the proposed method works with any suitable spin-wave
dispersion, either measured experimentally or derived theoreti-
cally. This integral gives rise to a scaling factor for the
magnetization parameter Ms appropriate for the sLLG mesh size.
We do not use the classical relation to scale the anisotropy
constant Ku. Instead, we perform simulations of ferromagnetic
resonance in order to derive a scaling law that is self-consistent
with the simulations. This is done by fitting Ku to shift all FMR
curves to the same, shared bias field. For the exchange constant Ax
we saw very little influence on the FMR results, hence we stuck
with the classical relation of Ax / M2

s . With such scaled
parameters, micromagnetic simulations of magnetization reversal
are nearly mesh size independent. However, we compare the
results of our improved scaling method with the results obtained
by the classical scaling relation.
We will demonstrate the efficiency of our method in the context

of analyzing ferromagnetic resonance (FMR). FMR measurements
are a widely used technique to investigate dynamic magnetic
behavior, especially to determine damping effects in magnetiza-
tion dynamics17. Micromagnetic FMR simulations have been
performed for granular perpendicular media for magnetic
recording to extract the Gilbert damping constant18. In this paper,
we use our spin-wave renormalized sLLG method to simulate the
magnetic field dependence of the FMR curves and show that the
simulations are in good agreement with experiments, and
reassuringly, are mesh size independent. Although our method
is applicable for other spatial discretization methods like finite
differences, in this paper we focus on finite elements to proof
feasibility.

RESULTS

Development of FUSSS LLG by simulating ferromagnetic
resonance

Often ferromagnetic resonance (FMR) experiments or simulations
are used to determine the effective damping constant in materials
of interest12,18. In this work, we carry out FMR simulations to
critically test the developed full-spin-wave-scaled sLLG theory by
checking whether it indeed delivers results independent of the
finite element mesh size. In the simulations, we have adopted the
often-used Gilbert damping value of α= 0.01.
In the FMR-simulation, the previously prepared cube is exposed

to an oscillating field with a maximal amplitude of μ0HAC= 5 mT
applied orthogonally to the cube’s anisotropic easy axis in x-
direction (see Fig. 1).
The frequency is chosen to be fAC= 216 GHz. Neglecting the

demagnetizing field, the magnetic moments are in resonance at a
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bias field of μ0Hbias= 1 T, resulting in an FMR peak at this field:

fAC ¼
γμ0
2π

Hani þ Hbiasð Þ (1)

with Hani ¼
2KL

u

μ0M
L
s

(2)

and γ ¼ 1:7608596 ´ 1011 T�1s�1: (3)

γ is the gyromagnetic ratio. Hani is the theoretical anisotropy field
calculated from the macroscopic intrinsic properties denoted by
the superscript L.
In order to distinguish between the different length scales and

their respective magnetic properties, we use superscripts a for
atomistic length scale, l for minimum scale of micromagnetic
simulations, and L for macroscopic length scale as in
measurements.
The bias field is applied parallel to the cube’s easy axis. Initially,

the cube’s magnetization is saturated parallel to Hbias. At a
temperature of 300 K the time evolution of the magnetization
configuration is calculated by solving the stochastic LLG. The
simulations are repeated with different mesh sizes and with
different values of the bias field from 0.6 T to 1.9 T. Each simulation
was performed for 1 ns. The transients settled after 0.4 ns—the
data recorded after this transient time were accepted as the
results. Sequentially the x-component of the magnetization,
i.e., the component in direction of HAC, was extracted from the
remaining signal. The FMR curves were calculated by taking
the maximal magnitude, m̂x , in the frequency spectrum of the
x-component of m.
The results of various sLLG simulations for different mesh sizes

are shown in Fig. 2. As shown in Fig. 2a, when the sLLG did not use
parameters scaled by the spin-wave fluctuations, the simulations
yielded strongly mesh size-dependent results. In contrast, Fig. 2b
shows that when the full-spin-wave-scaled sLLG used parameters
scaled by the spin-wave fluctuations, then the simulations
yielded results essentially independent of the mesh size, as
discussed below.
The FMR simulations were performed for a uniformly meshed

hard magnetic Nd2Fe14B cube, wherein the mesh size l was varied
in the 1–10 nm range. Please note that for FMR experiments as
depicted in Fig. 1 we expect an almost uniform magnetization and
only slight deviations of the magnetization from the easy axis.
Therefore the mesh size can be larger than the domain wall width.
As Fig. 2a shows, without scaling of the parameters, the

