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Abstract

Fires in Indonesia release excessive carbon and are exacerbated during drier ElNiño years. The recent

2015fires were affected by an extended drought caused by a strong ElNiño event. This led to severe

haze conditions across Southeast Asia, resulting in adverse socioeconomic and health impacts. Here,

we evaluate the social and environmental factors that contributed to the 2015 extreme fires in Riau,

Jambi and South Sumatra.We developed proxy variables for plausible drivers offirewhich contribute

either as a predisposing condition or as an ignition source for fires.We evaluated how these variables

influenced fire count at an administrative regency-level andfire occurrence at a pixel-level (1 km2
).

We used generalized linearmixed effectmodels tomodelfire count at the regency-level and boosted

regression trees tomodelfire occurrence at the pixel-level. Rainfall, slope and population density were

themost important variables predicting fires at both levels. Economic variables such as the proportion

of small-scale (<10 ha) andmedium-scale (10–100 ha) plantation landholdings, and the reported use

offires to clear agricultural lands in villages were important in explaining fire count at the regency-

level. At the pixel-level, distance from roads and the number of recorded burns over peatlandswere

important in explaining fire occurrence. Themain influence of rain onfires corroborates with

previous studies, and highlights the importance of establishing an early warning system for droughts

to better prevent andmanage future extreme fire events.Mitigation efforts for futurefires, especially

during ElNiño years, can focus on identifying high-risk areas using environmental data on rainfall,

slope, peatlands, and previously burnt peat areas, as well as social data related to population density,

access to roads, extents of small- andmedium-plantation landholdings, and village-level propensity to

burn land for agriculture.

1. Introduction

Fire is an inexpensive and convenient tool for agricul-

tural land clearing in the rural tropics and is widely

used across Indonesia by smallholders and companies

(Ketterings et al 1999, Anderson and Bowen 2000,

Carmenta et al 2011). Drought years associated with

the El Niño Southern Oscillation (ENSO) and Indian

OceanDipole exacerbatefires, resulting in extremefire

events in Indonesia in 1997, 2006 and 2015 (Field et al

2016). However, Indonesia’s land-use policies, such as

the logging and clear-cutting of tropical forests and

drainage of peatlands for industrial plantations (Miet-

tinen et al 2012), have produced landscapes that are

susceptible to extreme fires even in non-drought years

(Siegert et al 2001, Field et al 2009, Gaveau et al 2014,

Field et al 2016). These fires contribute to increasing

atmospheric carbon dioxide concentrations (Huijnen

et al 2016), and result in adverse socioeconomic and

health impacts from haze (Marlier et al 2015a). In the

most recent extreme fire event of 2015, the thick

choking haze extended to Singapore, Malaysia and

Thailand, and cost an estimated 100 000 deaths within

Southeast Asia (Koplitz et al 2016) and economic
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losses of USD16.1 billion (World Bank 2015) in

Indonesia alone.

Fires are a consequence of a combination of pre-

disposing conditions, which define the vulnerability of

the landscape to fires, and social causes, which result in

fire ignitions (Stolle and Lambin 2003). Some prox-

imate factors behind ignitions in Indonesia include

land clearing (Gaveau et al 2014, Marlier et al 2015b),

land conflict (Suyanto et al 2004), and the use of fire

for household activities. Fires are used predominantly

for land clearing as it is cheaper than manual clearing,

and burnt land is of higher value to more actors com-

pared to unburnt cleared land (Ketterings et al 1999,

Purnomo et al 2017). Fires have been used as a weapon

in times of land-use disputes either between local and

migrant communities or between companies and

communities (Suyanto et al 2004, Dennis et al 2005),

and are also used by rural villagers for cooking and

waste disposal.

Ignition sources are just part of the picture behind

fires; the predisposing conditions of the landscape

propagate fires and facilitate its spread (Stolle and

Lambin 2003). The rapid conversion of forests and

drainage of peatlands for oil palm and acacia planta-

tions (Miettinen et al 2012, Carlson et al 2013, Abood

et al 2015) made landscapes in Sumatra and Kali-

mantan more prone to extreme fires especially under

strong ENSO conditions (Field et al 2016, Taufik et al

2017). The likelihood of major fires occurring increa-

ses sharply during prolonged dry conditions

(<4 mm day−1 precipitation) (Field et al 2016) as a

consequent of the subsurface hydrological drought

(Taufik et al 2017). Ecosystem degradation through

logging and canalization of peatlands results in higher

amounts of dry biomass above- and below-ground

respectively, increasing the fuel load for extreme fires

to occur (Siegert et al 2001, Konecny et al 2016). Road

development also enhances landscape fragmentation

and increases access to forests and peatlands for con-

version (Stolle et al 2003). Repeated fires over peat-

lands results in higher fern and scrub cover, increasing

its susceptibility to future fires (Hoscilo et al 2011,

Miettinen et al 2017). In addition, the slope of the

landscape could influence themovement of fires while

flatter lands correspond to where peatlands are

located.

