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A B S T R A C T   

Robotic machining processes are characterised by errors arising from the limitations of the industrial robots. 
These robot-related errors can compromise the overall manufacturing process performance, resulting in final 
products with dimensions different from the nominal specifications. To avoid accumulation of errors through 
several manufacturing stages, a quality inspection step is usually performed after the cutting operation. This 
work presents an innovative two-step manufacturing method for achieving right-first-time characteristics in 
robotic machining operations through in-process inspection and compensation of the systematic errors, whilst 
collecting suitable training data for building predictive models. The key idea behind the proposed method is 
based on the observation that under certain conditions, the robotic machining errors remain largely consistent, 
and therefore by splitting the process into two similar steps and having an inspection step in between, a pre-
diction and then compensation of the systematic errors would be possible. A Gaussian Process Regression (GPR) 
framework is applied for the creation of robust process models that predict the post-process inspection result 
from in-process signal features, with the associated confidence intervals. An active learning algorithm that makes 
online decisions on the inspection task based on the current confidence of the models, is also proposed. The two- 
step machining method and the active learning approach were both tested on a robotic countersinking process 
experiment. The results showed that the in-process inspection and error compensation of the proposed two-step 
machining method was able to achieve final countersink depths very close to the desired target, confirming the 
potential for right-first-time robotic machining. In addition, the active learning results highlighted the ability of 
the algorithm to reduce the number of required post-process inspections, thus saving both time and costs, whilst 
also identifying novel data relevant for the model training.   

1. Introduction 

Production systems in the aerospace industry are severely affected by 
scrap, especially in the case of high-value manufacturing processes. 
Therefore, in order to cope with the increase in product demand and 
remain competitive in the market, it is critical for such systems to deliver 
products of high quality right-first-time [1,2]. The recent developments 
in information technology and sensors capability, as well as the vision of 
Industry 4.0, have motivated manufacturers to increasingly push to-
wards flexible and intelligent manufacturing systems. Such systems rely 

upon the use of auxiliary sensory information and data analytics tools 
for process monitoring and control [3,4]. In particular, a digital repre-
sentation of the manufacturing process, also known as the ‘digital twin’, 
is applied to make autonomous decisions driven by machine learning 
algorithms based on the available process data [5]. In terms of the 
flexibility, robotic systems are becoming more and more popular in the 
manufacturing sector as an alternative of the traditional machine tools 
approach [6]. The aerospace industry could greatly benefit from the 
large working areas, multi-functionality and cost efficiency of industrial 
robots to help reduce production costs and increase the overall 
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productivity. However, the variable stiffness and low positional accu-
racy of typical multi-joints industrial robots are the main factors that 
limit their adoption in machining operations, such as milling, drilling 
and countersinking. The quality of the end product is affected by the 
robot positioning within the workspace (i.e. the joints configurations), 
the required tool path and the forces applied during machining, result-
ing in deviations from the nominal specifications [7]. 

In addition to the above robot-related errors, the product material is 
another factor that influences the quality of the machined part. A pop-
ular choice in the aerospace industry is the Carbon Fibre Reinforced 
Polymer (CFRP). The advantageous properties of CFRPs, such as the 
light weight, high strength and stiffness, durability and excellent 
corrosion resistance, make this material ideal for the production of many 
large aircraft components. However, unlike with metals, the machin-
ability of CFRPs with industrial robots is much more complicated due to 
their non-homogenous, anisotropic and very abrasive nature [8]. 
Typical machining problems include the delamination and pull out of 
fibres, rapid tool wear, as well as various surface anomalies. Research in 
this field [8,9] suggests that the choice of appropriate machining pa-
rameters (spindle speeds and feed rates) plays a key role in obtaining 
good quality parts. The optimal parameters are usually selected from 
experience or through several trials. Slamani et al. [10,11] studied the 
trajectory deviations occurred in high speed robotic trimming of CFPR 
parts and concluded that the robot positioning had also a major impact 
in the part quality in addition to the selection of the process parameters. 

In general, the machining errors can be classified into two categories: 
systematic and random. The term systematic refers to errors that are 
repeatable and reproducible under similar conditions, whereas random 
errors vary. Chen et al. [12] subdivides the systematic errors further into 
constant-value and variable-value errors. The former are the errors 
caused by cutting tool miscalibration or workpiece misalignment and 
the latter include deformations induced by the machining forces and the 
tool wear. Random errors, on the other hand, are caused by different 
factors such as the non-homogeneous material properties, part de-
formations resulting from chatter and internal stress, etc., and they are 
difficult to compensate due to their non-reproducible nature. 