magnetic (bias) field defining the center of the FMR peak shifted
substantially from the external bias field of Hbias= 1 T to the much
higher bias fields of Hbias= 1.6 T, as l varied from 10 nm to 1 nm.
This large, 60% shift demonstrates one more time the unphysical
dependence of measurable quantities on the mesh size. For
completeness, we note that the Gilbert-damping-related FMR line-

width (the FWHM of the peaks) stayed essentially invariant at
255mT (σ2= 0.095) as the mesh size l was varied.
Feng and Visscher12 introduced a mesh size dependent

damping constant for a system including only exchange and
thermal energy. The effective rescaled damping constant was
found to increase with temperature and computational cell size. In
this work, we focus on permanent magnets, where in addition to
the exchange the magnetocrystalline anisotropy is the dominating
energy term. For the cell size of about 4 nm and 300 K the ratios of
thermal energy to anisotropy energy and to the exchange energy
are 0.015 and 0.134, respectively. Following the results of Feng
and Visscher, our computational experiments are in the low-
temperature regime where no or only minor scaling of the
damping parameter is required.
When the parameters were scaled with the mesh size according

to the full-spin-wave-scaling derived in the Methods section of this
paper with scaling factors sM(l), sA(l)= sM(l)

2, and sK(l)= sM(l)
3, the

FMR peaks shifted back to the vicinity of the bias field of Hbias=

1 T. The creep of Hbias with mesh size was reduced from above
60% to below 20%, a great improvement. The fact that there was
some residual dependence still left is most likely due to the fact
that our scaling factors are only the leading terms of the overall
spin-wave fluctuation reduction of Ml

s.
To eliminate even this residual mesh size dependence, we

modified the scaling of Ku, so that the FMR peak remains at the
mesh size independent Hbias= 1 T. To formulate the most natural
scaling function for Ku, we retained the power-law form and
treated its exponent as the adjustable parameter. We found that
the choice of the anisotropy scaling exponent Ku / M2:72

s kept the
bias field of the FMR peak location fully mesh size independent, as
shown in Fig. 2b. This is only a 9% adjustment of the scaling
exponent from its Callen value of 3, a very respectable
achievement from our first order approximate scaling factors.
The scaling functions we used for the full-spin-wave-scaled

stochastic LLG are shown in Fig. 3. Additionally, these same scaling
factors and the corresponding intrinsic property values for the
used mesh sizes are listed in Table 1.
From now on, we will refer to the above developed and

described full-spin-wave-scaled stochastic LLG as FUSSS LLG.

Fig. 1 FMR spectra calculation setup. Scheme of setup to calculate
the FMR spectra for a permanent magnetic cube with various mesh
sizes. The bias field is applied in direction of the z-axis, i.e., parallel to
the magnetocrystalline anisotropy axis, and the oscillating field acts
in x-direction. The x-component of the magnetization is used to
calculate the response of the system for each bias field.

Fig. 2 FMR curves without magnetostatic field. FMR curves
obtained with sLLG without demagnetization field for different
mesh sizes. The symbols mark the computed results and the solid
lines are the respective fits by Lorentz functions. While without
scaling (a) the curves are shifted to higher bias fields, scaling the
intrinsic properties (b) shifts the peaks back on top of each other.
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Tests and validation of FUSSS LLG

We performed several tests and validation of our FUSSS LLG. First,
we repeated the FMR simulations by including the magnetostatic
field. The FMR curves show two peaks (see Fig. 4).
This curve was obtained using the Fourier transform of the

average magnetization of the entire cube. To analyze the
spectrum we also computed the resonance of the local
magnetization at different probe points. The analysis of local
magnetization dynamics shows that the peak at the lower Hbias

corresponds to the local response at the center of the cube. In this
bulk mode, the major part of the cube is in resonance. The second
peak at higher Hbias values is caused by resonance at points near
the top and bottom face (near the center of the face or in the
middle of an edge). The edge mode arises from a different local
demagnetizing field. In addition, there might be magnetostatic
interaction between the modes. However, in the following
we show the scaling parameters can be derived neglecting
magnetostatics.
The existence of these two modes was confirmed experimen-

tally in FMR investigations of thin films19. The two peaks were
centered at Hbias ≈ 0.88 T and Hbias ≈ 1.31 T, for the bulk mode and
for the edge mode, respectively. As before, when the intrinsic

