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Robust Iterative Learning Control for Pnematic

Muscle with Constraints and Unertainties

Kun Qian, Zhenghong Li, Zhiqiang Zhang, and Shengquan Xie

Abstract—In this brief, we propose a new iterative learning
control (ILC) scheme to deal with trajectory tracking problems
for pneumatic muscle (PM) actuators. Two critical issues are
discussed: 1) actuator constraints, and 2) model uncertainties. To
realize PM dynamics, a three-element model is constructed that
takes both parametric and nonparametric uncertainties into con-
sideration. By introducing the composite energy function (CEF)
approach incorporated with a barrier Lyapunov function (BLF),
the constraint requirements on PM is fulfilled and uncertainties
can be effectively handled. Through rigorous analysis, we show
that under proposed ILC scheme, uniform convergence of PM
state tracking errors are guaranteed and state constraints are
always satisfied. In the end, an illustrative example is simulated
to demonstrate the efficacy of the proposed ILC scheme.

I. INTRODUCTION

Pneumatic muscles (PMs) have been actively studied in the

last decades, as they posses advantages such as light weight,

compliance and power efficiency over conventional electric

motors [1]. Due to its muscle-like properties, researches have

led to many applications in robotic manipulators [2]–[4] and

rehabilitation devices [5]–[7]. However, the strong nonlinear

nature and time-varying characteristic bring difficulties to

precise PM control.

There are several challenging issues regarding the research

of PM control, two of which will be discussed in this work.

First issue is about actuator constraints. One strict physical

constraint is that the finite PM inflation leads to limited

contraction range. Recent results can be found in [8] and [9]

that treat the constraint as a saturated input problem. However,

the input saturation is resolved in the closed-loop analysis as

a nonlinear term and no validation for optimizing the control

performance is given. In addition, the contraction velocity of

PM is also a major concern in many practical environment

for guaranteeing safe operation. With predefined threshold

[10], [11] and saturation function [12], the PM contraction

velocity is restricted before the actual control action begins.

Nevertheless, how to tackle PM constraints in controller design

while maintaining system stability has not be well addressed.

The second challenge facing the PM control is system un-

certainties. The three-element form [13] is a common method

to model PM behavior and design controllers [8], [14]–[19].

However, all elements contain uncertain parameter which are

hard to compensate accurately. To deal with uncertainties,

numerous of nonlinear control methods [8], [17]–[19] have

been proposed such as sliding-mode [16], dynamic surface
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[17], adaptive servomechanism [18], integral of sign of error

[8] and proxy-based approach [19]. Nevertheless, a common

assumption in these methods is that the state-dependent non-

linearities are bounded by some known value which are hard

to justify. In addition, only tracking performance with small

contraction range are considered in existing studies. For a large

PM contraction range, the convergence of controller while not

violate aforementioned constraints is still unclear.

Among lots of robotic application scenarios, repetitiveness

is a vital feature. Effectively using the repetitive process in

the controller design to improve the tracking performance, is

of practical importance and interests. In addition, uncertainties

caused by different pressure input of PM periodically vary with

the inflation/deflation process, thus have repetitive characteris-

tics when same tasks are conducted repeatedly. Since the pio-

neering work [20] by Arimoto, iterative learning control (ILC)

is known to be effective in handling repetitive control process

[21]. P-type [22] and PID-type [23] ILC was applied on

PM control by contraction mapping (CM) methods. Recently,

dynamic linearization technique was employed that transforms

the nonlinearities of PM into a data-driven model [24], with

model-free adaptive iterative control (MFAILC) scheme, im-

proved tracking performance was achieved. However, it is

hard for CM-based ILC and MFAILC to incorporate available

system knowledge, whether parametric or structural, into the

learning controller design. Furthermore, strict conditions such

as identical initial resetting [22], [23] and global Lipschitz

continuous (GLC) [24] are required for controller design.