To minimise the robot-related machining errors, several research 
studies in the robotic machining field have been investigating ways of 
improving the overall stiffness of the robot for the specific machining 
task. According to Ferreras-Higuero et al. [13], the robot pose is 
responsible for the vast majority (about 80%) of cutting tool deviations 
in robotic drilling operations. The main research themes include 
stiffness-based pose optimisation methods [14,15] and error compen-
sation approaches [16–20]. Typically, accurate measurements of tool 
deflections that occur under the application of known external forces are 
required for the mapping of errors within the robot workspace. This 
information is then used to determine the optimal robot pose for the 
specific machining operation. Error compensation methods rely on force 
data and a compliance model of the robot for the estimation of 
force-induced tool deflections. These deflections can be simulated off-
line by the use of specific process models [16,17] or estimated online 
from the actual force measurements in closed-loop control schemes 
[18–20]. To improve system robustness and process accuracy, Zaeh et al. 
[21] proposed a combined approach, where the offline simulation of 
process forces and tool deflections was coupled with an online 
compensation mechanism based on spindle torque and vibration mea-
surements for robotic milling applications. Focusing on the computa-
tional efficiency, Ge et al. [22] proposed a rapid prediction and 
compensation method based on reduction of global stiffness matrix for 
prediction of cutting force-induced errors in machining of thin-walled 
parts. 

Machine Learning (ML)-based error compensation approaches 
[23–25] have also been proposed. Zhu et al. [23] applied artificial 
neural networks for mapping and compensation of robot positioning 
errors in robotic drilling of aircraft panels. A reduced two-dimensional 
workspace of the robot was considered to improve the efficiency of the 

compensation method. Wang et al. [24] proposed a statistical learning 
control method based on Gaussian Process Regression (GPR) [26] for 
trajectory tracking in laser cutting applications, where GPR models were 
used for both inverse robot dynamics and kinematics to compensate the 
torque and motor reference, respectively. The GPR framework has also 
been explored by Nguyen et al. [25] to model the dynamic properties of 
a typical six Degrees-of-Freedom (DoF) industrial robot used for milling 
operations. Other recent works that have reported the use of data-driven 
approaches for error prediction and compensation, focus on thermal-
ly-induced errors of conventional machining processes [27,28]. 

A common problem with ML-based approaches is their requirement 
for high volumes of training data. In high-value and low-volume 
manufacturing processes, the allocation of production time and work-
piece material for the purpose of model training, is not sustainable. 
Consequently, strategies must be in place to allow for the collection of 
necessary training data during normal process operation whenever 
possible, or by introducing minimal disruption to the production line. 
Suitable data for the creation of ML-based predictive models can be 
provided by a post-process inspection step, however it would add extra 
costs associated with the time spend to perform this non-value-added 
operation, i.e. the inspection task. In this context, Papananias et al. [29] 
presented a method referred to as ‘inspection by exception’, which 
aimed to reduce the volume of post-process inspections in multistage 
manufacturing processes. A ML-based approach was applied on 
multistage data combined with in-process sensory information for the 
prediction of the quality of the end products, categorising them as 
conforming and non-conforming parts. Then, the inspection task was 
only needed in the cases when the predicted part quality could not be 
categorised in any of these categories with a high degree of certainty. 
Leco et al. [30] investigated the application of GPR models as part 
quality predictors in robotic countersinking operations. They used a 
data-driven approach to build and train a GPR model that predicts the 
post-process inspection result from the sensory information acquired 
during machining, with the potential to substitute the inspection step. 
However, to achieve accurate predictions, a dedicated experiment for 
the training phase of the model was required. 

To overcome the high cost of obtaining labelled data for training of 
data-driven models, active learning approaches [31,32] have been 
adopted, where only a reduced subset of unlabelled samples (i.e. input 
instances) is considered for labelling. This subset is appropriately 
selected by the learning algorithm from a relatively large pool of unla-
belled data. Active learning methods aim to achieve maximum predic-
tion accuracy through identification of the most informative instances 
for training of the models, as opposed to a simple random selection of 
the same number of instances. Active learning can be performed offline 
when the entire pool of unlabelled data is available, or online [33] when 
the unlabelled data becomes gradually available (i.e. via data streams) 
and the decision for obtaining a new label is made online. This latter 
scenario is more appropriate for machining applications, where output 
labels provided by the inspection operation can be requested when 
needed and without process interruption, thus allowing the model to 
adapt to new process conditions. An application of active learning in 
manufacturing processes has been reported in Martinez-Arellano et al. 
[34], where Bayesian Convolutional Neural Networks (BCNN) were 
used for online tool condition classification. The model uncertainty 
representation of the Bayesian deep learning framework, coupled with 
an acquisition function was applied as a selection criterion to determine 
whether the incoming data required labelling, hence reducing the cost of 
model re-training. Botcha et al. [35] applied an active learning approach 
to reduce experimental cost in manufacturing processes. By using a 
sequential experimental design and choosing the next best experimental 
point based on a metric that reduces the expected uncertainty of the 
prediction, the active learning method reported a 65% reduction of the 
number of experiments for the same level of prediction accuracy, when 
compared with a model using random experimental points. 

This paper extends the previous work of Leco et al. [30] by 
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introducing a two-step process method that allows compensation of the 
systematic errors arising from the robotic structure to obtain the desired 
part quality. It also allows a process model to be trained online without 
any process disruption, where the prediction accuracy is gradually 
increased as more data becomes available. This is done by adapting the 
‘inspection by exception’ method of Papananias et al. [29] to robotic 
machining and incorporating an active learning approach. The rele-
vance of each new instance with respect to the model training is assessed 
online as the input data is acquired and a decision on the inspection step 
is made, resulting in a reduction of the total number of inspections 
needed, without the performance of the model being compromised. 