parameters were not scaled, the sLLG curves shifted to higher bias
fields as seen in Fig. 4a. For l= 1 nm the lower field peak shifted
from 0.88 T by 0.52 T, again a 60% shift. To demonstrate the
predictive power of our FUSSS LLG, we then repeated the
simulations with the intrinsic parameters scaled by the scaling
factors determined in the no-magnetostatic-field simulations
earlier (see Table 1). Figure 4b shows that the FUSSS LLG also
found the two resonance peaks, and their center bias fields were
almost independent of the finite element mesh size l.
Second, we simulated the equilibrium value of the magnetiza-

tion of a Nd2Fe14B cube with an edge length of 40 nm at 300 K
temperature. For each chosen mesh size the magnetic state was
relaxed for 0.5 ns after initial saturation in the easy-axis direction.
The magnetostatic field was not taken into account in these
simulations. Due to the stochastic field in the sLLG, the magnetic
moments fluctuated around the easy axis. In Fig. 5 the mean value
over 2 ns of the magnetization component in easy direction

Fig. 3 Scaling of intrinsic properties. Scaling functions for intrinsic
properties at a temperature of 300 K for Nd2Fe14B. While the scaling
of the magnetization sM is derived from spin-wave theory, the
scaling for the exchange stiffness constant sA follows Ax / M2

s . The
scaling for the magnetocrystalline anisotropy constant sK was
determined by choosing Ku to shift the FMR peaks of the various
mesh sizes to the appropriate bias field. sK can then be fitted by

K l
u / ðMl

sÞ
2:72

.

Table 1. Scaling of intrinsic properties Values of scaling functions s

and resulting intrinsic properties at the various mesh sizes l.

l sM sA sK μ0M
l
s Alx K l

u

nm 1 1 1 T pJm−1 MJm−3

1 1.049 1.101 1.138 1.689 8.478 4.892

2 1.023 1.046 1.053 1.647 8.054 4.527

3 1.012 1.025 1.026 1.629 7.893 4.414

5 1.005 1.010 1.010 1.618 7.777 4.341

8 1.002 1.004 1.003 1.613 7.731 4.312

10 1.001 1.002 1.001 1.612 7.715 4.306

Macroscopic properties μ0M
L
s ALx KL

u

T pJm−1 MJm−3

1.61 7.70 4.30

The macroscopic intrinsic properties from experiments are shown at the

bottom of the table.

Fig. 4 FMR curves including magnetostatic field. FMR curves for
different mesh sizes l of a small cube computed by (a) sLLG without
parameter scaling and (b) with scaled intrinsic properties. While the
symbols mark the computed results, the lines are spline interpola-
tions serving as guide to the eye. The two peaks of each curve
correspond to the bulk and edge mode.

Fig. 5 Magnetization equilibrium. Magnetization in easy-axis
direction averaged over 2 ns calculated for different mesh sizes l,
with and without scaling of the input parameters ML

s , A
L
x, and KL

u . The
inset shows an example of a mesh for the test cube with magnetic
moments in quasi-equilibrium state.
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μ0〈Mz〉 is plotted against the mesh size. The macroscopic
magnetization was measured to be μ0M

L
z ¼ 1:61 T. Without

scaling, the sLLG produces reduced values with decreasing mesh
size. For l= 1 nm the mean magnetization is reduced by 6% to
1.51 T, as for smaller meshes the restoring force is smaller. Then
we repeated the same calculation with FUSSS LLG, using scaled
intrinsic parameters. As shown in the same figure, the magnetiza-
tion reduction has been properly compensated, and the
unphysical mesh-size dependence essentially eliminated. The
deviations have been reduced from 6% to <1%.
Third, we simulated the reversal of the magnetization by an

applied field. Here we took the magnetostatic field into account. A
cubic sample was magnetically saturated in the easy-axis direction
and then reversed by changing the direction of the external field
from the saturation direction to the opposite with a field sweep
rate of v= 250 mT ns−1. The simulation of reversal requires a mesh