The 2015 extreme fires were unprecedented in

scale and impact, and several studies have looked into

understanding the environmental factors (Field et al

2016, Miettinen et al 2017) and the social factors

(Carmenta et al 2017, Purnomo et al 2017) related to

this event. However, none combined both social and

environmental factors, or examined the influence of

these drivers at different geographical scales. Evaluat-

ing how social and environmental factors influence

fires at different scales could allow for more targeted

responses to prevent and mitigate future fires

(Schwartz et al 2015). We build on the conceptual

model from Stolle et al (2003) which investigated fire

as a function of predisposing conditions that were

mostly influenced by environmental factors, and igni-

tion sources that were often influenced by social fac-

tors such as economic land-use. We present a

mesoscale (225 000 km2
) assessment of the social and

environmental factors of fire in three provinces of

eastern Sumatra—Riau, Jambi and South Sumatra—

which played an important role in the 2015 haze

(Koplitz et al 2016). Using a combination of spatially-

explicit socioeconomic and geospatial datasets, we

addressed the following research question: What were

the major contributing social and environmental fac-

tors to fire counts in the eastern provinces of Sumatra

in 2015 at a regency-level, and fire occurrence at a

1 km2 pixel-level?

2.Data andmethodology

2.1. Study site

Our study sites are the provinces of Riau (0.5333 °N,

101.4500 °E), Jambi (1.5833 °S, 103.6166 °E) and

South Sumatra (2.9789 °S, 104.7584 °E), with 40

regencies and ∼6 000 villages (figure 1, STable 1).

These three provinces lie east of the Barisan mountain

range, and cover an elevational gradient from 0 to 3

736 m. Approximately 27.8% of the land (STable 1) is

underlain by peatland close to the eastern coast, with

peat depth up to 8 m (Wahyunto et al 2003). These

provinces were the epicenter of fire hotspots in

Sumatra during the catastrophic 2015 fires. The dry

season began in June with limited fire activity but

reached its peak in Sumatra by September (Field et al

2016).

2.2.Data and processing

2.2.1. Fire data for 2015

Weused the globalmonthly fire location product from

the Moderate Resolution Imaging Spectroradiometer

(MODIS) Active Fire Detections MCD14ML Collec-

tion 6 (NASA FIRMS 2017) to identify active fires

(FireNo) between 1 June–31 October 2015 (table 1),

corresponding with the major haze event. This pro-

duct is derived from an active fire detection algorithm

which utilizes 1 km resolution MODIS thermal bands

from MODIS sensors on board the Terra and Aqua

satellites (Giglio et al 2016). It is important to note that

the sensors are unable to distinguish between one or

more individual fires within a pixel, and that each

detected fire hotspot is not always a separate individual

fire but the same fire event detected multiple times a

day as long as it keeps burning (Langner and

Siegert 2009,Miettinen et al 2017).MODIS sensors are

known to have detection errors due to the effect of

sunglint and the challenges of detecting smoldering

peat fires (Liew et al 2003, Tansey et al 2008). Despite

its limitations, the MODIS hotspot dataset is com-

monly used to understand fire distribution in
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Indonesia (Langner and Siegert 2009, Cattau et al

2016b,Miettinen et al 2017).

2.2.2. Proxy variables that influence fire

We derived 18 proxy variables grouped into five

categories (Conflict, Economic, Population, Forest

Degradation and Biophysical) to represent the social

and environmental factors which influenced either

ignition sources or predisposing conditions for fire

spread in our study site (figure 2, table 1). The data

sources for the derivation of these proxy variables

include published sources of spatially-explicit datasets

and the 2014 Village Potential Survey (Potensi Desa or

PODES) from the Indonesian Central Bureau of

Statistics (Indonesian Bureau of Statistics 2016) (table

1, supporting information is available online at stacks.

iop.org/ERL/14/015001/mmedia). The derivation of

each variable differs between the regency-level and the

pixel-level analyses and these differences are described

in greater detail in our supporting information. Here,

we briefly introduce each proxy variable. Details on

the hypothesized relationship between each variable

and the outcome on fire count and occurrence are

found in STable 3 under our supporting information.

