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A B S T R A C T   

Background and Purpose: Tumor recurrence, a characteristic of malignant tumors, is the biggest concern for rectal cancer survivors. The epidemiology of the disease 
calls for a pressing need to improve healthcare quality and patient outcomes. Prediction models such as Bayesian networks, which can probabilistically reason under 
uncertainty, could assist caregivers with patient management. However, some concerns are associated with the standard approaches to developing these structures in 
medicine. Therefore, this study aims to compare Bayesian network structures that stem from these two techniques. 
Materials and Methods: A retrospective analysis was performed on 6754 locally advanced rectal cancer (LARC) patients enrolled in 14 international clinical trials. 
Local tumor recurrence at 2, 3, and 5-years was defined as the endpoints of interest. Five rectal cancer treating physicians from three countries elicited the expert 
structure. The algorithmic structure was inferred from the data with the hill-climbing algorithm. Structural performance was assessed with calibration plots and area 
under the curve values. 
Results: The area under the curve for the expert structure on the training and validation data was above 0.9 and 0.8, respectively, for all the time points. However, the 
algorithmic structure had superior predictive performance over the expert structure for all time points of interest. 
Conclusion: We have developed and internally validated a Bayesian networks structure from experts’ opinions, which can predict the risk of a LARC patient 
developing a tumor recurrence at 2, 3, and 5 years. Our result shows that the algorithmic-based structures are more performant and less interpretable than expert- 
based structures.   
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1. Introduction 

The introduction of total mesorectal excision (TME) surgery and the 
use of neoadjuvant chemoradiation (nCRT) have reduced mortality and 
recurrence rate for rectal cancer patients, with an incidence of locore-
gional relapses after treatments of 4–8% [1–3]. Despite the low inci-
dence, tumor recurrence remains the predominant concern for most 
rectal cancer survivors considering the relatively poor quality of life 
involved [4,5]. Besides the treatment procedure, several other factors 
such as tumor site, size, ethnicity, genetics, etc. could influence the 
chance of tumor recurrence [5–7] , and processing all these pieces of 
information to estimate the likelihood of a patient developing a tumor 
recurrence after treatment can be overwhelming, even for experts [8,9]. 
Predictive models such as Bayesian networks, which consider causal 
relationships between features, can, on the other hand, learn efficiently 
from large and heterogeneous volumes of available information and 
make inferences about future patients. 

Bayesian networks are suitable for clinical applications because they 
can probabilistically reason under uncertainty with an intuitive clinical 
interpretation of the results [10–12]. Generally, they can be specified by 
an expert in the domain of interest or inferred from available data via a 
learning algorithm [11,13]. However, these methods may be chal-
lenging in healthcare. An algorithm-based structure can include 
spurious relationships that are not plausible or have no clinical meaning 
(e.g., causally linking gender to age) due to correlations in the data and 
the impossibility to determine the direction of causality from data [14]. 
On the other hand, a structure specified by an expert might be biased by 
the expert’s prior knowledge and subjective domain experience. 

One possible solution to this problem is to survey multiple experts’ 
opinions. This study hypothesizes that eliciting multiple experts’ opin-
ions will give a reliable Bayesian network structure to predict local 
tumor recurrences at several time-points (2, 3, and 5 years) in rectal 
cancer patients whose predictions closely approximate the ground truth. 
To test this hypothesis, we implemented a solution to examine experts’ 
opinions on the causal relationships to predict tumor recurrences in 
locally advanced rectal cancer (LARC) patients. 