size of l �
ffiffiffiffiffiffiffiffiffiffiffiffi

AL
x=K

L
u

q

¼ 1:34 nm to properly capture the possible

formation of domain walls20. Therefore, only calculations for l of
0.5 nm to 2 nm were performed. The edge length of the cube was
shortened to 10 nm to reduce the use of computation resources.
For every mesh size, the coercive field Hc was extracted by
averaging over 10 stochastic simulations, with and without scaling
the input parameters. In Fig. 6 the mean values of Hc are shown
and compared to the reversal field calculated by conventional,
non-thermal LLG. Without thermal fluctuations, a mesh size of
about half the exchange length is required for accurate prediction
of the interplay between exchange interaction and the demagne-
tizing field at corners and edges20. This value is 1.4 nm for the
intrinsic material properties used in this work. Figure 6 clearly
shows, that for this mesh size scaling is required in order to
compute coercive fields that are within the range predicted by
sweep rate-dependent theory21.
The anisotropy field for the exchange-interaction-only model

has been calculated in (2). With the material parameters of our
cube, this comes to μ0Hani= 6.71 T. When the magnetostatic field
is incorporated, non-thermal LLG simulations show that the
coercive field is reduced by 0.35 T, to μ0Hc= 6.36 T.

By adding thermal fluctuations, the energy barrier against
switching the cube can be overcome with lower external fields.
This physics can be captured as a temperature- and sweep-rate-
dependent effective coercive field Hc. Various analytical expres-
sions have been derived to describe this temperature- and sweep-
rate-dependent Hc, where an applied field is swept at the constant
rate22 v. El-Hilo et al.21 proposed

Hc ¼ H0 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

β
ln

f 0H0

2vβ

� �

s
 !

(4)

with β ¼
E0

kBT
: (5)

The energy barrier of the cube at zero field E0= 522 kB 300 K was
determined using the nudged elastic band method23 and μ0H0=

6.36 T is the switching field without thermal fluctuations, but with
magnetostatic fields. f0 is the attempt frequency in zero external
field, that strongly depends on the reversal mode of the sample.
The approximation of f0

6 for homogeneous reversal of the cube
with volume V,

f 0 ¼
αγμ0
1þ α2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

H3
0JsV

2πkBT

s

; (6)

gives an attempt frequency of f0= 198 GHz. However, recent
studies of inhomogeneous reversal24 have suggested attempt
frequencies exceeding 6 THz for hard magnetic single particles.
For these two values for f0, we obtain the theoretical coercive
fields of μ0Hc= 6.02 T and 5.74 T, respectively. We use these two
fields to define a range of expected coercive fields, signaled by the
gray band in Fig. 6.
We first calculated the effective coercive field with the unscaled

sLLG. First, the coercive field had a substantial, unphysical
variation with changing mesh size. Second, in the entire range
of mesh sizes, the coercive field Hc was well outside the gray band
of theoretical expectations. Third, in fact, for the smallest mesh
size of l= 0.5 nm, Hc was 4.4 T, 23% less than the lowest edge of
the expected band, a substantial discrepancy.
Finally, we simulated the same reversal with FUSSS LLG, using

the same scaling as in the earlier test examples. As visible in Fig. 6,
first, the mesh size dependence of Hc was largely eliminated.
Second, Hc remained inside the gray band of theoretical
expectations nearly the entire mesh size range. Both these facts
are encouraging signs that FUSSS LLG introduces a marked,
quantitative improvement over existing sLLG methods.

DISCUSSION

In this paper, we addressed the problem that standard stochastic
Landau–Lifshitz–Gilbert (sLLG) simulations typically produce
results that show unphysical mesh-size dependence. We identified
the root cause of this problem: the effects of spin-wave
fluctuations are ignored in sLLG. We proposed to represent the
effect of these spin-wave fluctuations by a full-spin-wave-scaled
stochastic LLG, or FUSSS LLG method. In FUSSS LLG that uses a
mesh size l, the intrinsic parameters of the sLLG simulations Ms, Ax,
and Ku are first scaled by scaling factors sM(l), sA(l)= sM(l)

2, and
sK(l)= sM(l)

b (with b= 3) that integrate out the spin-wave
fluctuations up to the mesh size l, and the sLLG simulation is
then performed with these scaled parameters. The scaling can be
naturally anchored in the microscopic, or atomistic parameters.
However, given that for hard magnets there is no consensus about
these values, we chose to anchor our FUSSS LLG on the
macroscopic scale, in experimentally measured quantities. In this
sense, our scaling factors sM(l), sA(l), and sK(l) were integrating spin-
wave fluctuations back in to get the effective parameters right on
the length scale of the mesh size l.

