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Summary 

 Plant plastic responses are critical to the adaptation and survival of species under climate change, 

but whether they are constrained by evolutionary history (phylogeny) is largely unclear. Plant leaf 

traits are key in determining plants’ performance in different environments, and if these traits and 

their variation are phylogenetically dependent, predictions could be made to identify species 

vulnerable to climate change. 

 We compiled data on three leaf traits (photosynthetic rate, specific leaf area, and leaf nitrogen 

content) of 434 species and their variation under four environmental change scenarios (warming, 

drought, elevated CO2, or nitrogen addition) from 210 manipulation experiments. 

 We found phylogenetic signal in the three traits but not in their variation under the four scenarios. 

This indicates that closely related species show similar traits but that their plastic responses could 

not be predicted from species relatedness under environmental change. Meanwhile, phylogeny 

weakened but did not change directions of conventional pairwise trait relationships, suggesting 

the co-evolved leaf trait pairs have consistent responses across contrasting environmental 

conditions. 

 Phylogeny can identify lineages rich in species showing similar traits and predict their 

relationships under climate change, but the degree of plant phenotypic variation does not vary 

consistently across evolutionary clades.
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Introduction 

Environmental variation in nature is ubiquitous, and in response, many species have functional traits 

that can be altered under changing conditions in order to maximize fitness. Unlike evolution, this trait 

flexibility or ‘phenotypic plasticity’ does not involve genetic changes and can occur over very short 

time scales (Nicotra et al., 2010). These quick, plastic responses are possible because of the capacity 

of an individual’s genetic makeup (genotype) to give rise to variable observable traits (multiple 

phenotypes), within their lifetime (Westerband et al., 2021). Anthropogenic climate change is 

drastically altering environmental conditions over short time-frames, and therefore the ability of 

organisms to quickly adapt via phenotypic variation is critical to the survival of species (Chevin et al., 

2010; Snell-Rood et al., 2018). However, the ability to plastically alter traits when exposed to 

changing environmental conditions differs across species (Cui et al., 2020), and if conserved across 

evolutionary clades, trait plasticity under environmental change may be predictable from evolutionary 

history. 

Given that closely-related species tend to share more similar traits than distantly-related ones 

(indicated by strong trait phylogenetic signal; Wiens, 2004; Losos, 2008; Crisp et al., 2009), trait 

variation may be also constrained by evolutionary history, with closely-related species reacting more 

similarly to environmental change than distantly-related species (Fig.1 Hypothesis 1, Evolution–

driven trait response). Evidence for the phylogenetic conservation of phenotypic variation comes from 

a study of root growth traits under soil heterogeneity across ~100 plant species (Kembel & Cahill, 

2005). However, other studies have found no phylogenetic effect on variation across multiple plant 

traits (Fig.1 Hypothesis 2 or 3, Environment-driven or random trait responses, depending upon 

whether trait values show no phylogenetic signal in addition to trait variation). For example, in 20 

invasive-native species pairs from the Mediterranean region, plastic responses of leaf- and plant-level 

traits were not explained by the phylogenetic structure of the species (Godoy et al., 2011). Similarly, a 

recent study reported that phenotypic variation of four trait types (leaf morphology, plant allocation, 

size and performance) is phylogenetically independent (Stotz et al., 2021). In addition, the presence of 

environmental stress may be important with phylogenetic signal seen for a trait but only under 

stressful conditions (Burns & Strauss, 2012). These mixed findings are similarly reflected in the few 

similar studies on animal trait variation (Ashton, 2004; Relyea et al., 2018). A further examination of 

A
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved

broad patterns in the plastic responses of species within a phylogenetic context is imperatively 

needed, and would provide useful information about the vulnerability of species to environmental 

change (Moran et al., 2016; Shao et al., 2019).

Being immobile organisms, the ability to alter traits in response to a changing environment is 

particularly important for plants (Borges, 2009). Traits relating to the ‘Leaf Economic Spectrum’ 

(LES) are key in determining plant performance in a given environment (Westoby et al., 2002; 

Cornelissen et al., 2003; Diaz et al., 2004; Kattge et al., 2020), and therefore plasticity in these traits 

is crucial for survival when conditions change. This spectrum is a well-established axis of adaptive 

variation, where a set of coordinated leaf traits that relate to resource investment is associated with 

different evolutionary strategies across plant species (Reich et al., 1997, 2003; Wright et al., 2004; 

Díaz et al., 2016). Fast-living species that produce ‘cheap’ leaves, characterized by low investment in 

tissue density (i.e., high values of specific leaf area (SLA); or a large leaf area for a given leaf dry 

mass) and nutrients (i.e., low leaf nitrogen content for a given leaf mass (Nm)), fall at one end of this 

spectrum. Such species show high rates of photosynthesis (Am, carbon assimilation per unit leaf mass) 

and resource acquisition, but at the cost of longevity (Reich, 2014). At the other end of the spectrum 

is longer-lived species that invest highly in leaf material, and are thus associated with low SLA, Nm 

and Am. LES traits are highly plastic, and they change flexibly in response to environmental changes 

through a diverse array of physiological, morphological and ecological mechanisms (Des Marais et al., 

2013), providing a key way that plants optimize their performance in a rapidly-changing environment 

(e.g., Huang et al. 2019). However, whether this flexibility is constrained by evolutionary history is 

still unclear. 