Our three proxy variables under Conflict included

the number of reported land conflicts from January

2010–October 2015 (LandConflict), the reported sta-

tus on multi-ethnicity in the village (MultiEthnicity),

and the reported status of brawling incidents in the

village (Brawl). We assumed that multi-ethnic villages

would have a higher likelihood of local conflict. Brawl-

ing incidents reported under PODES are not specific

to land conflicts and can refer to any mass fights that

occurred in the village. Since fires are used as weapons

in conflict, we hypothesize that higher occurrences of

conflict would result inmore fires.

We included six proxy variables related to land-use

under Economic factors—wood fiber concessions

(WFC), oil palm concessions (OPC), non-species spe-

cific plantations (e.g. mix of rubber, oil palm, acacia

plantations)with different size classes including small-

scale (<10 ha; SmallPlant), medium-scale (10–100 ha;

MedPlant), and large-scale (>100 ha; LargePlant)

landholdings, and the reported practice of burning to

clear agricultural lands in the past year within the vil-

lage (PracBurn). The variables SmallPlant, MedPlant,

and LargePlant were calculated based on the propor-

tion of plantation area over the regency area, and these

proportions do not sum to one. Fires are often used in

land clearing, and we chose these proxies to elucidate

associations between economic actors and fires.

Our two Population factors included population

density (Pop) and the reported use of fires to remove

wastes in the village (BurnTrash). We hypothesize that

higher population density is likely to correlate with

more fires (Cochrane 2003), and increased use of fires

for waste disposal is likely to result in greater prob-

ability of accidentalfires breaking out.

Figure 1.Distribution of active fire hotspots between 1 June–31October 2015 fromMODIS satellites (orange) and distribution of
peatland extents (grey) in the three provinces of Indonesia (inset).
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Table 1.Variables used as proxies for social and environmental factors related to 2015fires (see supporting information for a detailed description of our variables).

Variable Description Source Variable in regency-level analysis Variable in pixel-level analysis

FireNo MODISActive fires (MCD14ML) from 1 June 2015 to 31

Oct 2015

NASAFIRMS (2017) No.fires in regency (no. fires) Presence or absence offires (binary)

Conflict factors (C)

LandConflict Land conflicts from Jan 2010 toOct 2015 based onnews-

paper articles and socialNGO reports

Authors’ compilation (supporting information) No. land conflicts per 10 000 km2 in regency (no.

land conflicts per 10 000 km2
)

Number of land conflicts reported in

pixel (no. land conflicts)

MultiEthnicity Reported status ofmulti-ethnicity of village from2014

PODES

Indonesian Bureau of Statistics (2016) Proportion of villages in regency that aremulti-eth-

nic (fraction)

Presence or absence villagemulti-ethni-

city (binary)

Brawl Reported status of brawling incidents in village from2014

PODES

Indonesian Bureau of Statistics (2016) Proportion of villages in regency that reported

brawling incidents (fraction)

Presence or absence village brawling

incident (binary)

Economic factors (E)

SmallPlant Small landholdings withmixed-species plantations (<10

ha) in 2013–2014

TransparentWorld (2015) Proportion of small landholdings in regency

(fraction)
a

Presence or absence of small land-

holding (binary)

MedPlant Medium landholdings withmixed-species plantations

(10–100 ha) in 2013–2014

TransparentWorld (2015) Proportion ofmedium landholdings in regency

(fraction)
a

Presence or absence ofmedium land-

holding (binary)

LargePlant Large landholdings withmixed-species plantations (>100

ha) in 2013–2014

TransparentWorld (2015) Proportion of large landholdings in regency

(fraction)
a

Presence or absence of large land-

holding (binary)

WFC Industrial woodfiber concessions in 2014 IndonesiaMinistry of Forestry (2017a) Proportion ofwood fiber concessions in regency

(fraction)

Presence or absence of woodfiber con-

cession (binary)

OPC Industrial oil palm concessions in 2014 IndonesiaMinistry of Forestry (2017b) Proportion of oil palm concessions in regency

(fraction)

Presence or absence of oil palm conces-

sion (binary)

PracBurn Reported use of burning as amethod for agricultural land

clearing over the past year in village from2014 PODES

Indonesian Bureau of Statistics (2016) Proportion of villages that practice burning for

agriculture in regency (fraction)

Presence or absence of village practice of

burning for agriculture (binary)

Population factors (P)

Pop Population density fromWorldPop gridded dataset of esti-

mated people per pixel in 2010 adjusted tomatchUnited

Nations population division estimates

Gaughan et al (2013),WorldPop (2014) No. people per km2 in regency (people per km2
) Estimated no. people per pixel (no. peo-

ple per pixel)

BurnTrash Reported use of fires to removewaste in village from2014

PODES

Indonesian Bureau of Statistics (2016) Proportion of villages that practice burning trash in

regency (fraction)

Presence or absence of village burning

trash (binary)

Forest Degradation factors (FD)
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Table 1. (Continued.)