The two-step process method presented in this work aims to improve 
the performance of a robotic machining process by compensation of the 
robot-related systematic errors occurred during Step 1, in the attempt to 
obtain the desired part quality by the end of Step 2. An inspection 
measurement in between of the two process steps to collect the output 
labels is required for training of a data-driven predictive model using a 
supervised learning approach. A GPR framework combined with a 
perturbation-based data generation approach is applied to create robust 
models that predict the post-process inspection result with the associ-
ated confidence bands, based exclusively on in-process sensory infor-
mation. In addition, to reduce the number of inspections, a two-step 
active learning algorithm that makes online decisions on the inspection 
task based on the current models’ confidence, is proposed. It is shown 
that this method achieves the same degree of accuracy to the previous 
approach [30], but with a 52.6% reduction on average in the number of 
inspections. 

To summarise, the main contributions of this paper are as follows:  

1 The presentation of an innovative two-step process method that not 
only allows right-first-time manufacturing by inspection and 
compensation of the systematic machining errors, but also provides 
high quality training data for the creation of robust predictive 
models, without any process disruption.  

2 The integration of an active learning approach for training of the 
models that minimises the total inspection costs, by actively deciding 
when a post-process inspection is required to further improve the 
prediction accuracy of the models. 

The remainder of the paper is organised as follows: Section 2 presents 
the two-step manufacturing approach proposed by this work. Section 3 
details the learning methodology applied to a robotic countersinking 
example and presents the two-step active learning algorithm. Section 4 
describes the countersinking experiments conducted in a multi-robot 
platform. The results on decision making and the assessment of the 
proposed method’s performance are discussed in Section 5. Finally, 
Section 6 outlines the conclusions of the paper. The GPR framework 
applied for the creation of the process models is presented in the 

Appendix. 

2. A two-step approach for right-first-time robotic machining 

The key idea behind the two-step process method is based on the 
observation that a cutting operation performed by an industrial robot is 
subject to comparable machining errors if the robot configuration is kept 
largely consistent during cutting. The method therefore splits the overall 
process into two similar steps and adds an inspection step in between to 
allow the prediction and then compensation of systematic machining 
errors arising from the robotic structure. 

The diagram of the proposed two-step process method is illustrated 
in Fig. 1. The cutting operation of one process cycle is divided into two 
steps: Step 1 performs a first cut to a nominal target input specified by 
Target 1 (i.e. a semi-finished level) and Step 2 executes a second cut to 
the original nominal target input specified by Target 2 (i.e. the final level 
of finishing). At the end of Step 1, the machined part is inspected by an 
online inspection system to measure the output variable (Out 1) and 
then, prior to commencing Step 2, the input target is adjusted to reflect 
the systematic errors observed at Out 1. Note that the actual input tar-
gets (denoted by In 1 and In 2, respectively) also include a perturbation 
term that is required for training of the process models as explained in 
Leco et al. [30]. The final process output variable (Out 2) is obtained 
through inspection of the part at the end of Step 2. 

Prediction of any systematic errors using in-process data requires the 
development of a data-driven predictive model with sufficient accuracy, 
which in turn demands the availability of rich training data that captures 
the varying cutting conditions. To this end, a perturbation signal is 
added to Target 1 and Target 2, producing cuts with different levels of 
finishing. It is important to note that this perturbation signal is pro-
grammatically controlled, and the same perturbation value is used for 
both steps that complete one full iteration of the process. This is to 
ensure that the input target of Step 2 would still aim towards reaching 
the desired level of finishing, regardless of the perturbation signal, 
thereby preserving the validity of the process iteration. Moreover, for 
greater data variability in model training, a new value of the perturba-
tion signal is applied in every iteration of the process. This perturbation 
signal acts as an amplifier of any systematic errors occurring in the 
machining operation by simulating extreme input conditions. 

Fig. 1 represents the two process models associated with each of the 
two steps of the same physical machining process. Architecturally, 
Model 1 and Model 2 are identical, with the inputs derived from pro-
cessed sensor signals and the output being the prediction for the in-
spection result. However, the model mapping between Model 1 and 
Model 2 is different, since the actual input signals would have distinct 
signatures as result of the varying initial conditions of the workpiece 
between Step 1 and Step 2, noting that in Step 2 the part had already 
been machined to a semi-finished level. 

Fig. 1. Diagram of the proposed two-step process method.  
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With the introduction of the additional perturbation signal as shown 
in Fig. 1, the actual input target specified at the beginning of Step 1 is the 
sum of the nominal Target 1 and the perturbation value for that process 
iteration. Following Step 1, the measurement made at the inspection 
stage would be characterised with deviations from the actual input 
target by the machining errors. These errors include both systematic and 
random errors. In order to define the appropriate input target for Step 2, 
an output variable (Out 1 in Fig. 1) is derived by subtracting the nominal 
Target 1 from the inspection measurement. This output essentially 
captures a combination of the perturbation signal and the machining 
errors occurred in Step 1. 