In this brief, by considering both PM control issues, a

new ILC scheme for PM repetitive tracking is presented. The

barrier Lyapunov function (BLF) is introduced to satisfy both

constraints on PM contraction length and velocity. By con-

structing PM model upon three-element form, uncertainties are

composed of time-varying parametric part and state-dependent

nonparametric part. The identical initial condition (i.i.c) is

replaced with more practical alignment condition, and the

nonparametric term only need to be local Lipschitz contin-

uous (LLC). With designed composite energy function (CEF)

incorporated with BLF, we show that uniform convergence of

PM state tracking errors are guaranteed under the proposed

ILC scheme, whereas both constraints will not be violated.

An illustrative example with published PM model parameter

is simulated to demonstrate the efficacy of the proposed ILC

scheme.
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Fig. 1: (a) Operational principle of a PM. (b) Three-element

model of PM.

II. PM MODEL AND PROBLEM FORMULATION

A. PM Model

Consider a PM that vertically drives a mass as shown in

Fig. 1. The simplified system model [13] is described as































Mẍs +B(P )ẋs +K(P )xs = F (P )−Mg

B(P ) = B1P +B0 =

{

Bi1P +Bi0 inflation
Bd1P +Bd0 deflation

K(P ) = K1P +K0

F (P ) = F1P + F0

(1)

where M,P and g are the mass, pressure and gravitational ac-

celeration, respectively. Contraction length, velocity and accel-

eration are denoted as xs, ẋs and ẍs. B(P )ẋs,K(P )xs, F (P )
are the pressure-dependent damping, spring and contractile

force elements. Define an equilibrium point at xs = x0 under

internal pressure P0, we have K(P0)x0 = F (P0) −Mg. Let

u = P − P0 and x = xs − x0, then (1) becomes

ẍ+Bẋ+Kx = (aẋ+ bx+ c)u (2)

where B = (B1P0 + B0)/M , K = (K1P0 + K0)/M , a =
−B1/M , b = −K1/M and c = (F1 +K1x0)/M .

There are four main issues we should tackle in (2),

1) PM is required to perform repetitive task,

2) Parameters are periodically time-varying,

3) Contraction length and velocity are constrained,

4) Other uncertainty such as friction is not considered.

Formulation of these problems will be given as follow.

B. Problem Formulation

For PM works in a repetitive manner, we rewrite (2) as

x2,i(t) = ẋ1,i(t)

ẋ2,i(t) = θT (t)f(xi, t) + g(xi, t)ui(t) + d(xi, t) (3)

where x1,i(t), x2,i(t) and ẋ2,i(t) are the contraction length,

velocity and acceleration of PM, respectively. t ∈ [0, T ], T > 0
is the time interval during each iteration i ∈ Z

+. θT (t) =
[−K(t),−B(t)] is parametric uncertainty which is iteratively

time-varying. f(xi, t) = [x1,i(t), x2,i(t)]
T is a known state-

dependent function, g(xi, t) = a(t)x2,i(t) + b(t)x1,i(t) + c(t)
is a state-dependent uncertain gain for the control input ui(t)
and define the uncertain friction as d(xi, t). Moreover, the

contraction length and velocity are constrained, that is, for

any iteration, |x1,i(t)| < ks,1 and |x2,i(t)| < ks,2, ∀t ∈ [0, T ]
hold, where ks,1 and ks,2 are positive number.

Property 1: The desired trajectories x1,r, x2,r are iteration-

invariant with upper bounds |x1,r|sup, |x2,r|sup, and spatially

closed, that is, x1,r(0) = x1,r(T ), x2,r(0) = x2,r(T ). The

actual states are under alignment condition during operation,

that is, x1,i(0) = x1,i−1(T ), x2,i(0) = x2,i−1(T ).
Property 2: For a general PM, c > 0 and |F1| ≫ |B1| always

hold that make g(xi, t) > 0 (see [13] and [16]). Thus, we

define a lower bound gmin for g(xi, t).
Assumption 1: The state-dependent uncertainties g(xi, t) and

d(xi, t) are locally Lipschitz continuous (LLC), that is,

|g(x1, t)− g(x2, t)| < α(x1, x2, t)‖x1 − x2‖

|d(x1, t)− d(x2, t)| < β(x1, x2, t)‖x1 − x2‖

where α(x1, x2, t) and β(x1, x2, t) are continuous bounding

functions, and ‖ · ‖ is the Euclidean norm for a vector.