Variable Description Source Variable in regency-level analysis Variable in pixel-level analysis

DegFor Degraded primary forests in 2012 based onMargono et al

(2014)

Margono et al (2014) Proportion of degraded forests in regency (fraction) Presence or absence of degraded forests

(binary)

PrevFires Repeated burns between June 2006 andMay 2015 on peat-

lands derived fromMODIS BurnedArea product

(MCD64A1)

Wahyunto et al (2003), Giglio et al (2015) Proportion of peatlands in regencywhich suffered

at least one burn between June 2006 andMay

2015 (fraction)

No. times recorded as burnt area

between June 2006 andMay 2015

(no. burns)

SuscPeatCover Land-cover over peatlands susceptible to fires based on

Miettinen et al (2017)

Miettinen et al (2016) Proportion of peatlands in regencywith susceptible

land-cover tofires (fraction)

Presence or absence of susceptible land-

cover over peatland (binary)

Roads Road density in regency Minnemeyer et al (2009) , Center for Interna-

tional Earth Science InformationNetwork–

CIESIN (2013)

Road density in regency (road length per km2
) Euclidean distance to roads (m)

Biophysical factors (BP)

Rain Mean rainfall forMay and June 2015 Joyce et al (2004), International Research Insti-

tute for Climate and SocietyData Library-

IRIDL 2017

Mean rainfall inMay and June 2015 for

regency (mm)

Mean rainfall inMay and June

2015 (mm)

Slope Slope calculated fromUnited StatesGeological Service

Shuttle Radar TopographyMissionDigital Elevation

Model 2014

United StatesGeological Survey 2017 Mean slope for regency (degree) Slope (degree)

Peat Area of peatland extent Wahyunto et al (2003) Proportion of peat area in regency (fraction) Presence or absence of peatland (binary)

a Refers to the particular size class over the regency, not the proportion of the particular size class over all plantation landholding classes for the regency, hence they do not sum to one, e.g. SmallPlant/Regency, not SmallPlant/

(SmallPlant+MedPlant+LargePlant).
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We included four proxy variables related to forest

and peatland degradation under Forest Degradation

factors—spatial data on primary degraded forests

(DegFor), previous recorded burns from June 2006–

May 2015 over peatlands (PrevFires), peatland-cover

that are susceptible to fires (SuscPeatCover) and spatial

data on roads (Roads). Degraded ecosystems are more

susceptible to fire disturbance (Siegert et al 2001,

Konecny et al 2016); here we include degraded pri-

mary forests (DegFor) and susceptible peatland cover

(SuscPeatCover) to encompass both non-peat and peat

ecosystems. We included previous recorded burns

over peatlands as a separate variable as the burn his-

tory of peatlands has been shown to influence its sus-

ceptibility to fires (Hoscilo et al 2011). Fragmentation

of the landscape by roads increases human access and

exacerbates degradation (Stolle et al 2003, Laurance

et al 2009), which we hypothesize to correlate with

increased likelihood offires.

Our three Biophysical factors included mean

monthly rainfall from May–June 2015 (Rain), spatial

data on slope (Slope), and peat area (Peat). Drought

rainfall is a known predictor of fires, while steeper

slopes facilitate fire spread in fire behavioral studies

(Rothermel 1983), though in our study site, flatter

lands are more accessible to fire ignitions. Peat ignites

more easily than mineral soils and has been shown to

be an important predictor of fire distribution (Mietti-

nen et al 2011).

2.3.Data analysis

2.3.1. Fire count at regency-level

To analyze the social and environmental factors of fire

counts among regencies in eastern Sumatra (n = 40,

SFigure 1), we used generalized linear mixed effect

models (GLMMs) which allow response variables

from different distributions and account for correla-

tions between observations and nested data structures

by including random factors (Zuur et al 2009). Fire

count was modelled using a negative binomial dis-

tribution to account for overdispersion and the

logarithmic link function. Province (Prov) was speci-

fied as a random effect and the log area (L.Area) of the

regency as an offset variable to account for regency

area differences. We log-transformed population den-

sity (L.Pop) and standardized all our variables for

analysis. Since our aim was to evaluate the relative

contribution of predictors instead of assessing the

predictive power of our model, we removed variables

OPC and BurnTrash which were highly collinear with

LargePlant and L.Pop respectively (rho>0.70). We

adopted the information-theoretic approach for sta-

tistical inference, using the Aikaike Information Cri-

terion (AICc) adjusted for small sample size to select

the best model out of our set of candidate models (i.e.