2. Materials and methods 

A retrospective cohort of 6,754 diagnosed LARC patients treated 
with neoadjuvant chemoradiation followed by surgery from 1993 to 
2014 from 14 international trial cohorts was analyzed for this study 

(Table S1 supplemental material). All the trials have different treatment 
protocols, patient characteristics, and accrual start dates. Only non- 
metastatic rectal cancer patients treated with conventional preopera-
tive radiotherapy were considered for this study. Patients with a surgical 
procedure different from anterior-resection or abdominoperineal 
resection, treated with adjuvant radiotherapy or incomplete radio-
therapy treatment, were excluded due to their relatively low represen-
tation. Fig. 1 shows the variables under investigation in this study based 
on a timeline (T) of clinical practice availability. Local tumor recurrence 
at 2, 3, and 5 years was considered the endpoints of interest defined as 
detecting a tumor on the same sites it previously started after therapy. 

2.1. Statistics 

Data from the 14 trial cohorts were merged and split into training 
and validation sets by performing a random 80–20% split (stratified per 
cohort). The SMOTE algorithm [15] was used to address the class 
imbalance per response time point, and continuous variables were 
categorized based on literature and experts’ suggestions. The circum-
ferential resection margin (CRM) was dichotomized into positive if the 
tumor is ≤1 mm from the circumferential margin and negative if >1 mm 
(Table S2 supplemental material). Missing values were considered as a 
category (Unknown) for all variables. However, patients with missing 
information on their local recurrence status were excluded from further 
analyses. All analyses were conducted in R version 3.6.1 [16] using the 
bnlearn package [17], and GeNIe (Graphical Network Interface) appli-
cation [18] was used for structural visualization. Model performance 
was assessed by generating calibration plots, model accuracy, and 
calculating the area under the curve (AUC) on training and validation 
sets for all time points of interest. 

The median age of the 5404 patients in the training and 1350 in the 
validation cohorts was 61 (22–90) and 61 (25–84) years. Patients’ 
characteristics and treatment modalities are shown in Table 1. 

2.2. Structure learning 

The domain knowledge from multiple experts’ in three international 
radiotherapy institutions (Gemelli, Maastro, and Gil Medical Center) 
was employed to develop and validate the Bayesian network structure. 
Two experts from Gemelli independently defined the causal relationship 
between the variables. These experts were requested to draw arrows 
between variables to indicate causal relationships without setting the 

Fig. 1. Variables under investigation on extraction timeline.  
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Table 1 
General patient characteristics on the training and validation datasets.  

Variable Levels Training Validation p-value 

Age (years) Mean (sd) 61.4 (9.6) 61.4 (10)  0.82  
Missing 92 (1.7%) 17 (1.3%)   

Gender Male 3760 (69.6%) 929 (68.8%)  0.52  
Female 1630 (30.2%) 420 (31.1%)   
Missing 14 (0.2 %) 01 (0.1%)   

Clinical T cT 1 93 (1.7%) 30 (2.2%)  0.13  
cT 2 387 (7.2%) 117 (8.7%)   
cT 3 4002 (74.1%) 987 (73.1%)   
cT 4 370 (6.8%) 84 (6.2%)   
Missing 552 (10.2%) 132 (9.8%)   

Clinical N cN 0 1547 (28.6%) 367 (27.2%)  0.57  
cN 1 1707 (31.6%) 438 (32.4%)   
cN 2 303 (5.6%) 78 (5.8%)   
Missing 1847 (34.2%) 647 (34.6%)   

Radiotherapy dose (Gy) Mean (sd) 47.7 (3.6) 47.7 (3.5)  0.98  
Missing 1378 (22.5%) 347 (22.9%)   

Surgery procedure APR 1629 (30.1%) 426 (31.6%)  0.42  
ARbased 3489 (64.6%) 851 (63.0%)   
No surgery 107 (2.0%) 22 (1.6%)   
Missing 179 (3.3%) 51 (3.8%)   

Circumferential resection margin Negative 543 (10.1%) 140 (10.3%)  0.91  
Positive 435 (8.0%) 114 (8.4%)   
Missing 4426 (81.9%) 1096 (81.2%)   

Overall treatment time (days) Mean (sd) 37 (6.6) 37.4 (9.3)  0.16  
Missing 1598 (26.1%) 396 (25.8%)   