Define the state tracking error e1,i = x1,i − x1,r and

e2,i = x2,i − x2,r. Under Property (1), we have e1,i(0) =
e1,i−1(T ), e2,i(0) = e2,i−1(T ). The control objective is to

realize full system states tracking over the iteration domain

without violation of constraints on both states.

To facilitate our subsequent discussion, we introduce a ficti-

tious velocity tracking error as γ2,i = x2,i − σi, where σi is

used in some literature as a stabilizing function [25], [26], is

defined as σi = ẋ1,r−cos2(
πe2

1,i

2k2

b,1

)κ1e1,i, where κ1 is a positive

constant to be designed, kb,1 is the bound defined for e1,i at

any iteration. Since γ2,i is a function of e1,i, it is also under

alignment condition, e.g., γ2,i(0) = γ2,i−1(T ).
Remark 1: Instead of GLC condition that is commonly as-

sumed in PM controller designs [24], [27]–[29], LLC condi-

tion is considered in this study. The i.i.c is a general assump-

tion in ILC theory [21] which requires a perfect resetting i.e.,

ei(0) = 0. From a practical point of view, it can hardly be

met and replaced with more realistic alignment condition.

Remark 2: Since ks,1 < |x1,r(t)|sup and ks,2 < |x2,r(t)|sup
hold for complete tracking. Therefore, for PM have constraints

that |x1,i(t)| < ks,1, |x2,i(t)| < ks,2, since |x1,i(t)| <
|e1,i(t)| + |x1,r(t)|, we can select kb,1 such that 0 < kb,1 <
ks,1 − |x1,r(t)|sup. Similarly, we have |x2,i(t)| < |γ2,i(t)| +
|σi(t)| < |γ2,i(t)| + |x2,r(t)| + κ1|e1,i(t)|. The bound kb,2
defined for γ2,i can be selected by relation 0 < kb,2 <
ks,2 − |x2,r(t)|sup − κ1kb,1 with proper value of κ1.

III. ROBUST CONTROLLER DESIGN WITH PM

CONSTRAINTS

A. Robust Controller Design

In order to achieve state tracking error convergence, elimi-

nate the impact due to composite uncertainties and fulfil output

constraints, we present the controller and parameter adaption

2



laws first, with rigorous analysis coming later in the detailed

proof,

ui = uilc
i + ur

i

ur
i = −

αi|u
ilc
i |sgn(γ2,i)‖ei‖

gmin

−
βisgn(γ2,i)‖ei‖

gmin

−
|θ̂Ti |∆fisgn(γ2,i)

gmin

−
(ẋ2,r − σ̇i)sgn(γ2,i)

gmin

−
κ2γ2,i cos

2(
πγ2

2,i

2k2

b,2

)

gmin

−
e1,isgn(e1,iγ2,i) cos

2(
πγ2

2,i

2k2

b,2

)

gmin cos2(
πe2

1,i

2k2

b,1

)

(4)

uilc
i = proj(uilc

i−1)−
pγ2,i

cos2(
πγ2

2,i

2k2

b,2

)
(5)

θ̂i = proj(θ̂i−1) +
qγ2,i∆fi

cos2(
πγ2

2,i

2k2

b,2

)
(6)

where the control signal ui consists of a pure iterative lean-

ing part uilc
i and a robust part ur

i . αi , α(xi, xr, t) and

βi , β(xi, xr, t) are two LLC functions, ∆fi = fi − fr is

a continuous state-dependent function represents the error of

regressor fi. p and q are two ILC gains, sgn is the signum

function [30] and κ2 is a positive constant to be designed. σ̇i

can be expressed as

σ̇i = ẋ2,r − κ1 cos
2(
πe21,i
2k2b,1

)e2,i + κ1

e21,i
k2b,i

sin(
πe21,i
2k2b,1

)e2,i. (7)