Furthermore, although the coordination between LES traits has been widely recognized (Reich et 

al., 1997, 2003; Wright et al., 2004; Díaz et al., 2016), as evolutionary history explains a significant 

proportion of trait variation (Shao et al., 2019), such relationships could remain or could disappear 

once phylogeny is accounted for (Liu et al., 2015). The latter outcome indicates that the apparent 

correlation observed on the raw data is an artifact of their evolutionary history (Felsenstein, 1985), 

while the former means that the trait correlation is the production of coordinated evolution (Garland et 

al., 1992). Thus testing how the pair-wise trait relationships shift within a phylogenetic context could 
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reveal information of the evolutionary trajectory of co-adapted traits, which is also valuable for 

predicting plant responses under climate change.

Manipulation experiments, in which plants are subjected to ambient and contrasting 

environmental conditions, allow quantification of leaf trait variation (Poorter et al., 2009; De Frenne 

et al., 2015). A plethora of studies have measured plastic changes in leaf economic traits, to different 

aspects of climate change, such as elevated temperatures (Shao et al., 2019) and CO2 concentrations 

(Temme et al., 2017). Recent work has summarized findings of many such studies, and has uncovered 

general patterns in species’ plastic responses to environmental change (Song et al., 2019; Cui et al., 

2020). By examining these patterns within a phylogenetic context, the influence of evolutionary 

history on plastic plant responses can be determined across hundreds of species.

Here we explore phylogenetic influences on a trait dataset spanning 434 plant species grown 

under ambient and manipulated environmental conditions, from a meta-analysis of 210 manipulation 

experiments (Cui et al., 2020). This dataset quantified the response of three key leaf economic traits 

(SLA, Nm and Am) to four types of environmental change: increased temperatures, reductions in 

water availability, elevated atmospheric CO2, and nitrogen addition. By combining this dataset with a 

phylogeny of the study species, we aim to test for: (1) Phylogenetic signal in leaf traits and their 

variation under altered environmental conditions, and (2) phylogenetic influences on pair-wise trait 

relationships (e.g., the relationship between SLA and Am across species). We propose three 

hypotheses that could describe and explain various phylogenetic patterns in traits and their variation 

(Fig. 1). 

For question (1), we predict either hypothesis 1 or 2 will be supported by our data (phylogenetic 

signal in both traits and their variation, or just in traits) based on the mixed results on phenotypic 

variation in the existing literature. We expect hypothesis 3 has small probability to be supported, 

because many plant traits in natural conditions show significant phylogenetic signal (e.g., Ackerly 

2009; Flores et al. 2014; Liu et al. 2015; Ma et al. 2018), including SLA (Cornwell et al., 2014; 

Flores et al., 2014), Nm and Am (Liu et al., 2015). For question (2), we predict that pair-wise trait 

relationships will weaken based on other coordinated leaf traits, rather than disappear under 

phylogenetic influence, because the coordination between LES traits is more likely to be co-adapted 

under evolutionary pressure (Reich et al., 1997, 2003; Wright et al., 2004; Díaz et al., 2016).
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Materials and Methods

Data compilation

To examine the influence of evolutionary history on plant phenotypic variation and trait relationships, 

we developed models based on a recent dataset from Cui et al. (2020). Data on three key leaf 

economic traits, mass-based net photosynthetic rate (Am, nmol g-1 s-1), specific leaf area (SLA, cm2 g–

1), and mass-based leaf nitrogen content (Nm, %), from experiments that mimic four aspects of 

climate change (warming, drought, elevated CO2, or nitrogen addition) were collated from a literature 

search. Data from articles that measured at least two of the three traits made it into the final dataset, 

which included data for 434 plant species in 210 manipulative experiments. In Cui et al. (2020), 

studies were classified into field experiments (garden or natural habitat experiments; 102 studies) and 

environmentally controlled experiments (greenhouse, growth chamber, or pot experiments; 108 

studies). Trait relationships for field or environmentally controlled experiments, and for different 

functional groups (angiosperms vs. gymnosperms, monocots vs. eudicots, and C3 vs. C4 species) were 

all tested separately and showed consistent patterns with very few exceptions (Fig. S4-S7 in Cui et al., 

2020). Therefore, to focus on phylogenetic questions and guarantee enough species numbers to 

validate phylogenetic models, we combined data for all the species within each of the four 

environmental factors for analysis. Furthermore, we calculated and considered the strength of the 

treatment as an important factor in the following models. Treatment strength was calculated as the 

ratio of treatment level to the control level for elevated CO2 experiments with lower CO2 

concentration as control. Otherwise treatment strength was the difference between control and 

treatment levels for warming, drought and nitrogen addition experiments, with lower temperature, 

higher water availability and lower nitrogen levels as control, respectively. We reported all the raw 

data with detailed treatment conditions in Table S1.

We transformed all data by natural logarithm prior to analysis to homogenize variance. We then 

characterized phenotypic variation as the ln-transformed response ratio (RR). RR is calculated as 

ln(RR)=ln(Tt)-ln(Tc), where Tt and Tc are the experimental treatment mean and control mean, 

respectively (Hedges et al., 1999). All the response ratios of leaf traits to the four treatments were 

normally distributed (Fig. 2 in Cui et al., 2020). For all the nine variables (Am, SLA, and Nm under 
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control, treatment, and their phenotypic variation), we first calculated mean values of each species 

from the same or multiple studies, thus we could no longer involve “study” as a factor into the 

following models. Next we added standard errors (SE) of each variable into phylogenetic models to 

consider intraspecific variation, although the two datasets (with and without SE) showed the same 

response patterns of conventional trait relationships under different treatments (Fig S9 in Cui et al., 

2020), we did phylogenetic analyses on both datasets here to account for trait variation in case it may 

affect phylogenetic signal and phylogenetic pair-wised trait relationships. 