Neoadjuvant chemo 5FU + OXI 1128 (20.9%) 266 (19.7%)  0.60  
5FUbased 2806 (51.9%) 709 (52.5%)   
No Chemo 1245 (23.0%) 321 (23.8%)   
Missing 225 (4.2%) 54 (4.0%)   

Tumor distanced (cm) Mean (sd) 06 (3.1) 06 (3.1)  0.84  
Missing 1023 (16.7%) 260 (17.0%)   

Interval between radiotherapy and Surgery (weeks) Mean (sd) 0.9 (0.4) 0.9 (0.3)  0.77  
Missing 2251 (36.7%) 554 (36.2%)   

Adjuvant Chemo 5FU + OXI 651 (12.0%) 152 (11.3%)  0.70  
5FUbased 2497 (46.2%) 621 (46.0%)   
No Chemo 2024 (37.5%) 515 (38.1%)   
Missing 232 (4.3%) 62 (4.6%)   

Pathological N ypN 0 3436 (63.6%) 852 (63.1%)  0.95  
ypN 1 1225 (22.7%) 311 (23.0%)   
ypN 2 312 (5.7%) 77 (5.7%)   
Missing 431 (8.0%) 110 (8.2%)   

Pathological T ypT 0 625 (11.5%) 148 (11.0%)  0.05  
ypT 1 307 (5.7%) 95 (7.0%)   
ypT 2 1453 (26.9%) 387 (28.7%)   
ypT 3 2413 (44.7 %) 557 (41.3%)   
ypT 4 175 (3.2 %) 53 (3.9%)   
Missing 431 (8.0%) 110 (8.1%)   

2 years local recurrence True 385 (7.1%) 90 (6.7%)  0.49  
False 4168 (77.1 %) 1060 (78.5%)   
Missing 851 (15.8%) 200 (14.8%)   

(continued on next page) 
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relationships’ importance. Relationships were restricted to only vari-
ables in the same time-point t or the next t + n. Arrows drawn from a 
given variable at time-point t to another variable in a preceding time- 
point t - n were considered invalid. For example, arrows from Clinical 
T to Clinical N stage or from Age to Clinical T stage are acceptable. 
However, arrows from Clinical T stage to Age are rejected. 

Two other experts from Maastro separately reviewed the subset of 
connections common to both experts from Gemelli. The Dutch experts 
were tasked to validate the relationship by agreeing or disagreeing with 
each of the connections between the variables made by Gemelli experts. 
Only connections where both experts agreed were considered for further 
evaluation. As a final validation, an expert from Gil Medical Center 
reviewed the subset of connections common to both experts from 
Maastro. Only the connections validated by the expert were used to 
construct the final structure. The expert-developed structure was 
checked for cycles, which are not allowed in Bayesian network 
structures. 

2.3. Structure comparison 

In order to compare the performance of the developed Bayesian 
network structure in predicting local recurrence in rectal cancer pa-
tients, a structure was also inferred solely from the data with the hill 
climbing (HC) algorithm [19] for each time point of interest using the 
same training and validation data as the expert structure. The structures 
were first compared structurally and then numerically using the AUC, 
sensitivity, and specificity values. Calibration plots that measure how 

similar the distribution and behavior of the predicted probabilities are to 
that observed in data were produced to further evaluate the perfor-
mance of the structure. The HC algorithm, which looks for the best 
structure over the search space by adding, removing, and reversing arcs 
(arrows) in the DAG one at a time, was preferred because it is compu-
tationally efficient, and a random restart search was implemented to 
prevent the structure from getting stuck on a bad local optimum [20]. 
The Bayesian Information Criterion (BIC), a statistical goodness-of-fit 
measure that penalizes structural complexity, was used for the 
structure-learning process [19]. 