The projection operators proj(·) are defined as

proj(uilc
i−1) =

{

uilc
i−1 if uilc

i−1 ≤ ūilc

sgn(uilc
i−1)ū

ilc if uilc
i−1 > ūilc

and

proj(θ̂i−1) = [proj(θ̂1,i−1), proj(θ̂2,i−1), ..., proj(θ̂l,i−1)]
T

proj(θ̂j,i−1) =

{

θ̂j,i−1 if θ̂j,i−1 ≤ θ̄j
sgn(θ̂j,i−1) if θ̂j,i−1 > θ̄j

j = 1, 2, 3, ..., l

where ūilc ≥ |ur(t)| and θ̄j ≥ |θj(t)|, ∀j = 1, 2, ..., l.
Remark 3: The upper bound ūilc, θ̄j can be either selected

from hardware limits or just using sufficiently large bounds.

Such large bounds will not degrade the control performance

while retaining the uniform convergence.

B. Composite Energy Function with Tangent Barrier Lya-

punov Function

To guarantee the constraints on PM are not violated, we

introduce the following tangent BLF [30], [31]:

V =
k2b
π

tan(
πγ2

2k2b
), |γ(0)| < kb (8)

which is positive and will approach infinite as |γ| → kb, where

kb is a predefined bound. By selecting proper bounds kb,1,

kb,2, one can guarantee that both PM contraction length and

velocity tracking errors are restricted in bound. Consequently,

the state constraints are guaranteed for any iteration.

Then, the following CEF is design that incorporates with

the BLF at the i-th iteration

Ei(t) = V 1
i (t) + V 2

i (t) + V 3
i (t)

V 1
i (t) = V 1

1,i(t) + V 1
2,i(t)

V 1
1,i(t) =

k2b,1
π

tan(
πe21,i
2k2b,1

)

V 1
2,i(t) =

k2b,2
π

tan(
πγ2

2,i

2k2b,2
)

V 2
i (t) =

1

2p

∫ t

0

gr(u
ilc
i − ur)

2dτ

V 3
i (t) =

1

2q

∫ t

0

(θ − θ̂i)
T (θ − θ̂i)dτ. (9)

Remark 4: As kb → ∞, we have V → 1

2
γ2 which is a

quadratic Lyapunov candidate for system without constraint.

Therefore, either position constraint or velocity constraint or

both on PM can be satisfied by selecting proper kb. Without

loss of generality, in this paper, we take both constraints into

consideration. The CEF approach [32] extends the standard

Lyapunov function to consecutive learning cycles, thus, the

asymptotical convergence of CEF along the learning repetition

horizon guarantees the boundedness and pointwise conver-

gence of tracking error over the entire learning cycle.

IV. ANALYSIS OF CONVERGENCE PROPERTY

Theorem 1: For the repetitive PM system (3) under Property

(1)-(2), suppose Assumption (1) hold, the proposed control

law (4) and two ILC laws (5) and (6) guarantee that

(1) The state tracking errors e1,i, e2,i uniformly converge to

zero as i → ∞.

(2) Constraints on the both states will not be violated, that is,

|x1,i| < ks,1 and |x1,i| < ks,1 will always be guaranteed

for any iteration.

Proof: The proof consists of three parts. Firstly, the

finiteness of Ei(t) is shown. Then, we investigate the non-

increasing property of the Ei(t) in the iteration domain at

t = T and the asympototical convergence of contraction length

tracking error e1,i and fictitious velocity tracking error γ2,i
in the sense of L2-norm. Last, the boundedness of involved

quantities is given, after which we draw a conclusion regarding

the uniform convergence of the real state tracking errors.