The actual input target for Step 2 is now not the nominal Target 2, 
but one that includes a correction that accounts for the systematic 
machining errors. This correction is derived by subtracting the output of 
Step 1 from the perturbation value. Proceeding with Step 2 and 
following the same logic as Step 1, the inspection measurement obtained 
after Step 2 would include the actual input target and the machining 
errors, both random and systematic that occurred in Step 2. A final 
output variable (Out 2 in Fig. 1) is derived as the difference between the 
above inspection measurement and the nominal Target 2. Due to the 
target correction at Step 2 that accounts for machining errors, this final 
output variable is now independent from the specific perturbation value, 
and it consists of the difference between the machining errors of Step 2 
and those of Step 1 only. Consequently, by designing these two process 
steps as similar as possible in terms of the robotic configuration changes, 
cutting forces and material removal rate, the robot-related systematic 
errors would be eliminated. This will lead to Out 2 being close to zero 
and thereby achieving a level of finishing close to the desired final 
target, i.e. Target 2. 

It is important to note that the proposed solution does not require 
any process interruption for collection of the training data necessary to 
build the two models. The programmatically controlled perturbation 
signal can be used to provide a suitable sample of input data (i.e. ex-
amples of sensor signals for different target levels) for training of Model 
1. Then, the target correction process would ensure that this input data 
variability is carried over to Step 2 for training of Model 2. Note that the 
process Step 2 will still aim to reach the final desired level of finishing as 
result of the target correction. Both models can then be trained on the 
data collected from the normal operation of the process, without the 
need for a specific design of experiments. When sufficient training data 
have been acquired, the models would be able to provide predictions in 
substitution of the actual inspection measurement. 

In terms of the modelling approach, this work considers a probabi-
listic framework based on Gaussian Process Regression (GPR) [26]. GPR 
models are naturally suited to deal with uncertainty in the input and 
output data and they can also provide useful extra information on the 
expected predictions, such as the intervals of confidence. Following 

previous work [30], a Square Exponential (SE) kernel performing 
Automatic Relevance Determination (ARD) was applied to reduce the 
input space of the GPR models. Further details on the GPR framework 
are presented in the Appendix of the paper. 

3. Learning method for two-step robotic countersinking 

This section presents the learning strategy of the proposed two-step 
process method applied to a robotic countersinking example. 

3.1. Robotic countersinking example 

A robotic machining example to test the two-step method is illus-
trated in Fig. 2. It consists of a countersinking process performed by two 
industrial robots working together in a master-slave setup. The diagram 
of Fig. 2a depicts the end-effector of the master holding the spindle and a 
pressure foot on the left side, a panel with a pre-drilled hole in the 
middle and the end-effector of the slave robot on the right side. These 
refer to the start and final positions of the robots, where both the master 
and the slave are assumed to be perfectly aligned to the hole centre and 
normal to the panel’s surface. The countersinking process is illustrated 
in Fig. 2b, where the master, assisted by the pressure foot and in 
collaboration with the slave, clamps the panel while the cutting tool 
advances inside the pre-drilled hole to reach the desired countersink 
depth level. It is assumed that the spindle is operated by an external feed 
drive that controls the linear displacement of the cutting tool towards 
the surface of the panel independently, allowing therefore both robots 
maintain their original positions during the cutting operation. The 
process output variable is the countersink depth achieved as a result of 
the maximum level of penetration of the cutting tool inside the pre- 
drilled hole. The performance of the process is assessed in terms of the 
linear deflections of the countersinks, i.e. the deviation of the obtained 
countersink depths from the nominal target specified to the spindle 
controller. 

Following the proposed two-step method, the process cycle of 
countersinking a single hole at the desired final depth can be divided 
into two similar steps: Step 1 would countersink the hole to a semi-finish 
level and Step 2 would finish countersinking to the desired final depth, 
after compensating for the observed systematic errors. To avoid intro-
duction of further errors in between the two steps, it is assumed that the 
inspection step can be performed as part of the overall process cycle with 
both robots maintaining their original positions. In this example, the 
pressure foot would need to be temporarily retrieved to allow a clear 
view of the machined hole at the end of Step 1 and prior to starting Step 
2, however, the master robot needs not change its position to do this, as 
the pressure foot is operated independently. 

Fig. 2. Robotic countersinking diagram: a) start and final positions of master and slave robots; b) position of maximum depth obtained by the countersinking process.  
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3.2. Two-step active learning procedure 

The diagram of the two-step active learning procedure and its legend 
are illustrated in Fig. 3 and Table 1, respectively. 

The steps of the proposed learning approach for the countersinking 
of a single hole are as follows (ref. to Fig. 3):  

1 The process commences by specifying a target depth (T1) for the 
cutting operation. The first cut is performed to a pre-set semi- 
finished level (D1) and an additional perturbation value (P), 
randomly selected from the zero mean Gaussian perturbation signal 
P ∼ N(0, σ2p) with standard deviation σp.  