Although the original studies were not designed to test phylogenetic hypotheses, our dataset 

incorporates large plant species diversity, which has much stronger power to detect phylogenetic 

signal in both trait values and trait variation compared with previous tests based on few species 

(Godoy et al., 2011; Burns & Strauss, 2012; Stotz et al., 2021). Specifically, the 434 species belong to 

189 genera and 71 families, covering gymnosperms (58 species) and angiosperms (376 species), and a 

variety of life forms (83 grasses, 95 herbs, 26 shrubs and 230 trees). 

Phylogenetic tree

We generated phylogenetic trees of the 434 species using the package V.PhyloMaker (Jin & Qian, 

2019) in the R language and environment (R Core Team, 2018). The mega-tree implemented in 

V.PhyloMaker (GBOTB.extended.tre) includes 74,531 species of 479 families, the largest dated 

phylogeny for seed plants, which is derived from two recently published mega-trees, based on fossil 

records, molecular data from GenBank and phylogenetic data from the Open Tree of Life (Zanne et 

al., 2014; Smith & Brown, 2018). For the 65 missing species, we used the branch length adjuster 

(BLADJ) method to attach them to their close relatives, which was done automatically by 

V.PhyloMaker. BLADJ binds the tip for a new species to the half-way point of the genus branch, 

which originated from the software Phylocom (Webb et al., 2008). For unsolved species, including 12 

three-species polytomies, two five-species polytomies and one seven-species polytomy, we randomly 

resolved these polytomies 300 times as done in Smith & Brown (2018), using multi2di in the R 

package ape (Paradis et al., 2004). Finally, with the 300 imputation trees, we repeated all the 

following phylogenetic analyses 300 times, in order to account for phylogenetic uncertainties. 

Furthermore, the ideal phylogeny is certainly a tree based on molecular information of each species, 
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thus for future comparative analyses, care should be taken in constructing phylogeny with missing or 

unsolved species and interpreting results. All the 300 trees are provided in Notes S1.

Data analyses

To determine phylogenetic signal in the three leaf traits (both under control and treatment conditions) 

and in their variation, we first estimated Pagel's λ using phylogenetic generalized least square (PGLS) 

models in the R package caper (Orme et al., 2018). According to the prediction of a Brownian model 

(BM) of trait evolution (Pagel, 1999), Pagel’s λ is a value between 0 and 1, where λ=1 implies trait 

variation completely depends on phylogeny, while λ=0 indicates no phylogenetic dependence 

(Freckleton et al., 2002). We obtained P values to evaluate the validity of whether λ was significantly 

different to 0, i.e., a phylogenetic signal exists. Significantly high λ values indicate that closely related 

species are more similar than would be expected by chance. Next we estimated Blomberg’s K as a 

complementary phylogenetic signal, using phylosig in the R package phytools (Revell, 2012). We did 

not use other similar functions/packages such as picante because phylosig allows standard error (SE) 

in its formula, and can calculate both Pagel's λ and Blomberg’s K by setting different methods (Table 

S2). Values of K=0 indicates no phylogenetic signal, and K>1 suggests stronger similarities among 

closely related species than expected under Brownian motion (Blomberg et al., 2003). K values are 

compared to a null distribution based on a white noise (WN) model, in which trait values are 

randomly swapped across tips 1000 times. Then a BM null model is simulated based on BM trait 

evolution over the phylogeny 1000 times,  K values less than the 95% distribution of the simulations 

indicate they are less divergent than expected by Brownian motion (Blomberg et al., 2003). P values 

are obtained for comparing K values with those simulated K values based on both white noise (KWN) 

and BM (KBM) null models. Finally, we also fitted Ornstein-Uhlenbeck (OU) models for each trait, in 

order to estimate phylogenetic half-life (PHL), which is another complementary phylogenetic signal, 

using fitContinuous in the R package geiger (Pennell et al., 2014). PHL equals log(2)/α, where α is 

the attraction strength of the evolutionary optimum. If α is near 0, then the OU model resembles a BM 

model, indicating strong phylogenetic signal. Meanwhile, PHL quantifies the extent to which the trait 

displays evolutionary inertia  (Hansen, 1997). If PHL is long relative to the depth of the phylogeny, 
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then the macro-evolutionary history of a trait is a good predictor of its current value; if it is short, it is 

not (Relyea et al., 2018; Neto‐Bradley et al., 2021). 

We also tested phylogenetic signal based on scaled data [(species specific value - mean across 

species)/standard deviation], in order to avoid the influences from data structure (i.e., only positive 

values for traits, but both positive and negative values for phenotypic variation; Fig. S1). However, 

phylogenetic signal in the original and scaled datasets was exactly the same for all the traits under all 

the treatments. Furthermore, to eliminate the influence of treatment strength (the magnitude of the 

environmental difference between control and treatment conditions) on plant plastic responses (Fig. 

S2), we tested phylogenetic signal in traits and trait variation by adding treatment strength as a factor 

in the PGLS models, and by using data subsets under the same treatment strength to confirm (Table 

S3).