the model with the highest weighted AICc) (Burnham

and Anderson 2002). The set of candidate models

included individual variables and every combination

of the five categories, as well as three interaction terms

which we hypothesized will have an effect on fires:

rainfall with degraded forests, rainfall with previously

burnt areas, and rainfall with susceptible peatland-

cover (n = 67, STable 4 and 5). We hypothesized that

models with both social and environmental factors

perform better at explaining fire counts at the regency-

level. We quantified the goodness-of-fit (R2
) of the top

threemodels, comprisingmarginal and conditionalR2

(variance explained by fixed factors, and both fixed

and random factors respectively) (Nakagawa and

Schielzeth 2013). GLMMs were constructed using

lme4 and MASS packages (Venables and Ripley 2002,

Bates et al 2015) in R version 3.4.0 (R Core

Team2017).

Figure 2. List of proxy variables under ‘Ignition sources’ and ‘Predisposing conditions’ considered under our analysis. See supporting
information (STable 3) for justifications for selection of these variables and hypotheses.
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2.3.2. Fire occurrence at pixel-level

We modelled the occurrence of fires among pixels

using boosted regression tree (BRT) models, which

combine multiple simple regression trees to form an

ensemble model. Individual regression trees (each

relating a response to predictors using a ‘tree’ of

recursive binary split) are added sequentially that best

reduces a loss function using a stochastic gradient

boosting algorithm to improve model accuracy and

predictive performance (De’ath 2007, Elith et al 2008).

We used BRTs to fit fire distribution (binary indicator

of presence or absence) to the 18 predictor variables

(STable 6) using the dismo package in R (Hijmans et al

2017). BRTs can handle different types of error

distribution, loss functions and predictor variables,

and allow for non-linear relationships between

response and predictor variables (Elith et al 2008).

Social variables (LandConflict, MultiEthnic, Brawl,

PracBurn, and BurnTrash) were first made spatially-

explicit to the village administrative level (see support-

ing information). All vector data were rasterized, and

with other raster data, resampled to 1 km2 grids

(n=225 710 pixels). We ran a training set of models

with 10% of the data (n=22 571 pixels) to develop

the model and set aside the remaining 90%

(n=203 139 pixels) as test data for independent

evaluation of model robustness and optimal settings.

Weused default bag fraction of 0.5 (fraction of samples

drawn at random to fit trees at each step) with

bernoulli distribution for the response. We ran the

models using a range of learning rates (0.005, 0.01,

0.02 and 0.05)which assessed the contribution of each

tree to the growing model, and tree complexities (4, 5

and 6) which determined the maximum number of

splits for fitting each regression tree (Elith et al 2008).

We selected the model that minimized the deviance

and maximized the area under the receiver operating

characteristic curve (AUC). Outputs include the

relative influence of predictor variable plot (measured

based on the number of times a variable was selected

for splitting, weighted by the squared improvement to

themodel as a result of each split, and averaged over all

trees), and partial dependence plots for each variable

(which demonstrate the effect of a variable on the

response after accounting for the average effects of all

other variables in the model) (Elith et al 2008).

Following Müller et al (2013), we did not consider

variables with a relative influence value smaller than

expected due to chance (100 divided by the number of

variables); 5.56% in this evaluation.

We used two different methods to assess the dri-

vers of fire counts at the regency-level and fire occur-

rence at the pixel-level primarily due to differences in

the sample size for these two analyses. Fire count is a

continuous variable, with 40 regencies as units for ana-

lysis. Fire occurrence is a binary variable, with 225 710

pixels as units for analysis. The use of GLMMswas not

feasible for our fire occurrence pixel-level analysis due

to its large sample size. Likewise, we could not apply

BRTs to our fire count regency-level analysis which

had too few data points. As our main objective was to

identify the contributing variables to fire counts and

fire occurrence at different geographical scales, we

applied models that were most appropriate at hand-

ling the outcome variables with its associated number

of sample units used for analyses.

3. Results

Between 1 June 2015–31 October 2015, 50 325 active

fires were recorded by MODIS Aqua and Terra

satellites, with ∼61% of active fires (30 924) over

peatlands. Most fires were concentrated in South

Sumatra (n=33 085, 0.38 fires km–2
), followed by

Jambi (n= 9318, 0.19 fires km–2
) and Riau (n= 7922,

0.09fires km–2
).