2 In-process sensor signals (S1) are acquired and a depth prediction 
with mean (Ŷ1) and standard deviation (σ̂1) is provided by the GPR 
model (Model 1) at the end of the first cut. The model uses the cur-
rent dataset for making predictions and it requires a minimum 
amount of training data, which needs to be specified in advance.  

3 Based on σ̂1, a decision on inspecting the machined hole for a direct 
depth measurement is made. For σ̂1 greater than a pre-set uncer-
tainty threshold (θ1), the model confidence in the prediction is low 
due to the high uncertainty levels, indicating that Ŷ1 is likely to be 
not accurate and thus a direct measure (Y1) is necessary. If, however, 
σ̂1 shows low uncertainty levels, indicating a high confidence in Ŷ1, 
then there is no need to inspect the hole. For every inspection that is 
requested, the pair (S1, Y1) is included in the current training dataset 
(Dataset 1) of Model 1.  

4 Depending on the inspection decision at step 3, a depth error value 
(Ê1 or E1) is calculated from Ŷ1, the estimated from Model 1, or Y1 
obtained from the inspection process.  

5 This depth error is then used to correct the target depth of the second 
cut (T2), accounting also for the perturbation value added in the first 
cut. This is achieved by subtracting the depth error and then adding 
the perturbation value to the desired final depth level (D2).  

6 Once T2 has been specified, the second cut can start and the above 
steps 2, 3 and 4 are repeated for the second cut, referring to its own 

Fig. 3. Diagram of the proposed two-step active learning procedure.  
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data, i.e. sensor signals S2, direct measurement Y2, Model 2 with 
predictions Ŷ2 and σ̂2, uncertainty threshold θ2 and depth error Ê2 
or E2.  

7 Finally, the amplitude of E2 is checked against the process depth 
tolerance (δ). If successful, the process continues to the next hole, 
otherwise an option to perform a third cut can be offered by applying 
the latest depth error E2 to correct the target depth. Note that this is 
only possible if the actual depth has not exceeded the process 
tolerance, i.e. for negative values of E2 (shallow holes). 

The active learning is achieved by allowing the algorithm to select 
which output label (i.e. inspection of the machined hole) would improve 
the current prediction accuracy of the model. This is done by setting an 
uncertainty threshold on the variance output of the GPR model. An in-
spection is then required when the variance output is higher than the 
above threshold, meaning that the model confidence estimation of the 
current prediction is relatively low. Note that the variance output of the 
GPR model is computed from the newly acquired input data (i.e. sensor 
signals) and the current dataset of the model. In this scenario, every time 
an inspection is requested by the algorithm, the corresponding output 
data is added to the current dataset and therefore it is made available for 
training of the model for all subsequent predictions. 

The following gives an error analysis of the two-step active learning 
procedure shown in Fig. 3. The true countersink depth obtained after the 
first cut (Yi1) for the ith hole can be expressed as (see also Table 1 for the 
terminology): 
Y i

1
= T i

1
+ N i

1
= D1 + Pi + N i

1
(1)  

where Ni1 represents the overall noise that the machining process in-
troduces during the first cut of the ith hole and Pi ∼ N(0, σ2p) is the 
programmatically added, normally distributed, perturbation value of 
the ith hole. The desired (nominal) depth of the first cut D1 is kept un-
changed for all the holes. Consequently, the true depth error of the first 
cut (Ei1) is given by: 
Ei

1
= Y i

1
− D1 = Pi + N i

1
(2) 

The target depth of the second cut (Ti
2) for the ith hole, chosen to 

compensate the first cut depth error, and accounting for the perturbation 
signal, is given by: 
T i

2
= D2 − Ei

1
+ Pi (3)  

where D2 is the desired final depth, kept the same across all the holes. 
Similarly, the true depth value of the second cut (Yi2) will be influenced 
by the process noise (Ni2). To identify the correct sources of errors in the 
process, further consideration is required in this case. After performing 
the first cut, the master robot needs to unclamp the panel to allow a clear 
view of the machined hole for the inspection process to take place. This 
involves retracting the pressure foot, acquiring an image of the 
machined hole and then activating the pressure foot again to clamp the 

panel for the start of the second cut. To minimise other potential error 
sources, it is assumed that both robots maintain their original positions 
during this re-clamping process and for the entire duration of the second 
cut. Consequently, the true depth of the second cut can be expressed as: 
Y i

2
= T i

2
+ N i

2
+ N i

r (4)  

where the additional term Nir refers to the noise caused by the re- 
clamping process for the ith hole and Ni2 is the overall noise introduced 
by the machining process during the second cut, similar to the case of the 
first cut. The substitution of Eq. (2) and Eq. (3) into Eq. (4) leads to the 
expression below for Yi