To analyze phylogenetic influences on pair-wise trait relationships (e.g., SLA vs Am), we 

compared relationships when evolutionary history is accounted for (using PGLS models) and when it 

is not. The conventional relationships not controlling for phylogeny were modeled using standardized 

major axis (SMA) regressions in the R package smatr (Warton et al., 2012). We also ran PGLS 

models for the 300 imputation trees to account for phylogenetic uncertainties. Results based on 300 

trees converged very well with negligible variation in elevations and slopes (Table S4a), thus figures 

of trait relationships were plotted based on one tree results. Furthermore, we added standard error (SE) 

of each trait pairs into PGLS models, using pgls.Ives in the R package phytools (Revell, 2012).

Results 

General patterns

On average, plants responded to experimental warming significantly positively in their SLA (+6.9%; 

hereinafter ‘significantly affect’ means P<0.05, whereas ‘not affect’ means P>0.05), but not in Am 

and Nm (+1.2% and -1.3%, respectively). Drought significantly decreased Am (-38.3%) and SLA (-

8.7%), and increased Nm (+6.5%). Elevated CO2 significantly increased Am (+12.6%), while 

decreased Nm (-16.1%) and SLA (-12.6%; Fig. 2). Furthermore, nitrogen addition significantly 

increased Am (+12.8%) and Nm (+34.0%), but did not affect SLA (-0.6%; P>0.05).
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Plant responses across the phylogeny were highly variable in direction. For example, positive 

and negative responses to warming were nearly equal (55%, 53% and 66% positive responses for Am, 

Nm and SLA, respectively), and responses of Am and SLA under nitrogen addition similarly varied 

(65%, 92% and 53% positive responses for Am, Nm and SLA, respectively). In contrast, response 

directions to drought were more certain (9%, 62% and 28% positive responses for Am, Nm and SLA, 

respectively), as were responses to eCO2 (64%, 8% and 13% positive responses for Am, Nm and SLA, 

respectively; Fig. 2). 

Phylogenetic signal in leaf traits and phenotypic variation

Based on Pagel’s λ (λ hereafter), we found significant phylogenetic signal present in almost all leaf 

traits under control conditions for the different environmental factors (10 out of 12 trait-treatment 

combinations; λ=0.40-0.91; Table 1a). The only exceptions were Am and Nm in control plants to 

warming treatment (P<0.05 for λ=0). The traits of plants under ‘climate change’ treatments showed 

similar patterns in their phylogenetic signal to their controls: there was significant phylogenetic signal 

in the three traits when grown under drought (λ=0.62-0.83), elevated CO2 (λ=0.37-0.52) and nitrogen 

addition (λ=0.37-0.85), but only in SLA under warming conditions (λ=0.53; Table 1a). In contrast, 

phylogenetic signal in phenotypic variation was rare (Fig. 2; Table 1a). A significant phylogenetic 

signal was found only in one instance, in SLA variation in response to CO2 (λ=0.69; Fig. S1). Results 

stayed the same based on either 300 imputation trees (Table 1a; Fig. S3) or adding standard error (SE) 

of each trait in the models (Table S2a).

Phylogenetic patterns of Blomberg’s K were very similar as those of Pagel’s λ, except the lower 

absolute magnitude of K values (Table 1b). The three traits showed K values ranging from 0.24-0.71, 

and 0.22-0.80 for control and treatment, respectively (not including Am and Nm under warming with 

P>0.05), whereas K values of phenotypic variation of three traits were smaller (K=0.10-0.25) than 

those under control and treatment conditions. The only differences from λ results were significant P 

values for variation in SLA under warming, and in Am and SLA under drought, but their K values 

were still very small (K=0.10-0.13). K values of most traits under control or treatment conditions were 

significantly higher than null distributions based on the white noise model (KWN), and did not differ 

from the Brownian motion model (KBM), suggesting that these traits were phylogenetically conserved. 
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For SLA variation under warming and drought and Am variation under drought, K values differed 

significantly from both KWN and KBM, implying an intermediate conservatism. Whereas K values of 

traits and trait variation did not differ from KWN and were significantly lower than KBM, indicating 

convergent or highly labile phenotypic variation. Again, results were nearly the same based on either 

300 imputation trees (Table 1b) or adding standard error (SE) of each trait in the models (Table S2b).

Values of α, based on OU models, were generally low for all the three leaf traits under control 

conditions (mean=0.02; range=0.01-0.05) and under the four treatments (0.04; 0.01-0.18), while α 

values were higher for trait phenotypic variation (1.24; 0.04-2.72; except the only extreme value 0.02 

of SLA under elevated CO2, the same pattern as for λ; Table 1c). This indicates higher adaptive 

evolutionary rates for trait phenotypic variation. Similarly, phylogenetic half-life (PHL) of all the 

three leaf traits was long under control conditions (31.12 Myr; 12.65-48.15) and the four treatments 

(28.82; 3.83-58.84, one extreme value of 3.83 for Nm under warming), whereas PHL of plastic 

responses of the three traits was quite short (4.01; 0.25-19.14; except the only extreme value 41.98 of 

SLA under elevated CO2, the same pattern as for λ). Results across 300 imputation trees converged 

well, confirming higher evolutionary rates of trait variation than those of the traits themselves based 

on both PHL and α values (Table 1c). Thus long PHL suggested that evolutionary history can well 

predict leaf traits under control and treatment conditions, whereas short PHL of phenotypic variation 

indicated weak phylogenetic influences on current values.