3.1. Regency analysis

The most parsimonious model out of our candidate

set of models included economic, population and

biophysical variables as important predictors for the

expected log count of fires at the regency-level

(wAICc=0.871,marginalR2=0.216, table 2), and is

represented by the following equation:

Log FireNo 2.38 0.12 LargePlant

0.40 MedPlant 0.34 SmallPlant

0.30 PracBurn 0.09 WFC 0.43

L.Pop 0.57 Slope 0.39 Rain

0.27 Peat.

*

* *

* * *

* *

*

= - +
- -
+ - -
´ - - +
´

( )

Forest degradation variables (DegFor, PrevFires, Sus-

cPeatCover, Roads), conflict variables (LandConflict,

MultiEthnic, Brawl) and the three interaction terms of

rainfall (DegFor*Rain, PrevFires*Rain, SuscPeatCover*-

Rain) had no influence on fires. The 95% confidence

intervals of model coefficients for all variables in our

most parsimonious model (figure 3) did not include

zero, except for the variables large landholdings

(ßLargePlant =0.12, 95% Confidence Interval=
[−0.16, 0.40]) and WFC (ßWFC =−0.09 [−0.30,

0.12]), (figure 3). Hence, the effect of these two

variables on fires were indeterminate. The practice of

burning for agriculture and proportion of peat area

were associated with an increase in fires (ßPracBurn =

0.30 [0.12, 0.48]; ßPeat =0.27 [0.01, 0.53]). More

rainfall (ßRain=−0.40 [−0.65,−0.14]), steeper slopes

(ßSlope =−0.57 [−0.82, −0.32]), and higher log

population density (ßPop =−0.43 [−0.70, −0.16])

were associated with a decrease in fires. Surprisingly,

an increase in the proportion of medium plantation

landholdings (ßMedPlant =−0.40 [−0.61, −0.19]) and

small plantation landholdings (ßSmallPlant =−0.39
[−0.54, −0.14]) within the regency were associated

with a decrease in expected log count offires.

3.2. Pixel-level analysis

The BRT model with the highest independently-

validated AUC score (0.799) and lowest deviance

7
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Table 2.Top 3GLMMwith variables fromEconomic (E), Population (P) andBiophysical (BP) categories of factors. K=number of parameters, LogLik=log-likelihood, AICc=AIC corrected for small sample size,ΔAICc=difference
inAICc between the givenmodel and themodel with the lowest AICc, wAICc=relative weight of the givenmodel,marginalR2=variance explained by the predictor variables in themodel, conditional 2=variance explained by the
predictor variables and randomvariable (i.e. regency) in themodel.

Model

Categories of

variables K LogLik AICc ΔAICc wAICc MarginalR2 ConditionalR2

FireNo∼offset(L.Area)+LargePlant+MedPlant+SmallPlant+PracBurn+WFC+Pop+Slope+Rain+

Peat+(1 |Province)

E+P+BP 12 −256.9 549.4 0 0.871 0.216 0.234

FireNo∼offset(L.Area)+LargePlant+MedPlant+SmallPlant+PracBurn+WFC+Slope+Rain+Peat+

(1 |Province)

P+BP 11 −261.6 554.6 5.18 0.065 0.196 0.230

FireNo∼offset(L.Area)+Pop+Slope+Rain+Peat+(1 |Province) E+BP 7 −268.8 555.0 5.66 0.051 0.185 0.224
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(0.504)had a learning rate of 0.01 and tree complexity of

6, giving an optimal tree number of 4,850 (SFigure 2).

The relative influence of each predictor variable in this

model is shown in figure 4. Only 5 out of 18 variables

had relative influence values above 5.56%: Rainfall

(25.86%), Slope (22.45%), Populationdensity (17.26%),

Roads (10.29%) and Previous Fires (6.62%). The partial

dependence plots in figure 5 further show the influence

of each of these five variables on fire occurrences.

Overall, this suggests that fires are more likely to occur

in areas where there has been low rainfall, gentler slopes

and lower population density, corroborating the results

Figure 3. Standardized coefficient estimates and 95% confidence intervals for the top regency generalized linearmixed effectmodel.
Dot-whisker points in black representmodel coefficient confidence intervals that did not overlapwith zero, while dot-whisker points
in red representmodel coefficient confidence intervals that overlapwith zero.