Part.I Finiteness of Ei(t)
The time derivative of Ei(t) is Ėi(t) = V̇ 1

i (t) + V̇ 2
i (t) +

V̇ 3
i (t). We will exam V̇ 1

i (t), V̇ 2
i (t) and V̇ 3

i (t) in sequence.

Start from V̇ 1
i (t), ė1,i = γ2,i − cos2(

πe2
1,i

2k2

b,1

)κ1e1,i gives

V̇ 1
1,i(t) =

e1,iγ2,i

cos2(
πe2

2,i

2k2

b,2

)
− κ1e

2
1.i. (10)
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Similar for V̇ 1
2,i(t), since γ̇2,i = ė2,i + ẋ2,r − σ̇i, we have

V̇ 1
2,i(t) =

γ2,iė2,i

cos2(
πγ2

2,i

2k2

b,2

)
+

γ2,i

cos2(
πγ2

2,i

2k2

b,2

)
(ẋ2,r − σ̇i) (11)

where the coupling term γ2,iė2,i = γ2,i(ẋ2,i − ẋ2,r) =
γ2,iθ

T∆fi + γ2,i(giui − grur) + γ2,i(di − dr). The control

signal ui is designed to tackle the nonparametric term g(xi, t)
and d(xi, t), and the parametric term θT . Besides, the first

term remaining in (10) and the second term in (11) also need

to be considered. From Assumption (1), we have

γ2,iu
ilc
i (gi − gr) ≤ αi|γ2,i||u

ilc
i | ‖ei‖

γ2,i(di − dr) ≤ βi|γ2,i| ‖ei‖. (12)

By considering the controller ui in form of (4), we have

γ2,iė2,i ≤ γ2,iθ
T∆fi + γ2,i(di − dr) + γ2,iu

ilc
i (gi − gr)

+ γ2,igr(u
ilc
i − ur)− αi|γ2,i||u

ilc
i | ‖ei‖

− βi|γ2,i| ‖ei‖ − |θ̂Ti ∆fi||γ2,i| − (ẋ2,r − τ̇i)|γ2,i|

− κ2γ
2
2,i cos

2(
πγ2

2,i

2k2b,2
)−

|e1,iγ2,i| cos
2(

πγ2

2,i

2k2

b,2

)

cos2(
πe2

1,i

2k2

b,1

)
.

(13)

Substituting (12) and (13) into (11) leads to

V̇ 1
2,i(t) ≤

γ2,iθ
T∆fi

cos2(
πγ2

2,i

2k2

b,2

)
+

γ2,igr(u
ilc
i − ur)

cos2(
πγ2

2,i

2k2

b,2

)
−

|θ̂Ti ∆fi||γ2,i|

cos2(
πγ2

2,i

2k2

b,2

)

−
|e1,iγ2,i|

cos2(
πγ2

2,i

2k2

b,2

)
− κ2γ

2
2,i. (14)

Combining (10) and (14), we obtain

V̇ 1
i (t) ≤

γ2,iθ
T∆fi

cos2(
πγ2

2,i

2k2

b,2

)
+

γ2,igr(u
ilc
i − ur)

cos2(
πγ2

2,i

2k2

b,2

)
−

|θ̂Ti ∆fi||γ2,i|

cos2(
πγ2

2,i

2k2

b,2

)

− κ1e
2
1,i − κ2γ

2
2,i. (15)

Next we exam V̇ 2
i (t), from ILC law (5), we can derive that

V̇ 2
i (t) = C1 +

grγ2,i(ur − proj(uilc
i−1))

cos2(
πγ2

2,i

2k2

b,2

)
+

pgrγ
2
2,i

2 cos4(
πγ2

2,i

2k2

b,2

)

(16)

where C1 = 1

2p
gru

2
r −

1

p
grurproj(u

ilc
i−1) +

1

2p
grproj(u

ilc
i−1)

2

is a finite term guaranteed by projection definition.