2: 
Y i

2
= D2 + N i

r +
(
N i

2
−Ni

1

) (5) 
Considering that the position and orientation of the robots remain 

unchanged while cutting and inspecting the same hole, and that the high 
clamping forces would minimise any panel movement during 
machining, it is safe to assume that the re-clamping noise Ni

r would be of 
a negligible amount. Moreover, the application of the pressure foot helps 
to reduce the errors caused by the different cutting forces between the 
first and the second cuts due to the target differences. The magnitude of 
the clamping forces can be set sufficiently higher to ignore those small 
variations in the process loads between the two cuts. Consequently, the 
current hole position (i.e. the configuration of the robots) and the 
clamping forces represent the main sources of systematic errors into the 
overall countersinking process. This means that when machining the 
same hole, the systematic errors will be expected to be the same for both 
cuts, whereas when the process goes from one hole to the next, a 
different error will be introduced as result of the changes in the robot 
positioning. Hence, the two process noise terms of Eq. (5) can be 
described as: 
N i

1
= Bi + Qi

1
, N i

2
= Bi + Qi

2
(6)  

where Qi1 and Qi2 are the random errors with zero mean and Bi is the 
common systematic error of the ith hole. Substitution of the noise terms 
of Eq. (6) in Eq. (5) gives: 
Y i

2
= D2 + N i

r +
(
Qi

2
−Qi

1

) (7)  

which leads to the final true depth error (Ei
2) defined as: 

Ei
2
= Y i

2
− D2 = N i

r +
(
Qi

2
−Qi

1

) (8) 
This shows that the final depth error has a negligible term due to re- 

clamping and two random process errors with all systematic errors being 
removed. Statistically, the expected value of the error would be zero. 

In the case of using the model depth predictions instead of the true 
camera measurements, another error term related to the model predic-
tion error needs to be considered in the above computations. By defi-
nition, the model error (M) is derived as the difference between the true 
depth measurement (Y) and the predicted depth (Ŷ), i.e. M = Y − Ŷ . 
When these model errors are included in the above analysis, the esti-
mated depths at the end of the first cut (Ŷ i

1) and the second cut (Ŷ i
2) of 

the ith hole can be expressed as: 

Ŷ
i

1
= D1 + Pi + N i

1
− Mi

1
(9)  

Ŷ
i

2
= D2 + N i

r +
(
Qi

2
−Qi

1

)
−
(
Mi

2
−Mi

1

) (10)  

where Mi1 and Mi2 are the model prediction errors for the ith hole of 
Model 1 and Model 2, respectively. Hence, the estimated depth error 
(Êi

2) of the ith hole is as follows: 

Ê
i

2
= Ŷ

i

2
− D2 = N i

r +
(
Qi

2
−Qi

1

)
−
(
Mi

2
−Mi

1

) (11) 
This error is also likely to be small since the systematic model 

Table 1 
Legend of the two-step active learning diagram.  

Sn Sensor signals 
Dn Nominal depth (desired level) 
P Perturbation signal 
Tn Process target depth 
Yn True depth measurement (from inspection) 
Ŷn Estimated depth (GPR-predicted mean value) 
σ̂n Estimated uncertainty (GPR-predicted standard deviation) 
En True depth error (calculated as Yn − Dn) 
Ên Estimated depth error (calculated as Ŷn − Dn) 
θn Uncertainty threshold 
δ Process depth tolerance 
(*) n specifies the cutting number of a hole of the panel.  
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prediction errors from the two different steps of the process are 
removed. Moreover, the performance of the GPR models improves with 
the increasing size of training data, therefore the prediction errors would 
tend towards zero through continual growth of the dataset. 

3.3. Learning algorithm 

This section presents the implementation of the proposed learning 
approach in an algorithmic form. The pseudocode of the two-step active 
learning algorithm is described in Table 2. 

The first two lines of the algorithm set the learning parameters as 
well as initialise the current dataset (DS) and feature subset (FS) vari-
ables of both models. Line 3 marks the start of the process iteration for 
the current hole. The lines 4-8 ensure that the current training dataset 
grows to the appropriate size required for the GPR model to start making 
predictions. Note that this is done only at the beginning of a new process, 
where no training data is available. In this stage, the inspection step is 
requested after every cut and the size of the dataset increases as more 
cuts are performed. The GPR model will be trained once the pre-defined 
initial DS size has been reached. Each model refers to its own dataset, as 
indicated in Fig. 3. 

In line 10, a new input data corresponding to the features extracted 
from the sensor signals is acquired. Line 11 monitors changes in the size 
of the dataset during the previous iteration indicating that new data has 
been added. If that is true, then the model is re-trained accordingly (lines 
12-13). The feature selection step based on the ARD-SE kernel (ref. to Eq. 
(12) in the Appendix) has also been applied as part of the GPR training 
process. The current FS is updated to include the newly selected features 
(line 12). A pre-set minimum FS size is necessary to prevent the algo-
rithm from selecting too few features when little information is avail-
able, especially at the beginning of the procedure. Once the relevant 
features have been selected, the GPR model can use a Squared Expo-
nential (SE) kernel for faster re-training and prediction on new data. An 

updated GPR-SE model is then re-trained using the current DS and FS 
(line 13). 