Figure 4.Relative influence of biophysical (shown in blue), population (shown in yellow), forest degradation (shown in green),
economic (shown in grey) and conflict (shown in orange) factors onfire distribution based on the BRTmodel. Values on the right of
the bar represent the relative influence value (%) of the variable.
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fromour regency-level analysis (figure 3). Fireswere also

likely to occur closer to roads and over peatlands which

have beenburnt repeatedly.

4.Discussion

We found that biophysical and population variables

strongly influenced fire count and occurrence at the

regency- and pixel-level respectively (figures 3; 4).

However, economic and forest degradation variables

had varying impact, with economic drivers beingmore

important at explaining fire count at the regency-level

whilst forest degradation factors were more relevant at

explaining fire occurrence at the pixel-level. Conflict

variables showed no effect on the 2015 fires at both

spatial scales. This suggests that mitigation efforts for

future fires, especially during ENSO years, can focus

their campaigns in high-risk areas that can be identi-

fied using updated data on recent rainfall, population

density, roads and data on specific land-use or land-

cover types.

The strong effect rainfall has on fire at both scales

is unsurprising. Both analyses showed lower mean

monthly rainfall in the preceding two months are

likely to result in more fires or higher fire occurrence,

concurring with previous studies where a fall in rain-

fall induced by the El Niño in 2015 had a major

contribution to the extreme fires (Field et al 2016,

Fernandes et al 2017, Sloan et al 2017). Our BRT

model showed an increase in fire occurrence below a

mean monthly rainfall of 150 mm/month. This value

is close to the critical rainfall threshold of 200 mm/

month based on a study on fire activity from

1982–2010 in Borneo (Sloan et al 2017). Low rainfall

leads to less recharge in groundwater levels in peat-

lands, rendering peat soils highly flammable, which

facilitates fire ignition and spread (Page and Hooijer

2016, Taufik et al 2017). The effect of slope on fires is

also clearly negative at both scales of analyses, which

showed thatmore fires occurred onflat ground. This is

likely due to the ease of accessibility compared to steep

areas for agricultural activities or resource extraction

and also corresponds with the distribution of peat-

lands in our study site.

Our results from both regency- and pixel-level

analyses also revealed that areas with low (but not

zero) population densities contribute to fires. This is

contrary to what was expected since fires in these land-

scapes are predominantly anthropogenic and a higher

population density is likely to increase the probability

of fires (Cochrane 2003, Dennis et al 2005). The

inverse relationship between fires and population

pressure could indicate that more fires occur in

remote areas where land is available for agricultural

activities and resource extraction. As population den-

sities increase towards city levels, fires are less likely to

Figure 5.Partial dependence plots for predictor variables with relative influence values greater than the randomness threshold of
5.56%. The red dotted line represents a smoothing trend line for themodel.
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occur. This relationship between fires and population

corroborates with Cattau et al (2016a) which found

that fire ignition first increased, then decreased as

distance from settlement increases. Our finding that

low population densities have higher fire likelihoods

might suggest that prioritizing villages in remote areas

in the training of fire prevention awareness and

interventions, such as the Fire-Free Village Program,

are important in combatting fires (Fire Free Alliance

2016).

When the regency was used as a unit for analysis of

fire counts, economic variables were included as

important factors in addition to biophysical and

population variables. Of the economic variables that

were included in our results, the proportion of small-

scale (< 10 ha) andmedium-scale (10–100 ha) planta-

tion landholdings within a regency showed a negative

association with log count of fires. This corroborates

with Miettinen et al (2017) where fire hotspot density

was found to be lower in small-holder areas compared

to industrial plantations. Unsurprisingly, the reported

use of fires for clearing agricultural lands in villages

showed a positive association with fires, indicating the

persistence use of fires for agricultural land-clearing

and the importance of managing fire use at the village-

level. The role of agency in Indonesia’s fires is a con-

tentious issue due to serious ramifications of extreme

fire events such as the 2015 fires. Determining who is

accountable for Indonesia’s fires is complex due to

overlapping land claims between industrial plantation

companies, medium landholdings and small farmers

(Gaveau et al 2014, 2016). While cross-sectional stu-

dies like ours andMiettinen et al (2017) show less fires

within small to medium landholdings, Sloan et al

(2017) focused on long-term trends of fires in Borneo

and showed how fires resulted from interactions

between large plantation concessions and economic

land-use activity by small and medium landholdings.

Longitudinal studies on fire patterns and land-use in

Sumatra could reveal a more in-depth understanding

of shifting drivers of fire activity which could be an

area for future work.