We tested the agreement between the three metrics of phylogenetic signal, and found significant 

positive relationships between them (Fig. S4). Therefore all agree on the strong phylogenetic 

dependences of the three leaf traits, but not their variation (Fig 1 Hypothesis 2). Because of the good 

agreement of these different metrics, and as λ generally outperforms K in detecting phylogenetic 

signal and PGLS allows adding factors into models, we focus here on using λ to analyze traits and 

their variation considering treatment strength. Similar results were found that all the phylogenetic 

signal of the three traits under four environmental factors became significantly strong, whereas 

phylogenetic signal of trait variation was near 0 or not significantly different from λ=0, except that of 

SLA under doubled CO2 concentration (Table S3). This suggests that evolutionary history has little 

influence on variation of these traits. 
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The phylogenetic influence on pair-wise trait relationships under contrasting environmental 

conditions

Results based on the 300 imputation trees showed very little variation (Table S4a), thus we plotted 

patterns from PGLS and SMA using the mean result. There were positive relationships between each 

pair of traits across all treatments, regardless of whether the relationship accounted for phylogeny or 

not (Fig. 3). However, the slopes of all the relationships were much flatter when controlling for 

phylogeny (i.e., lower gradients in PGLS models in comparison to SMA models, but still significant; 

Fig. 3), suggesting evolutionary history explains a proportion of variation in these trait relationships. 

Based on the mean values across results from 300 trees, phylogenetic signal was strong in all six 

trait-trait relationships under drought, eCO2 and nitrogen addition, but none were under warming with 

λ values near zero (P>0.05 for λ=0; Table S4a). Meanwhile, R2 values of PGLS were slightly lower 

than those of SMA, except Am~Nm and Nm~SLA relationships under drought (Table S4a). The 

changing patterns of trait relationships for both PGLS and SMA were similar, with slopes of control 

versus treatment being nearly equal (not different from the 1:1 line; Fig. S5ab), but intercepts varied 

under different environmental factors (Fig. 3; Table S4a). Adding the standard error (SE) of each trait 

into PGLS models changed intercepts and slopes, with most slopes becoming flatter (Table S4b). 

PGLS with SE also showed equal slopes between control versus treatment (Table S4b; Fig. S5c), 

indicating a symmetrical trait variation of the three leaf traits. 

Discussion

Using a large dataset of plant traits, spanning a substantial number of species, and different growth 

forms, we explore the influence of evolutionary history on plant trait responses to multiple aspects of 

environmental change. We do this at an unprecedented scale (434 species) and on key adaptive plant 

traits that define the diversity of functional traits onto a single axis of variation. In doing so, we make 

a substantial contribution to the study of drivers of phenotypic variation. Our data supports hypothesis 

2 that, whilst leaf traits were phylogenetically conserved under ambient conditions (as has been found 

elsewhere: Cornwell et al. (2014) and Liu et al. (2015)) and under manipulated environmental 

conditions, the ability to change leaf traits was not dependent on phylogeny, adding new evidence to 

the previous few and contrasting results (Kembel & Cahill, 2005; Godoy et al., 2011; Burns & Strauss, 
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2012; Stotz et al., 2021). We also found that the significant positive relationships between leaf trait 

pairs under all conditions are weakened when phylogeny is accounted for, but still significant. Overall, 

this study expands the knowledge of adaptation and coordination of leaf economic traits under climate 

change from an evolutionary perspective.   

Phylogenetic signal in leaf traits

Phylogenetic signal in Am, SLA and Nm has been frequently reported across species mainly within 

one or a few families (Cavender-Bares et al., 2006; Liu et al., 2015), but here we show they exist in 

the three leaf traits widely across 71 families, both under present and future predicted climatic 

conditions, and using three different estimates of phylogenetic signal (Pagel’s λ, Blomberg’s K, and 

phylogenetic half-life). Many processes could lead to the results, such as the intrinsic phylogenetic 

differences (Cornwell et al., 2014) and restricted genetic variation (Prinzing et al., 2001), stabilizing 

selection and environmental constraint (Donoghue, 2008) on these traits across species. Warming was 

the only treatment under which plant traits did not consistently exhibit significant phylogenetic signal: 

SLA was associated with phylogenetic relatedness across species (λ=0.53), but neither Am or Nm 

were. A recent study similarly found that the photosynthetic heat tolerance of a wide range of species 

was not phylogenetically conserved (Perez & Feeley, 2021). The ability to tolerate elevated 

temperatures may be better explained by other thermoregulatory traits such as leaf size or differences 

in microclimate (Leigh et al., 2017; Perez & Feeley, 2021). However, the findings from the other 

treatments (and for SLA under warming), suggests that phylogenetic relatedness can be useful in 

predicting variation in leaf traits in species under future climatic conditions.

The lack of phylogenetic signal in leaf phenotypic variation

Whilst leaf traits showed significant phylogenetic signal in almost all treatment conditions, the same 

was not true for the variation of these traits (following Hypothesis 2 in Fig. 1). The lack of 

phylogenetic signal in leaf phenotypic variation across a wide range of species (11 out of 12 trait-

treatment combinations; Table 1, S2), indicates that it is not phylogenetically conserved, and the main 

determining factor affecting the direction and strength of plant responses was environmental variation 

rather than genetic differences. It is still difficult to thoroughly assess whether our findings are 
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pervasive as very few studies had previously investigated phylogenetic signal in trait variation 

(Kembel & Cahill, 2005; Godoy et al., 2011; Burns & Strauss, 2012; Stotz et al., 2021). However, our 

results tend to support three out of four previous studies (Godoy et al., 2011; Burns & Strauss, 2012; 

Stotz et al., 2021), increasing the credibility of hypothesis 2. We also expanded trait types under LES, 

and considered more environmental factors, compared to previous studies focused on morphological 

traits (Godoy et al., 2011), or for many traits considered together (Stotz et al., 2021). Although there 

is still possibility that different traits under different treatment strengths may exhibit phylogenetic 

signal, we advance this topic by analyzing traits in a substantial sample of species, which allows us 

overcome problems of limited statistical power associated with small sample sizes in previous studies.