For V̇ 3
i (t), from ILC law (6), we can derive that

V̇ 3
i (t) = C2 −

γ2,iθ
T∆fi

cos2(
πγ2

2,i

2k2

b,2

)
+

γ2,iθ̂
T
i ∆fi

cos2(
πγ2

2,i

2k2

b,2

)
−

qγ2
2,i∆fT

i ∆fi

2 cos4(
πγ2

2,i

2k2

b,2

)

(17)

where C2 = 1

2q
proj(θ̂i−1)

T proj(θ̂i−1)−
1

q
proj(θ̂i−1)

T θ

+ 1

2q
θT θ is a finite term guaranteed by projection definition.

Combining (15), (16) and (17), we obtain

Ėi(t) ≤C1 + C2 +
γ2,igr(u

ilc
i − ur)

cos2(
πγ2

2,i

2k2

b,2

)
+

pgrγ
2
2,i

2 cos4(
πγ2

2,i

2k2

b,2

)

+
grγ2,i{ur − proj(uilc

i−1)}

cos2(
πγ2

2,i

2k2

b,2

)
−

qγ2
2,i∆fT

i ∆fi

2 cos4(
πγ2

2,i

2k2

b,2

)

− κ1γ
2
1,i − κ2γ

2
2,i

=C1 + C2 −
pgrγ

2
2,i

2 cos4(
πγ2

2,i

2k2

b,2

)
−

qγ2
2,i∆fT

i ∆fi

2 cos4(
πγ2

2,i

2k2

b,2

)

− κ1e
2
1,i − κ2γ

2
2,i < ∞. (18)

For each iteration, the initial CEF is given by

Ei(0) =
k2b,1
π

tan(
πe21,i(0)

2k2b,1
) +

k2b,2
π

tan(
πγ2

2,i(0)

2k2b,2
). (19)

When i = 1, e21,i(0) < k2b,1 and γ2
2,i(0) < k2b,2 imply that

E1(0) is finite and E1(t) finite for t ∈ [0, T ]. With finite CEF

and alignment condition, Ei(t) is finite for i ≥ 2.

Part.II Non-increasing Ei(t)
The difference of Ei(t) between two consecutive iterations

is ∆Ei(T ) = ∆V 1
i (T ) + ∆V 2

i (T ) + ∆V 3
i (T ). We also look

at them in sequence. Start from ∆V 1
i (T ), we have

∆V 1
1,i(T ) =V 1

1,i(T )− V 1
1,i−1(T )

=
k2b,1
π

tan(
πe1,i(0)

2

2k2b,1
)−

k2b,1
π

tan(
πe1,i−1(T )

2

2k2b,1
)

+

∫ T

0

cos2(
πe1,i(τ)ė1,i(τ)

2k2b,2
)dτ. (20)

We will omit τ in the subsequent analysis for convenience.

Note that e1,i(0) = e1,i−1(T ), we then derive

∆V 1
1,i(T ) =

∫ T

0

cos2(
πe1,iė1,i
2k2b,1

)dτ. (21)

Similarly for ∆V 1
2,i(T ), we have

∆V 1
2,i(T ) =

∫ T

0

cos2(
πγ2,iγ̇2,i
2k2b,2

)dτ. (22)

Using same procedure from (12) to (15), we have

∆V 1
i (T ) ≤

∫ T

0

γ2,iθ
T∆fi

cos2(
πγ2

2,i

2k2

b,2

)
+

γ2,igr(u
ilc
i − ur)

cos2(
πγ2

2,i

2k2

b,2

)

−
|θ̂Ti ∆fi||γ2,i|

cos2(
πγ2

2,i

2k2

b,2

)
− κ1e

2
1,i − κ2γ

2
2,idτ. (23)
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For ∆V 2
i (T ), (u

ilc
i−1−ur)

2 ≥ (proj(uilc
i−1)−ur)

2 is guaranteed

by projector, hence

∆V 2
i (T ) =

1

2p

∫ T

0

gr{(u
ilc
i − ur)

2 − (uilc
i−1 − ur)

2}dτ

≤
1

2p

∫ T

0

gr{(u
ilc
i − ur)