When the pixel (1 km2
) was used as a unit for ana-

lysis of fire occurrence, forest degradation, in addition

to biophysical and population variables were included

as important factors. Roads have been known to con-

tribute to forest degradation (Laurance et al 2009) and

provide access for lighting fires (Stolle et al 2003). Our

BRT model demonstrated that fire occurrence

increased between 0–2.5 km from roads, before

decreasing as distance to roads increases up until

25 km before rising again. This suggests that proximity

to roads increases the probability of fires being lit. At

greater distances from roads, accessibility could be

restricted and the likelihood of fire occurrence decrea-

ses. However, remote fires such as that recorded under

our BRTmodel at>25 km from roads could still be lit,

and access to such sites could be through rivers or

drainage canals which were not included in our

analyses.

The proportion of peatlands in the regency

showed a positive association with fires under our

regency-level analysis but fell below the randomness

threshold under our pixel-level analysis. Instead, peat-

lands which experienced repeated burns from June

2006–May 2015 was identified as an important vari-

able for fire occurrence at the pixel-level. Our BRT

model demonstrated that fire occurrence increased in

peatlands which have been burnt between one and six

times before plateauing at 15 burn events. The rela-

tionship behind fire occurrence and burn history may

be related to post-fire changes in vegetation cover over

peatlands, relative peat depth and chemical properties

of peat soils. Peatswamp forests that were burnt in an

initial fire could result in intense fires due to the con-

sequent woody vegetation cover. These initial fires

leave behind standing and fallen timber which con-

tribute as above-ground fuel for subsequent fires. As

the vegetation cover of peatlands transitions from

woody to non-woody vegetation through repeated

burning, the volume of woody fire fuels decreases,

possibly leading to less fire occurrences (Hoscilo et al

2011). Konecny et al (2016) also found that the fre-

quency of fires over peatlands decreased the relative

burned area depth of peat soils, potentially influencing

the mass of peat soil available for burning. Past fires

could also alter the chemistry of peat soils, reducing

the amount of labile, easily-combustible carbon con-

stitutes and increasing the resistance of peat soils to

fires (Milner et al in prep.) Our results suggest that

burn history of peatlands should be considered when

monitoring Sumatra’s fire landscape, since peatlands

with few burn events show a higher risk of being burnt

in the nextfire.

Although conflict has been found to be an under-

lying cause of fires in Indonesia (Suyanto 2007, Dennis

et al 2005), our results suggest, similar to Stolle and

Lambin (2003), that social conflicts did not play a

major role in the 2015 fires. Clear land ownership and

tenure in Indonesia has always been lacking, where

adat or customary laws are often overlooked when

granting land concessions (Shivakumar et al 2015).

Combined with the lack of a transparent system for

redress and compensation when conflict arises, fires

are started as retaliation to destroy crops and reclaim

land, both between smallholders and companies, and

between locals and transmigrants (Suyanto et al 2004,

Dennis et al 2005, Suyanto 2007). Conflict, however, is

an inherently social phenomenon with all its accom-

panying complexities, and relying on reports of land

conflicts from newspaper articles risk simplifying this

issue due to the bias of under-reporting or selective

reporting in themedia (Abram et al 2017).We attemp-

ted to reduce this bias by obtaining information from

three national newspapers, six provincial newspapers,

and supplementary reporting from three local

non-governmental organizations. We also included
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variables such as village-level multi-ethnicity and

brawl incidents as proxy variables for conflict but these

were also unimportant in influencing fire count and

occurrence in our analyses.While our proxies for con-

flict could be inadequate, the unimportance of conflict

relative to other variables in explaining fire count and

fire occurrence in the 2015 extreme fires could be a

result of the overwhelming influence of the El Niño-

related drought in that year.

5. Conclusion

Our study aimed to gain a better understanding of the

variables that had the greatest influence on the 2015

extreme fire event in Sumatra. We showed that

rainfall, slope and population density were the most

important variables predicting fires. The main influ-

ence of rain corroborates with previous studies, and

highlights the importance of establishing an early

warning system for droughts to better prevent and

manage future extreme fire events (Field et al 2016,

Tacconi 2016, Lee et al 2016, Miettinen et al 2017).

Economic variables such as the proportion of small-

scale and medium-scale plantation landholdings and

the reported use of fires to clear agricultural lands in

villages were important factors in explaining fire count

at the regency-level. Distance from roads and the

number of recorded burns over peatlands were

important contributors to fire occurrence at the pixel-

level. Mitigation efforts for future fires, especially

during ENSO years, can be focused on high-risk areas

identified using environmental data on rainfall, slope,

peatlands, and previously burnt peat areas, as well as

social data related to population density, access to

roads, extents of small- and medium-plantation land-

holdings, and village-level propensity to burn land for

agriculture.
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