3. Results 

Fig. 2 shows the resulting Bayesian network structure based on 
expert knowledge. This network achieved AUCs above 0.9 and 0.8 for 
predicting the risk of local recurrence on the training and validation 

Fig. 2. Bayesian network structure based on expert knowledge. The boxes represent the variables (Node); the colors represent the variables’ time points (t) of 
availability in the clinical process, as shown in Fig. 1. The arrows indicate cause-effect relationships. The gray arrows indicate a direct causal effect on the outcome 
of interest. 

Table 1 (continued ) 

Variable Levels Training Validation p-value 

3 years local recurrence True 487 (9.0%) 118 (8.8%)  0.61  
False 3445 (63.8%) 882 (65.3%)   
Missing 1472 (27.2%) 350 (25.9%)   

5 years local recurrence True 599 (11.1%) 153 (11.3%)  0.66  
False 2036 (37.7%) 497 (36.8%)   
Missing 2769 (51.2%) 700 (51.9%)  

sd ¼ standard deviation, d ¼ Distance to anal verge (cm), Chemo ¼ Chemotherapy. 
APR ¼ Abdominoperineal resection, ARbased ¼ Anterior resection, OXl = oxaliplatin, 5FU ¼ 5-Fluorouracil. 

Table 2 
The performance of the expert structure based on the accuracy and AUC values 
at different time points on the training and validation data.  

Time Training Validation 

Accuracy AUC 95% CI Accuracy AUC 95% CI 

2 years 0.84 0.92 0.91–0.92 0.75 0.87 0.85–0.88 
3 years 0.83 0.91 0.91–0.92 0.73 0.85 0.84–0.87 
5 years 0.83 0.91 0.915–0.92 0.71 0.80 0.78–0.81 

CI = confidence interval. 
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data, respectively, for all time points of interest. Table 2 shows the ac-
curacies, AUCs, and confidence intervals of the structure’s performance 
on the training and validation data for the three-time points of interest. 

3.1. Structure comparison 

The Bayesian network structures resulting from the HC algorithm 
mentioned above used all 14 available variables (Fig. S1 supplemental 
material) with 32, 33, and 30 arcs for 2, 3, and 5 years tumor recurrence, 
respectively. On the other hand, the experts’ structure had 19 arcs and 
10 variables, excluding age, gender, adjuvant chemotherapy, and 
overall treatment time. The outcome had a direct patent-to-child 
connection with all 13 nodes for the structure at 5-years, and the 
outcome for the 2-year structure had 11 children, excluding the arc with 
adjuvant chemotherapy and CRM, while that of the 3-year structure had 
10, excluding adjuvant chemotherapy, pathological T, and N which was 
quite the opposite for the expert structure with just six parents. The only 
similarity between the algorithmic and expert structures was the arc 
CRM to the outcome for the 2-years structure and the arcs pathological T 
and N to the outcome for the 3-years structure. 

Based on the relationship of the variables with the outcome among 
the algorithmic structures, the arcs pathological T and N to the outcome 

Table 3 
The AUC, sensitivity, and specificity values of the expert and algorithmic 
structures on the training and validation data at different time points.  

Training 

Timepoint BN Structure AUC value Sensitivity Specificity 

2 years Experts 0.92 0.93 0.75  
Algorithm 0.93 0.92 0.78 

3 years Experts 0.91 0.91 0.75  
Algorithm 0.93 0.91 0.79 

5 years Experts 0.91 0.91 0.75  
Algorithm 0.93 0.91 0.80  

Validation 
2 years Experts 0.87 0.85 0.65  

Algorithm 0.89 0.88 0.74 
3 years Experts 0.85 0.84 0.62  

Algorithm 0.91 0.88 0.75 
5 years Experts 0.80 0.73 0.70  

Algorithm 0.88 0.96 0.71  

Fig. 3. Calibration plots of the models on the training (left) and validation (right) data for 2-year (top) to 5-year (bottom) local recurrence. The gray dashed line 
represents ideal calibration, while solid lines represent each model’s calibration. Vertical bars indicate a 95% confidence interval, and dots indicate bias- 
corrected estimates. 
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for the 3-years structure were reversed in the 2, and 5-year structures, 
and the arc CRM to the outcome in the 2-year structure was reversed in 
the 3, and 5-year structures while the arc adjuvant chemotherapy to the 
outcome in the 2-year structure was reversed in the 5-year structure and 
absent in the 3-year structure. Age was only connected to the outcome 
alone for 3 and 5 years structures. 