Fig. 6 Coercive field test. Coercive field of a hard magnetic 10 nm
cube calculated with a field sweep rate of v= 250mT ns−1. The
anisotropy field is μ0Hani= 6.71 T. Conventional, non-thermal LLG
gives a mesh independent coercive field of 6.36 T, reduced from the
anisotropy field by the magnetostatic fields. Unscaled sLLG
produces a coercive field heavily dependent on the mesh size,
and outside the gray band of theoretical expectations in the entire
mesh-size range. In contrast, FUSSS LLG greatly reduces the mesh-
size dependence and produces a coercive field that is inside the
gray band of expectations for most mesh sizes. The error bars show
the standard deviation, and the symbols show the mean of ten
independent stochastic calculations.
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We developed FUSSS LLG by studying the Ferromagnetic
Resonance (FMR) in Nd2Fe14B cubes. We found that while the
scaling greatly reduced the mesh size dependence relative to
sLLG, full mesh size independence was not achieved with the
nominal anisotropy scaling exponent of b= 3. However, we
discovered that adjusting b from b= 3 to b= 2.72, a <10%
adjustment, delivered fully mesh size independent results for the
FMR peak. We note, that the universality of 2.72 as exponent
needs to be further explored. To apply our method to other
problems, we recommend conducting introductory pilot studies
with small samples to determine the exponent and using this
value for the actual large-scale study of interest.
We then performed three tests and validations of our FUSSS

LLG with this modified scaling. First, we studied the same FMR but
with magnetostatic fields included. This model exhibited two FMR
peaks instead of one. Second, we simulated the total magnetiza-
tion of the Nd2Fe14B cube. Third, we studied the effective,
temperature- and sweeping rate-dependent coercive field of the
cubes. In all three cases, we found that FUSSS LLG delivered
essentially mesh-size-independent results, which tracked the
theoretical expectations better than unscaled sLLG.
Before closing, we remark that a sister version of the present

FUSSS LLG can be developed for magnets where the microscopic
parameters are subject of agreement by the community, in which
case the microscopically anchored FUSSS LLG can be an equally
powerful method.
In sum, motivated by the success of our tests and validations,

we propose that FUSSS LLG provides marked, qualitative progress
towards accurate, high precision modeling of micromagnetics in
hard, permanent magnets, magnetic recording media, and
magnetic storage elements. In magnetic data storage, magnetic
switching is required in subnanosecond time scale. Therefore, for
the design and development of magnetic storage systems, the
method proposed in this work can be directly applied. Proper
scaling of the intrinsic parameters is also important for the
simulation of magnetization reversal at longer time scales in which
the solution of the sLLG equation is the main building block. For
example in the forward flux sampling method applied by Vogler
et al.24,25, many dynamic trajectories are computed by the solution
of the sLLG equation, in order to simulate magnetization reversal
on a time scale of many years.

METHODS

To calculate magnetization dynamics at finite temperatures we use the
Langevin-type stochastic LLG equation. We chose to compute the
magnetic state evolution of a single cube of Nd2Fe14B. We develop and
analyze the spin-wave renormalized sLLG method by simulating two test
scenarios, and using a series of mesh sizes for each scenario to test the
mesh size independence of the results.

1. The equilibrium state of the cube was simulated by initially
saturating the magnet in the easy-axis direction and let the cube
relax without any external influence. The thermal perturbation in
form of the stochastic field caused increasing deviations from the
easy direction. The mean value of the magnetization’s z-component
over time 〈Mz〉 was calculated for various mesh sizes to quantify the
mesh dependency.

2. The cube was again saturated in the easy-axis direction. Then it was
exposed to an increasing opposing field which eventually reversed
the magnet’s magnetization at the coercive field Hc. The switching
simulations were performed with different mesh sizes to evaluate
the possible mesh dependency of Hc.

In order to distinguish between the different length scales and their
respective magnetic properties, we use superscripts a for atomistic length
scale, l for the minimum scale of micromagnetic simulations, and L for
macroscopic length scale as in measurements.