It is intriguing that leaf traits showed high phylogenetic signal under both control and treatment 

conditions, but that their variation did not (Table 1). This result could be explained in two ways. 

Firstly, the direction of plant trait response may be unpredictable, as found in Stotz et al. (2021). For 

our data, Am was very flexible in both directions even through Am significantly increasing under 

eCO2 overall (mean=+12.6%, range from -24.4% to +43.5%), with 64% species response positively 

and 36% negatively (randomly distributed black and red bars in Fig. 2a; Fig. S1). Secondly, even if 

the direction of phenotypic variation is predictable under treatments, its strength varies dramatically, 

possibly resulting from different treatment strengths (Burns & Strauss, 2012). For example, although 

Nm of 92% species decreased significantly under eCO2 (mean=-16.1%), it ranged from -27.4% to 

+8.3% (Fig. 2b). The very small phylogenetic half-life of leaf trait variation (<5 Myr) also indicated 

that the retention of information on this variation throughout the phylogeny is relatively short-lived 

(Hansen, 1997; Neto‐Bradley et al., 2021). Furthermore, field studies without genetic control on 

individuals may further amplify trait variation in both direction and strength of phenotypic variation, 

but such within-species variation did not affect across-species patterns, because adding the standard 

error (SE) of each trait into the models produced the same results (Table S2). Together, these 

mechanisms could contribute to the paucity of phylogenetic signal seen in our study, despite the traits 

themselves being phylogenetically structured.

The only phylogenetic signal we found in trait variation was that for SLA under elevated CO2 (its 

Blomberg’s K was not different from the BM null models, indicating high phylogenetic conservatism). 

This can largely be explained by the deep divergence in SLA variation between eudicots and other 
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lineages: eudicots reduced their SLA in response to eCO2 to a much greater extent (mean=-6.9%) than 

monocots (-2.1%) and gymnosperms (-2.5%, the only significant difference among the three groups 

found for the 12 analyses; Table S5). Differences in leaf anatomy among these groups may further 

explain these findings. The very low SLA of gymnosperms (mean SLA=81.2 cm2 g–1) limit their 

ability to decrease SLA further under eCO2. Eudicots have higher SLA values (177.8 cm2 g–1) and 

thus can respond to a much greater extent in SLA under eCO2, and have been found responding 

stronger than monocots (Bloor et al., 2008). Monocots, however, have high SLA values (190.5 cm2 g–

1), but their relative “fast-living” and “resource acquisitive” strategies keep them building “cheap” 

high-SLA leaves even when more carbon is fixed (higher Am) under eCO2. Such different allocation 

patterns across the three groups have also been observed in a previous meta-analysis (Poorter et al., 

2012). 

Overall, there are no significant phylogenetic constraints on trait variation meaning higher levels 

of phenotypic plasticity are not related to particular groups of closely-related taxa, but instead are 

randomly distributed across the phylogeny. This suggests that, in the study species here, phenotypic 

variation is a convergent evolutionary strategy, and may be more strongly influenced by other factors, 

such as environmental stresses. Alternatively, although trait variation is often assumed to be adaptive, 

it could be neutral or non-adaptive or even maladaptive (Westerband et al., 2021), thus the genetic 

basis of trait variation is hard to detect based on measured phenotypes. Indeed, studies on molecular 

ecology have continuously found that phenotypic plasticity played a more important role than 

population genetic differences in explaining the variation of different leaf traits in populations 

(Ayrinhac et al., 2004; Asao et al., 2020), indicating that intraspecific phenotypic variation is released 

from population genetics. Consequently, phenotypic variation across species may also have a small 

probability of being phylogenetically dependent. In addition, both biotic and abiotic environmental 

changes affect the direction and strength of trait variation, making short-term ecological responses 

hard to predict from phylogeny (Cadotte et al., 2017). For example, a study on 12 plant species found 

a significant phylogenetic signal in a trait (root shoot ratio) only under competition, but not under 

control conditions (Burns & Strauss, 2012), implying that more stressful or disturbed environments 

could reveal greater expression of phylogenetic differences in traits and facilitate species co-existence 

(Swenson & Enquist, 2009; Prinzing et al., 2021).
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Phylogeny weakened but did not affect patterns of conventional relationships under climate 

change 

The obviously lower slopes of PGLS than SMA models emphasized that phylogeny should be 

considered in interpreting leaf trait relationships (Fig. 3). The eco-physiological meanings of trait 

relationships and their responses to climate change have been discussed in Cui et al. (2020), so here 

we focused on their phylogenetic implications. In theory, divergent evolution was stronger among 

large lineages than among descendants within them, which would weaken the conventional 

relationships (Felsenstein, 1985). In agreement with this, we did find that gymnosperms, monocots 

and eudicots were three main lineages with contrasting trait values (Table S5), leading to high 

phylogenetic signal in traits and their relationships (Table 1; Table S4). The flatter slopes of 

phylogenetic models have been observed before, either based on phylogenetic independent contrast 

(PIC) values (Ackerly & Donoghue, 1998; Ma et al., 2018), or PGLS (Liu et al., 2015). These 

findings support the generality of coordination and trade-offs among LES traits (Wright et al., 2004), 

even within a phylogenetic structure.