2 − (proj(uilc
i−1)− ur)

2}dτ

≤

∫ T

0

γ2,igr(ur − uilc
i )

cos2(
πγ2

2,i

2k2

b,2

)
dτ. (24)

Similarly for ∆V 3
i (T ) and apply the property (a − b)T (a −

b)− (a− c)T (a− c) = (b− c)T (b+ c− 2a), we have

∆V 3
i (T ) ≤

∫ T

0

γ2,i(θ̂i − θ)T∆fi

cos2(
πγ2

2,i

2k2

b,2

)
dτ. (25)

Note that the integral terms in (24) and (25) have different

signs in (23). By summing these up, we have

∆Ei(T ) ≤

∫ T

0

−κ1e
2
1,i − κ2γ

2
2,idτ ≤ 0 (26)

hence

lim
i→∞

Ei(T ) = E1(T ) + lim
i→∞

i
∑

j=2

∆Ej(T )

≤ E1(T )− lim
i→∞

i
∑

j=2

∫ T

0

−κ1e
2
1,i − κ2γ

2
2,idτ.

Since Ei(T ) is positive and E1(T ) is bounded, we conclude

that e1,i and γ2,i tend to zero asymptotically in the sense of

L2-norm, as i → ∞, namely

lim
i→∞

∫ T

0

e21,idτ = 0 lim
i→∞

∫ T

0

γ2
2,idτ = 0. (27)

Part.III Uniform convergence of real state tracking errors

By showing that the designed CEF is always bounded in

Part.II, while error constraints |e1,i| ≤ kb,1, |γ2,i| ≤ kb,2 are

guaranteed. The boundedness of x1,i(t) and x2,i(t) are derived

(see Remark (2)). With bounded states, e2,i is bounded and

σ̇i is also bounded. The state-dependent nonlinearity f(xi, t),
g(xi, t), d(xi, t) are bounded and θ contains two originally

bounded parameters. Hence, the boundedness of uilc
i , θ̂i can be

seen and the robustness part ur
i is also bounded which implies

that ui is bounded. Then, we can derive that ẋ2,i is bounded

that makes ė1,i = γ2,i + σi − ẋ1,r and γ̇2,i = ẋ2,i − σ̇i finite.

Since e1,i, γ2.i are uniformly continuous, by convergence

property given in Part.II, e1,i, γ2.i uniformly converge to zero

within the close set [0, T ], that is

lim
i→∞

e1,i(t) = 0 lim
i→∞

γ2,i(t) = 0 t ∈ [0, T ]. (28)

Notice that σi → 0 as e1,i → 0, so that γ2,i = x2,i − σi →
x2,i − x2,r = e2,i. Therefore, we can conclude that the real

velocity tracking error also uniformly converge to zero, that is

lim
i→∞

e2,i(t) = 0 t ∈ [0, T ]. (29)

0.6

0.7

0.8
(a) Uncertainty B(KPa)

Iteration

4

5

6
(b) Uncertainty K(KPa)

Fig. 2: Time-varying parametric uncertainties for each itera-

tion. (a) Bin(t) = 0.69 + 0.069 sin(4πt), Bde(t) = 0.72 +
0.072 sin(4πt). (b) KP≤330kPa(t) = 5.27 + 0.53 sin(4πt),
KP>330kPa(t) = 4.01 + 0.4 sin(4πt).

V. SIMULATION RESULTS

In this section, simulation is conducted to demonstrate the

efficacy of proposed ILC scheme. Based on the identification

results in [18], the coefficients in (1) is given by

B(P ) =

{

2.27× 10−4P (Pa) + 2435 inflation

3.2× 10−3P (Pa) + 2522 deflation

K(P ) =

{

−0.21P (Pa) + 9× 104 P ≤ 3.3× 105(Pa)

0.011P (Pa) + 1.8× 104 P > 3.3× 105(Pa)

F (P ) = 0.0022P (Pa)− 202.32

under 35N-load and nominal pressure P0 = 338.536 kPa,

while the PM stabilises at x0 = 0.03m. This position is set

as the new origin such that the control action is still active

when the displacement in the new coordinate is negative.