Stochastic LLG for finite-temperature micromagnetics

After discretization with the finite element method the
Landau–Lifshitz–Gilbert (LLG) equation can be treated like the dynamics
of interacting magnetic moments, whereby each moment is associated
with one node of the finite element mesh26. The dynamics of the magnetic
moment is given by the stochastic Landau–Lifshitz–Gilbert (sLLG)
equation. The sLLG method starts with constructing the usual LLG
equations and then adding to the effective field heff,i a field representing
thermal fluctuations hth,i acting at node i:

∂mi

∂t
¼ �γ0mi ´ heff;i þ hth;i

� �

�
γ0α

jmi j
mi ´ mi ´ heff;i þ hth;i

� �� �

: (7)

Here mi is the magnetic moment at node i, the prefactor γ0 ¼ γj j=ð1þ α2Þ
contains the gyromagnetic ratio γ, and α is the Gilbert damping constant.
Through finite element discretization the magnetic moment at node i can
be expressed as mi=MlVi. Here, Vi is the volume associated with node i
and jMl j ¼ Ml

s. M
l
s is the spontaneous magnetization at the minimum scale

of the micromagnetic simulation, the finite element mesh size l, typically a
few nanometers. The total field is the sum of the effective field heff and the
stochastic field hth. The effective field is the sum of the exchange field
hex, the anisotropy field hani, the demagnetizing field hdemag and the
applied field hext.
The exchange field at node i can be derived from the continuous

expression hex ¼ 2Alx=ðM
l
sÞ

2
∇

2Ml using the Galerkin method.
The anisotropy field hani;i ¼ 2K l

u=M
l
su mi=jmi jð Þ � uð Þ. Here, u is the unit

vector pointing in the easy-axis direction. The demagnetizing field hdemag

can be computed from a magnetic scalar potential and evaluated at the
nodes by averaging over the neighboring elements.
The stochastic field hth introduces thermal fluctuations without

correlation between the spatial components, in time or space. Therefore,
it is a Gaussian random process that satisfies27

hth;iðtÞ
� �

¼ 0; (8)

and has the variance

hth;iðtÞhth;jðt þ ΔtÞ
� �

¼ 2DδijδðΔtÞ: (9)

This equation relates the strength of the thermal fluctuations

D ¼
αkBT

γμ0jmi j
¼

αkBT

γμ0M
l
sV i

(10)

to the dissipation of the system depending on the node volume Vi.
Here, kB= 1.38 × 10−23 JK−1 is the Boltzmann constant, T is the

temperature, and μ0= 4π × 10−7 Hm−1 is the magnetic vacuum
permeability.
To integrate the system of stochastic differential equations (7), we apply

the midpoint scheme28,29. The approach outlined above is similar to that
introduced by Ragusa and coworkers8 who showed that the numerical
solution converges to the analytic solution obtained by the Fokker–Planck
equation.
A discretization cell represents a large number of fluctuating magnetic

spins. The larger the node volume Vi, the more spins are contributing,
hence averaging effects reduce the total perturbation for this node. In the
vicinity of atomistically small cells, no averaging over the thermal
fluctuation is needed. In order to calculate magnetic states we interpret
the stochastic equation in the Stratonovich sense and integrate (7) using a
midpoint scheme28 with a time step Δt= 1 fs. We apply a fixed-point
scheme to solve the nonlinear system of equations in each time step30. The
discretized stochastic LLG model is similar to an atomistic model. In an
atomistic model, the magnetic moments at the atom positions interact,
while in the discretized model the magnetic moments at the node points
are considered. Whereas in the atomistic model the intrinsic parameters
can be clearly taken from first-principle calculations, it is not fully obvious
how to derive Alx , M

l
s, and K l

u , because the effective magnetic moment at a
computational cell arises from the thermal average of all spins contained in
the cell. By considering the spin-wave spectrum at the different length
scales, we propose a method for determining the intrinsic magnetic
properties at the micromagnetic length scale l.
FE-models of a cube with 40 nm edge length were prepared with

various mesh sizes from 1 nm to 10 nm using Salome31 and NETGEN32. A
representation of a meshed model is shown in the inset of Fig. 5. The mesh
is composed of uniformly sized tetrahedral elements, which is important to
obtain reliable renormalization factors. Previously tested stochastic
simulations proved to be very sensitive to small changes in element size
of irregular meshes. To make progress, the sLLG simulations need the
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magnet’s parameters, the magnetization Ms, the exchange stiffness
constant Ax, the magnetocrystalline anisotropy constant Ku, and the
Gilbert damping α. Typically, sLLG approaches adopt parameters
calculated by ab initio methods on the atomic scale and use them directly
as the parameters of the finite elements. In simplistic terms, present sLLG
approaches assume that the magnetization of the individual finite
elements is fully saturated. As such, present sLLG simulations have not
taken into account how the intra-mesh spin-wave fluctuations reduce the
magnetization from its saturated value.