Models on trait relationships with or without phylogeny exhibited similar changing patterns under 

different environmental factors (Fig. 3). This consistency was important in predicting plant responses 

to climate change, because trait coordination affects plant growth and adaptive strategies (Westoby et 

al., 2002; Cornelissen et al., 2003; Diaz et al., 2004; Kattge et al., 2020). For example, at a given 

SLA, Am decreased under drought (Fig. 3d), and increased with nitrogen addition (Fig. 3j), indicating 

that future productivity might decrease under drought but increase with nitrogen deposition at the 

same cost of leaf carbon investment, and such responses are evolutionary co-related and predictable. 

Conclusion

Phylogenetic signal exists in key plant traits but not in their variation, demonstrating that different 

trait values across species reflects intrinsic evolutionary differences, whereas trait variation within 

species represents short-term adaptions largely shaped by environmental constraints. Phylogeny was 

also important in relationships between leaf traits, with the slopes of trait relationships being much 

flatter when phylogeny was accounted for, emphasizing the co-evolved trait pairs and their potential 
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in predicting plant responses under changing climate. Therefore, although phylogeny cannot be used 

to predict phenotypic variation, it is still important in detecting lineages rich in species showing 

similar traits, and tracing general patterns of trait relationships across species in future environments.
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Figure 1. A schematic diagram and hypotheses demonstrating the presence or absence of 

phylogenetic signal in a hypothetical plant trait under climate change and its phenotypic 

variation. In hypothesis 1 (evolution-driven trait response), evolutionary history influences the trait 

of species A-E under control conditions (white circles), and under climate change (red triangles), as 

well as the ability to change the trait under different conditions (phenotypic variation; the dashed line). 

Therefore, closely-related species show more similar trait values and phenotypic variation than those 

more distantly-related (i.e., there is phylogenetic signal in the trait and its variation). In hypothesis 2 

(environment-driven trait response), phylogenetic signal exists in trait values but not in phenotypic 

variation. In hypothesis 3 (random trait response), there is no phylogenetic signal in either the trait or 

phenotypic variation. The phylogeny below each panel shows the evolutionary relationships between 

the five hypothetical species, with species A most closely related to B, then C, and most distantly-

related to D and E.

Figure 2. Phylogenetic trees with leaf traits and their variation under elevated CO2 treatment. 

Phylogenetic groups are highlighted (gymnosperms, green; eudicots, yellow; monocots, orange) with 

corresponding ln-transformed trait values of (a) Am, (b) Nm and (c) SLA arranged in the order of 

control (purple bars), treatment (blue bars) and phenotypic variation (positive response, red bars; 

negative response, black bars). This treatment is plotted because it is the only one in which significant 

phylogenetic signal in phenotypic variation is found (SLA variation; Table 1), while figures for other 

three treatments are very similar. Scaled values of the same dataset are shown in Supporting 

Information Fig. S1. Am, mass-based net photosynthetic rate; SLA, specific leaf area; Nm, mass-

based leaf nitrogen content.

Figure 3. Leaf trait relationships under different manipulated environmental factors. Data from 

control (black dots and lines) and treatment (colored dots and lines; a-c, warming, red; d-f, drought, 

yellow; g-i, elevated CO2 (eCO2), blue; and j-l, nitrogen addition, green) are modeled separately. 

Phylogenetic generalized least square (PGLS) models account for relatedness across species, whilst 

standardized major axis (SMA) models do not. Coefficients for all models are in Supporting 
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Information Table S4, with only lines of significant models plotted. Am, mass-based net 

photosynthetic rate; SLA, specific leaf area; Nm, mass-based leaf nitrogen content.
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Table 1. Phylogenetic signal in leaf traits and phenotypic variation. (a) Pagel’s λ, P values for λ=0; 

(b) Blomberg’s K, P values for comparing K values with null distributions simulated by random tip 

swaps (K>KWN) and Brownian motion evolution (K<KBM) along the phylogeny; (c) α and 

phylogenetic half-life (PHL) based on the Ornstein–Uhlenbeck (OU) models. 
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(a) Pagel’s λ

(300 trees)

Warming

(n=39, 30 and 53 

for Am, Nm and 

SLA)

Drought

(48, 52, 75)

eCO2

(116, 135, 158)

Nitrogen

(116, 141, 140)

Trait λ P(λ=0) λ P(λ=0) λ P(λ=0) λ P(λ=0)

Control Am 0.18±0.000 ns 0.89±0.001 *** 0.41±0.000 *** 0.91±0.000 ***

Nm 0.04±0.000 ns 0.40±0.000 * 0.54±0.000 *** 0.58±0.000 ***

SLA 0.53±0.001 ** 0.54±0.000 * 0.40±0.000 *** 0.62±0.000 ***

Treatment Am 0.18±0.000 ns 0.81±0.000 *** 0.42±0.000 *** 0.85±0.000 ***

Nm 0.00±0.000 ns 0.83±0.000 ** 0.52±0.000 ** 0.37±0.000 **

SLA 0.53±0.000 ** 0.62±0.000 * 0.37±0.000 *** 0.45±0.000 ***

Phenotypic Am 0.00±0.000 ns 0.33±0.000 ns 0.00±0.000 ns 0.00±0.000 ns

variation Nm 0.00±0.000 ns 0.26±0.000 ns 0.00±0.000 ns 0.00±0.000 ns

SLA 0.23±0.000 ns 0.34±0.000 ns 0.69±0.000 *** 0.00±0.000 ns
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(b) Blomberg’s K