The numerical comparison of the expert and algorithmic structures 
based on their performance in terms of the AUC ( Fig. S2 supplemental 
material), sensitivity, and specificity values for each time points in the 
training and validation data is shown in Table 3. The algorithmic 
structures had a slightly better performance than the expert structure for 
all three matrices of interest, especially in the validation data. However, 
the difference in the AUC values between the structures was not statis-
tically significant (p-value >0.05) for all time points. 

The calibration plots in Fig. 3 show a good match between the pre-
dicted probabilities and the observed frequencies in the training and 
validation cohort for both expert and algorithmic structures. Generally, 
the expert structure seems to be better calibrated than the algorithmic 
structures since most points are closer to the dotted diagonal gray line, 
representing an ideal or perfect structure, especially recurrence at 5- 
years. 

4. Discussion 

In the current study, we have developed and internally validated a 
Bayesian network structure based on five experts’ opinions from three 
different radiation therapy treatment institutions to predict tumor 
recurrence for locally advanced rectal cancer patients. The structure was 
developed to capture the biological process that leads to a tumor 
recurrence by connecting the variables in the structure based on a 
timeline of their clinical availability. The developed structure used nine 
clinical features well-known to clinicians as pivotal factors for predicting 
local tumor recurrence. The structure was well-calibrated with predic-
tive performance based on the AUC values above 0.9 and 0.8 in training 
and validation data, respectively, for all time points of interest. Struc-
tures inferred from a learning algorithm used four variables more than 
the expert structure, including age, gender, adjuvant chemotherapy, and 
overall treatment time, with slightly better performance in terms of AUC 
values. However, the expert structure was clinically more plausible than 
the algorithmic structures and aligned with the clinical process. 

The choice of model to predict local tumor recurrence in rectal 
cancer patients in this study was influenced by two main reasons. Firstly, 
Bayesian networks better represent complex systems such as the clinical 
processes leading to tumor recurrence since they have more liberty to 
define interactions between variables [10,21], unlike the generally used 
regression method [22–24]. Secondly, their ability to make inferences 
on any variable(s) in the network makes them very valuable for decision 
support as they can serve as a diagnostic and prognostic tool. Thus far, 
this study is the first to assess the predictive value of Bayesian networks 
for tumor recurrence in rectal cancer patients which makes a direct 
comparison and interpretation with other studies arduous because of the 
difference in analytical approach and study design. 

Nonetheless, Valentini et al. [22] previously developed a model to 
predict tumor recurrence in rectal cancer patients as a decision support 
tool. The model included age as a predictive factor for local recurrence, a 
variable missing in our expert structure. One apparent reason for this 
difference is the variable selection procedure, given that age is also 
present in the algorithmic structures. Algorithm-based variable selection 
methods exploit spurious correlations within the data, which might 
unnecessarily increase the complexity of the model and cause over-
fitting. Also, Farhat et al. [25] did not find age or gender a predictive 
factor for tumor recurrence in their 16-year respective study, which is in 
support of the expert structure. Although the controversy of included 
variables depends largely on patient heterogeneity between the studies, 
variable inclusion in a prediction model must not always be strictly 
algorithm-based, even if it improves its performance. Instead, it should 

contain some level of clinical understanding, context, or rationale, 
which domain experts are more suited to provide because a correlation 
between variables does not necessarily imply causality. 