Spin-wave renormalization of parameters

In order to incorporate the effects of the intra-mesh, short wavelength spin-
wave fluctuations up to the mesh size l, Grinstein and Koch proposed to
integrate out the fluctuations caused by spin waves with wavenumbers
higher than π/l by renormalization group theory. Doing so yielded scale-
dependent effective parameters for the sLLG simulation11. The limitations of
this approach were discussed earlier, including (1) the use of an idealized,
gapless spin-wave dispersion; (2) the approximate, perturbative expansion in
both the magnetic field h and in the anisotropy constant Ku to only leading
logarithmic order; and (3) the disregard of the crystalline symmetries of the
actual material, typically resulting in a non-isotropic spin-wave dispersion. As
also discussed, these three approximations can be justified in soft magnets in
zero fields, close to the critical temperature, where long wavelength critical
fluctuations dominate the physics. However, typical sLLG simulations are not
performed close to criticality, in zero fields, and exclusively in soft magnets.
For such typical simulations, the above approximations become questionable,
especially for hard magnets with large Ku values.
Motivated by these limitations, in this paper we propose a similarly-

inspired, but a distinct method to incorporate spin-wave fluctuations. In
this full-spin-wave-scaled sLLG method, we propose to integrate out the
spin-wave fluctuations by using the full, preferably experimentally verified
spin-wave spectrum that can have a gap, is not expanded in h and in Ku,
and reflects the symmetries of the crystal. It is natural to expect that our
method will achieve superior accuracy of sLLG simulations for magnets
with stronger crystalline anisotropy, in higher fields, having non-negligible
crystalline structures, at temperatures well below criticality. Taken on face
value, this program starts with the atomistic magnetization Ma

s , determined
by ab initio calculation on the length scale of the unit cell a. The reduction
of the magnetization by spin waves of wavenumber k, ΔM(k), is then
integrated out with wavelengths sweeping between the atomistic scale a
and the mesh size l to yield the length-scale dependent magnetization

Ml
s ¼ Ma

s �

Z π=a

π=l

ΔMðkÞdk: (11)

Using the value of magnetization change caused by a spin-wave leads to

Ml
s ¼ Ma

s � 2μB

Z π=a

π=l

n EðkÞ; Tð Þdk; (12)

where the Bose-Einstein occupation factor n EðkÞ; Tð Þ is

n EðkÞ; Tð Þ ¼ exp EðkÞ= kBTð Þð Þ � 1½ ��1; (13)

and E(k) is the full-spin-wave spectrum that includes the anisotropy
constant Ku and the magnetic field h fully, not only in leading perturbative
order. E(k) also reflects the discrete symmetries of the crystal, and thus can
include the wavevector k in a trigonometric function instead of simply as
k2. μB is the Bohr magneton. The ratio of the renormalized magnetization
to the non-renormalized magnetization will be referred to as the scaling
function, or scaling factor, sMðlÞ ¼ Ml

s=M
a
s .

Extending the definition of the scaling function this way increases the
precision with which the spin-wave fluctuations are accounted for because
our method is not perturbative in the magnetic field h and in the anisotropy
constant Ku, and furthermore, it also incorporates the discrete symmetries of
the crystal. On the other hand, the justification for keeping only this term
becomes less compelling because strictly speaking, we are not keeping only
the leading logarithmic terms of the standard renormalization group theory.
However, the farther the simulated system is from criticality, the justification
to keep only the leading logarithmic terms itself becomes less compelling
anyway. Therefore, for systems away from criticality the calculation of the
scaling function by retaining the non-perturbative spin-wave energy
dispersion with the explicit crystalline symmetries becomes a net positive
improvement.
The scaling of the other parameters can be constructed by using

well-known relationships: the exchange stiffness constant scales33 as

Alx / ðMl
sÞ

2
, and so Alx=A

a
x ¼ sMðlÞ

2 . Further, the magnetocrystalline
anisotropy constant scales according to Callen and Callen’s power

law34,35 for uniaxial anisotropy K l
u / ðMl

sÞ
3
, and thus K l

u=K
a
u ¼ sMðlÞ

3 .