A model prediction of the newly acquired input data is given in line 
15, where the current GPR-SE model provides a mean value (Ŷ) and 
standard deviation (σ̂) of the estimated countersink depth. A check on 
σ̂ follows in line 16: if σ̂ is greater than the uncertainty threshold (θ), 
corresponding to high levels of uncertainty in the prediction, then an 
inspection is required to measure the actual countersink depth, 
calculate the true depth error and then include it into the current DS 
(lines 17-18). Otherwise (for σ̂ ≤ θ), an inspection is not needed due 
to the model showing high enough confidence. In this case, an 
estimated depth error computed from Ŷ can be used instead of the 
true depth error (line 20). Note that in the absence of new output data 
from the inspection step, there are no changes to the current GPR 
model, DS and FS. 

Line 22 differentiates the cases based on the current cut number. If 
all the above steps were referring to the first cut, then the entire pro-
cedure (from line 10) is repeated for the second cut (i.e. the process Step 
2), with reference to its own current GPR model (i.e. Model 2), DS and FS 
(line 23). Finally, once the second cut is performed, the process can 
proceed to the next hole (line 25). This completes a single iteration of 
machining a hole using the two-step active learning procedure. 

4. Robotic countersinking experiments 

This section describes all the experimental work conducted for the 
development and testing of the proposed two-step active learning 
approach. 

4.1. Robotic platform and inspection system 

The robotic platform considered in this work consisted of two in-
dustrial robots (KUKA): a large master robot (model KR360) with a 
countersinking end-effector and a (relatively) small slave robot (model 
KR180), as shown in Fig. 4. An external drive attached to the master’s 
end-effector was applied to control the spindle movement along the feed 
direction for the countersinking task. The master was also equipped with 
an air-driven pressure foot to assist during machining, while the end- 
effector of the slave served as an anvil to counteract the process load. 
RoboTeam software was installed on both robot controllers (Kuka KRC2) 
to enable co-ordination of their movements and a central control system 
was used for the robots’ end-effectors. 

The machining application performed by the robots was the coun-
tersinking of pre-drilled holes in Carbon Fibre Reinforced Polymers 
(CFRP) panels of the aircrafts. The panel was located in between the two 
robots inside their shared workspace and was secured by means of two 
fixtures. The process operation included the following steps:  

• Both master and slave robots moved in proximity of a pre-drilled hole 
(one robot on either side of the panel).  

• A Lucana Aero vision system integrated with the robots’ controller 
was used to guide the robots for precise localisation of the hole 
centre, while maintaining normality to the surface of the panel.  

• Once in position, the slave advanced slowly towards the back side of 
the panel until contact was made and then stopped, waiting for the 
master.  

• The master activated the pressure foot and, in conjunction with the 
slave, clamped the panel to a pre-set force. This event marked the 
beginning of the cutting cycle.  

• Both robots remained in position holding the panel, while the spindle 
drive advanced the cutting tool towards the panel’s surface for 
countersinking of the hole to a specified target depth.  

• After reaching the specified countersink depth, the spindle returned 
to its home position and the master retracted the pressure foot to 

Table 2 
Pseudocode of the two-step active learning algorithm.   

Two-Step Active Learning Algorithm 
1 Set parameters: initial Dataset (DS) size; min Feature Subset (FS) size; 

uncertainty threshold (θ) 
2 Initialise variables: DS and FS of both models 
3 Begin process iteration for the current hole 
4 if DS size < initial DS size then 
5 Acquire a new pair of input-output data (i.e. signal features (S) and depth 

measurement (Y)) 
6 Calculate the true depth error (E) and update DS 
7 Repeat steps 5-6 above for the second cut (referring to its own DS) 
8 Proceed to the next hole of the panel (repeat from step 3 above) 
9 end if 
10 Acquire new input data (i.e. the feature vector extracted from S) 
11 If DS was previously updated then 
12 Reduce input space (ARD method) and update FS 
13 Re-train GPR-SE model with the updated FS and DS 
14 else 
15 Apply current GPR model to obtain a prediction mean (Ŷ) and standard 

deviation (σ̂) 
16 if σ̂ > θ then 
17 Request an inspection (get a new depth measurement Y) 
18 Calculate the true depth error (E) and update DS 
19 else 
20 Compute the estimated depth error (Ê) from the model prediction (Ŷ) 
21 end if 
22 If the depth error refers to the first cut then 
23 Repeat steps 10-21 above for the second cut (referring to its own DS and 

FS) 
24 else 
25 Proceed to the next hole (repeat from step 3 above) 
26 end if 
27 end if  
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unclamp the panel. Both master and slave returned simultaneously to 
the starting positions.  

• The process proceeded to the next hole of the panel. 

A notional tolerance of +/- 0.2 mm of the countersink depth de-
viations influenced the setup of the robotic cell. Note that the angular 
deflections were minimised due to the use of Lucana Aero system for 
precise hole alignment prior to the cutting process and the application of 
the pressure foot (i.e. the clamping forces) during machining. Conse-
quently, the angular deflections of the countersinks were not considered 
in this work. To minimise the delamination problem related to the 
machinability of CFRP panels, preliminary trials using different tool 
geometries and machining parameters were conducted outside the scope 
of this work. 