(300 trees;

rep=1000)

Warming

(39, 30, 53)

Drought

(48, 52, 75)

eCO2

(116, 135, 158)

Nitrogen

(116, 141, 140)

Trait K P

(K>KWN)

P

(K<KBM)

K P

(K>KWN)

P

(K<KBM)

K P

(K>KWN)

P

(K<KBM)

K P

(K>KWN)

P

(K<KBM)

Control Am 0.24±0.000 ns * 0.69±0.002 ** ns 0.28±0.000 ** ns 0.71±0.000 ** ns

Nm 0.26±0.000 ns * 0.41±0.000 * ns 0.24±0.000 ** ns 0.26±0.000 ** ns

SLA 0.30±0.000 ** ns 0.31±0.000 * ns 0.27±0.000 ** ns 0.34±0.001 ** ns

Treatment Am 0.23±0.000 ns * 0.80±0.001 ** ns 0.28±0.001 ** ns 0.54±0.000 ** ns

Nm 0.27±0.000 ns * 0.50±0.000 ** ns 0.23±0.000 ** ns 0.22±0.000 * ns

SLA 0.29±0.000 ** ns 0.34±0.000 ** ns 0.25±0.000 ** ns 0.30±0.000 ** ns

Phenotypic Am 0.20±0.000 ns * 0.12±0.000 ** * 0.16±0.000 ns * 0.19±0.000 ns *

variation Nm 0.13±0.000 ns * 0.10±0.000 ns * 0.18±0.000 ns * 0.19±0.000 ns *

SLA 0.10±0.000 * * 0.13±0.000 * * 0.25±0.000 ** ns 0.14±0.000 ns *

(c) OU models

(300 trees)

Warming

(39, 30, 53)

Drought

(48, 52, 75)

eCO2

(116, 135, 158)

Nitrogen

(116, 141, 140)
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Trait α PHL α PHL α PHL α PHL

Control Am 0.04

±0.000

16.05

±0.000

0.02

±0.000

42.65

±0.135

0.02

±0.000

32.47

±0.000

0.02

±0.000

36.89

±0.010

Nm 0.03

±0.000

20.31

±0.000

0.02

±0.000

28.11

±0.013

0.02

±0.002

33.11

±0.048

0.02

±0.000

39.45

±0.006

SLA 0.02

±0.000

31.24

±0.003

0.05

±0.001

32.65

±0.014

0.02

±0.001

32.41

±0.044

0.01

±0.000

48.15

±0.043

Treatment Am 0.05

±0.000

13.76

±0.000

0.03

±0.000

23.88

±0.077

0.02

±0.000

33.71

±0.000

0.02

±0.000

25.50

±0.008

Nm 0.18

±0.000

3.83

±0.000

0.01

±0.000

58.84

±0.125

0.02

±0.003

32.27

±0.088

0.03

±0.001

24.01

±0.001

SLA 0.02

±0.000

32.07

±0.005

0.02

±0.000

32.94

±0.019

0.02

±0.001

28.77

±0.049

0.02

±0.000

36.30

±0.016

Phenotypic 

variation 

Am 0.70

±0.000

0.99

±0.000

0.12

±0.001

5.78

±0.037

2.71

±0.000

0.26

±0.001

2.72

±0.003

0.25

±0.000

Nm 2.72

±0.001

0.25

±0.000

0.24

±0.002

2.97

±0.022

0.18

±0.001

3.80

±0.004

1.43

±0.000

0.48

±0.000

SLA 0.07

±0.000

9.91

±0.018

0.04

±0.000

19.14

±0.009

0.02

±0.000

41.98

±0.013

2.72

±0.002

0.25

±0.000
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All the results are mean ± standard errors based on 300 imputation trees. Sample sizes (n) of three traits under four manipulated 

environmental factors are reported in corresponding brackets. Am, mass-based net photosynthetic rate; SLA, specific leaf area; Nm, mass-

based leaf nitrogen content; eCO2, elevated CO2; Nitrogen, nitrogen addition. Phenotypic variation is the response ratio between 

experimental treatment mean and control mean. Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001; ns, not significant. 
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H1. Evolution-driven trait response H2. Environment-driven trait response H3. Random trait response

Phylogenetic signal in trait and 

phenotypic variation. Traits under both 

control and climate change, and 

phenotypic variation, are conserved 

within lineages.

Phylogenetic signal in trait but not 

phenotypic variation. Trait is conserved 

within lineages under control and/or 

treatment, but phenotypic variation is not.

No phylogenetic signal in trait or 

phenotypic variation. Trait is not 

conserved within lineages under control or 

treatment, and neither is phenotypic 

variation.

P
o

ss
ib

le
 m

e
ch

a
n

is
m Intrinsic phylogenetic differences 

dominate how species adjust their traits 

when environmental conditions change. 

Reasons include phylogenetic niche 

conservatism, stabilizing selection and 

environmental constraints on traits and 

their responses.

Intrinsic phylogenetic differences exist for 

absolute trait values, however, the 

direction and strength of relative trait 

changes are mainly driven by environment 

rather than phylogeny.

Traits respond flexibly to environmental 

changes, or traits are not under selection 

from current environmental pressure. 

Therefore no evolutionary or ecological 

patterns could be detected.
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