The parameters in (2) are calculated as a = 0.5 × 10−4,

b = 0.6 × 10−2 and c = 0.05, while B(t), K(t) are set

to be piecewise and time-varying as shown in Fig.2. The

maximum contraction range of PM in [18] is 0.05m, there-

fore, the control objective is to track the reference trajectory

x1,r = 0.015 sin(2πt), x2,r = 0.03π cos(2πt), subject to

constraints |x1| < 0.02 and |x2| < 0.15 for all iterations.

ILC gains are selected to be p = 100, q = 100 in the updating

law (5)-(6). We choose κ1 = 10 and κ2 = 50. First, we

select the bounds on position error kb,1 = 0.0048 and fictitious

velocity tracking error kb,2 = 0.006. For the output constraints,

|x1| ≤ |x1,r|sup + |e1| ≤ 0.015 + 0.0048 < 0.02, |x2| ≤
|x2,r|sup+κ1kb,1+|γ2| ≤ 0.03π+10×0.0048+0.006 < 0.15.

In Fig. 3(a), the tracking error of x1 approaches zero as

iteration increases. In fig. 3(b), both fictitious tracking error

and real state tracking error of x2 are shown. As discussed

in convergence analysis, the fictitious term γ2 approaches e2
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Fig. 3: (a) The state tracking error of x1, (b) The profile of

fictitious tracking error γ2 and state tracking error e2, when

kb,1 = 0.0048, kb,2 = 0.006.
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Fig. 4: (a) The state tracking error of x1, (b) The profile of

fictitious tracking error γ2 and state tracking error e2, when

kb,1 = 0.0038, kb,2 = 0.0045.

since the tracking error e1 converge to zero. Notice that both e1
and γ2 are well within the bound due to the use of BLF. Next,

we select kb,1 = 0.0038, kb,2 = 0.0045 to further illustrate the

efficacy of using CEF incorporated with BLF. For the output

constraints, |x1| ≤ 0.015+0.0038 < 0.02, |x2| ≤ 0.03π+10×
0.0038+0.0045 < 0.15. In Fig. 4, the state tracking errors of

x1 and x2 approach zero as iteration increases, respectively.

With the reduced bound kb,1 and kb,2, the maximum tracking

error in the first iteration has been reduced accordingly that

implies the BLF works as expected. With bounded error in

first iteration, the uniform convergence of our ILC scheme

can then successfully fulfil the constraints on PM contraction

length and velocity.

Control input signals at the first and last iteration are

shown in Fig. 5 and 6. During the first iteration, the robust

part has significant contribution to control effort since there

are certain amount of state tracking errors. As the iteration

increases, the convergences of state tracking errors imply that
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Fig. 5: The control profile at the first iteration, where the ILC

part and robust part refer to control law (4) and (5).
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Fig. 6: The control profile at the last iteration, where the

difference between uilc
20 and ud is invisible.

no robust compensation is required, while the ILC part uilc

will dominate the control effort.

VI. CONCLUSION

In this brief, actuator constraints and uncertainties of PM

are investigated using ILC approach. Considering the practical

application, i.i.c and GLC conditions in most ILC schemes

are replaced by alignment and LLC conditions. To deal with

PM contraction length and velocity constraints, a tangent

BLF is introduced. With designed robust control term, PM

uncertainties contain both parametric and nonparametric part

can be effectively handled. Under proposed scheme, analysis

based on our designed CEF incorporated with BLF guarantees

the uniform convergence of PM state tracking errors, whereas

both state constraints are not violated.

Parameters in simulation study were taken from the pub-

lished literature, while the dynamics of PM are widely di-

vergent for different size. Future works will be devoted to

construct a self-made PM platform, carrying out accurate

modelling results and further validate the efficacy of the

proposed scheme.
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