Once all three atomistic/microscopic parameters, Ma
s , A

a
x , and Ka

u have
been scaled to their effective values Ml

s , A
l
x, and K l

u to incorporate the intra-
mesh spin-wave fluctuations up to wavelength l by their scaling factors,
the sLLG simulation can be performed with the mesh size l. This microscale
anchored full-spin-wave-scaled sLLG should yield mesh size-independent
results.
To implement the above steps, we started by consulting the literature

for the ab initio parameters of permanent magnets of interest. For hard
Nd2Fe14B magnets, Herbst summarized the results of several ab initio
calculations36. Quite remarkably, the calculated values showed a sub-
stantial variation, often differing by a factor of 2 or more. For this reason, it
was quite difficult to establish consensus values of the ab initio calculations
for hard Nd2Fe14B magnets.
Forced by this situation, we looked for data supported by widespread

agreement. We found this among the experimentally determined
macroscopic intrinsic properties of Nd2Fe14B

35, taken at T= 300 K. The
intrinsic properties are usually measured on bulk samples with a
methodology averaging over a huge number of atomistic spins. In the
following, we denote such measured intrinsic magnetic properties with
the superscript L. The saturation magnetization is widely agreed to be
μ0M

L
s ¼ 1:61 T, the exchange stiffness constant ALx ¼ 7:7 pJm�1 , and the

magnetocrystalline anisotropy constant KL
u ¼ 4:3 ;MJm�3 .

To build on widely accepted data, we propose that the full-spin-wave-
scaled sLLG method can be applied in the reverse direction as well. When
the sample magnetization is measured experimentally far away from
reversal processes that take place close to Hc and involve nucleation and
domain wall propagation, it is reasonable to assume that the entire
difference between the experimentally measured magnetization and the
magnetization on the scale of the mesh size is caused by spin-wave
fluctuations. Therefore, it is possible to determine the effective
magnetization on the length scale of the mesh size l by adding back
the magnetization reduction caused by spin waves to the experimentally
measured magnetization, by integrating the contribution of spin waves
with wavenumbers between π/L and π/l, where L is the macroscopic
system size. We call this approach the macroscale-anchored full-spin-
wave-scaled sLLG method. We start from the experimentally measured
macroscopic magnetization ML

s measured at length scale L, and integrate
the spin-wave corrections with wavelengths larger than the mesh size l
back in:

Ml
s ¼ ML

s þ

Z π=l

π=L

ΔMðkÞ dk (14)

The integral on the right-hand side of (14) can be approximated by
building the limit for infinite system length, therefore the lower limit of the
integral is taken as zero. An approximation for the microscopic
magnetization is

Ml
s � ML

s þ 2μB

Z π=l

0
n EðkÞ; Tð Þ dk: (15)

Here we approximated M1
s with ML

s . E(k) is the spin-wave spectrum of an
anisotropic Heisenberg ferromagnet37 in an external field h:

EðkÞ ¼ 2μB
2KL

u

ML
s

� μ0h

� �

þ
4μBA

L
x

ML
s

Z 1�
1

Z

X

i

cos aikð Þ

 !

; (16)

where Z is the coordination number of the lattice and ai are the nearest
neighbor vectors. Experimental measurements of the spin-wave spectrum
are consistent with this form35. As outlined in the foundational parts, E(k)
retained the magnetic field and the crystalline anisotropy in full, instead of
perturbatively expanding in them. These factors induced a gap in the
spectrum, which would have been incompatible with the standard
renormalization group formulation.
Based on the above, the scaling function for the magnetization in this

macroscale-anchored full-spin-wave-scaled sLLG takes the form:

sM lð Þ ¼
Ml

s

ML
s

¼ 1þ
2μB
ML

s

Z π=l

0
n EðkÞ; Tð Þdk: (17)

Examples of the scaling factors, sM(l), sA(l), and sK(l) as functions of the mesh
size l are shown in Fig. 3 and discussed there.
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Once the full-spin-wave-scaled magnetization Ml
s , exchange constant A

l
x ,

and anisotropy K l
u have been constructed, the sLLG method with mesh

size l can be used to simulate experiments that involve not only spin waves
but nucleation, domain wall propagation, ferromagnetic resonance (FMR),
and other, non-trivial phenomena. This full-spin-wave-scaled sLLG method
should deliver mesh size independent results, and thus should introduce a
major step forward in the accuracy and utility of sLLG methods for
simulating complex and challenging magnetization dynamics.
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