The algorithmic structures use four variables more than the expert 
structure, which explains its slightly better predictive performance. 
However, the additional variables increase the complexity of the 
structure since more connections between the variables are formed but 
with minimal predictive benefits (Table 3). Although the expert struc-
ture did not perform better than the algorithmic structures, we believe 
the expert structure might be more suitable for clinical use over the 
algorithmic structure. Firstly, the algorithmic structure uses parent-to- 
child connections not aligned with the clinical process (e.g., the patho-
logical nodal stage has a causal link to age at start radiotherapy) to make 
decisions. These unconformable arcs imply that algorithmically gener-
ated structures are comparable to black-box models even with better 
performance on both data sets since the decision process lacks clinical 
explanation. Regarding model calibration, the expert structure seems to 
be better calibrated for all time points than the algorithmic structure 
with higher AUCs. 

Tumor recurrence is a very challenging endpoint not only in terms of 
quality of life for cancer survivors [4,5] but also the difficulty in accu-
rately predicting the endpoint [26]. Patient variability can explain this 
difficulty since a treatment regime that leads to recurrence-free for one 
patient might not give another patient the same outcome. Therefore, 
collaboration with domain experts is pivotal to have a more personal-
ized prediction of tumor recurrence since they better understand tumor 
biology. The performance of the proposed expert structure is well above 
the chance level with clinically valid relationships. Therefore, it might 
be valuable in routine clinical settings as a decision aid to support 
personalized treatment decision-making. Also, it could guide clinicians 
to opt for a more aggressive adjuvant therapy to prevent the chance of a 
tumor recurrence for patients who have undergone surgery but with a 
high predicted probability of a tumor recurrence in the structure. 
However, the structure is trained on retrospective clinical trial data and 
warrants an external validation on routine clinical data to ascertain its 
clinical usefulness. In addition, the circumferential resection margin, a 
variable proven to influence local tumor recurrence [27,28], had a large 
proportion of missing information and will be worthwhile to retrain its 
conditional probabilities on a more complete dataset. 

Despite the predictive performance of the Bayesian network struc-
tures in this study, there is still room for improvement. The international 
and multi-trial nature of our study may be seen as a limitation, given 
that it combines the contribution of experts from three cancer in-
stitutions and data from multiple clinical trials with different treatment 
protocols. However, this limitation could also be considered a strength, 
as it may make our findings more robust and generalizable. The multi- 
trial combination is particularly relevant for this study since it enables 
the structure to be trained on a large sample size, which reflects the 
models’ superior performance over other studies with relatively smaller 
sample sizes [22–24] given that model performance is proportional to 
training sample size. Also, this large sample size helped improve the 
number of events given the disease’s low event rate. Despite combining 
data from 14 different European trials, the number of local recurrence 
events was relatively low. Our study design also prevents updating the 
number of connections between variables since each expert is contacted 
only once for input. Also, some of the variables were categorized, 
leading to a loss of information. Lastly, blood tumor markers such as 
carcinoembryonic antigen (CEA), a proven predictive factor for local 
tumor recurrence in rectal cancer [25], were not included in the struc-
ture because of the study’s retrospective nature. 

In summary, we have developed and validated a Bayesian network 
structure from 14 trial cohorts’ data by analyzing a total number of 6754 
rectal cancer patients for predicting the risk of local recurrence in locally 
advanced rectal cancer patients at 2, 3, and 5 years. The causal re-
lationships between the variables in the developed Bayesian network 
structure were proposed and validated by domain experts with years of 
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experience from different international radiotherapy centers, where 
treatment protocols may differ. Our result showed that although struc-
tures from both methods performed above chance level, the algorithmic- 
based structures had higher discriminating power than the expert 
structure. However, they contained clinically incomprehensible arcs, 
making the expert structure more credible even with relatively lower 
predictive performance. Future research will combine these two 
Bayesian network structure learning approaches to produce clinically 
plausible structures with optimal predictive performance. 
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