The inspection system consisted of a Cognex camera equipped with 
telecentric lenses, as illustrated in Fig. 5 (right). It was used to inspect 
the countersink depth after each cut of every single hole. An example of 
a CFRP panel with 44 countersunk holes obtained from the experiments 
is shown on the left side of Fig. 5. The inspection step was included in the 
process operational cycle to allow direct measurements of the output 
variable without any process interruptions. An image of the hole was 
acquired as soon as it was machined and then processed to compute the 

countersink depth. To align the camera with the hole, a pivoting 
mechanism attached to the master’s end-effector was applied. It was 
able to switch between two pre-set positions as required: tool position 
for machining and camera position for the inspection task. Note that the 
use of telecentric lenses allowed capturing consistent images of the 
machined holes, independently of their distances from the camera. 

To accommodate the inspection routine, the following steps were 
added to the overall machining process:  

• After countersinking the hole, the spindle moved back to the home 
position and the pressure foot was retracted.  

• The pivot drive switched to the camera position and moved the 
camera slightly forward for the image acquisition. This image was 
then sent to the PC for processing and extraction of the countersink 
depth.  

• The camera returned to its home position and the pivot drive 
switched to the tool position.  

• The process moved to the next hole. 

The above extra inspection steps increased the overall process 
operational cycle by approximately 7-8 seconds, however the process 
output variable was measured in real time, as more holes were 

Fig. 5. Inspection system: CFRP panel after countersinking (left) and Congnex camera with telecentric lenses (right).  

Fig. 4. Robotic platform used for the countersinking process: Master robot (left) and Slave robot (right).  
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machined. The accuracy of the inspection method in the computation of 
the countersink depth errors (i.e. the linear deflections of the counter-
sinks) from the images of the machined holes was in the range of +/- 
0.05 mm. 

4.2. Experimental setup and data acquisition 

An experiment using the above robotic platform was conducted to 
test the proposed two-step process method. A total of 308 holes (seven 
panels of 44 holes each) were machined. Each CFRP panel had 44 pre- 
drilled holes regularly distributed in a rectangular grid of dimensions 
30 × 21 × 7 mm. The purpose of the experiment was to evaluate the two- 
step approach and obtain the data required for the creation and training 
of predictive models. In particular, the sensor signals collected during 
machining (input data) and the inspection measurements of the 
machined holes (output data) served as a training dataset to build 
Gaussian Process Regression (GPR) models for the prediction of the 
observed countersink depth deviations. 

The experiment was conducted following the two-step method 
described in Section 2: two cuts were performed for every single hole of 
the panel with nominal depth targets D1 = 2mm (semi-finished level) 
and D2 = 2.74 mm (final level). The actual depth target specified as 
input for the countersinking process was set in accordance with the two- 
step learning procedure shown in Fig. 3: the first cut was targeted at T1 
and the second cut at the adjusted target T2. The perturbation signal was 
a zero-mean Gaussian distributed variable with standard deviation σ =

0.25. A new value of the perturbation signal was randomly selected for 
every hole of the panel. At the end of each cut, an image of the machined 
hole was captured by the inspection camera and the corresponding 
countersink depth (i.e. the process output variable) was computed. All 
the cuts were performed using the same cutting tool (a two-flute coun-
tersinking tool) and tool wear was assumed to be negligible. The 
machining parameters were set as: spindle speed 4978 RPM (Rotations 
per Minute); feed rate 298 mm/min; force target of the pressure foot 500 
N. 

The data acquisition hardware included two high frequency accel-
erometers (single axis) for vibration measurements, an Acoustic Emis-
sion (AE) sensor, a power transducer and a linear encoder. A central data 
acquisition device (NI cDAQ-9178) was used to connect all the sensors 
and ensure the synchronisation of multiple sensors signals with different 
sample rates. All the data was acquired and then processed to extract 
various signal features using NI LabVIEW software. One of the vibration 
sensors was mounted on the spindle holder to measure the tool vibration 
in the feed direction (master’s Z axis) and the other was attached to the 
pressure foot body to measure the vibration in the perpendicular 

direction (master’s X axis). The AE sensor was installed on the pressure 
foot near the cutting area. The power transducer was placed inside the 
robot controller box and provided spindle power data. The linear 
encoder acted as an acquisition trigger for the other sensor data. It was 
used to detect the pressure foot movement during the clamping process 
at the start of every cut, which was a repeatable event and therefore 
perfect for the automatic triggering task. 

In order to convert the raw sensor data in useful features that can 
represent the cutting process, a number of signal processing techniques 
were applied. These involved various filtering methods (low-pass, band- 
pass and running RMS data), signal segmentation (automatic extraction 
of the cutting region) as well as analysis of the signals in time and fre-
quency domains. The processing scheme was specific to the signal type 
and further details on the extracted signals can be found in Leco et al. 
[30]. 

In terms of the signals features, common statistical descriptors were 
extracted from the segmented signals. These included the signal mean, 
RMS, variance, skewness, kurtosis, peak (or peak-to-peak) and crest 
factor. Some additional features, such as the cutting cycle duration 
(time-in-cut) and the time to reach the signal peak (time-to-peak) were 
also considered. The frequency domain was assessed in terms of the 
Power Spectral Density (PSD) of the time data. Here, the above statis-
tical features were extracted from two main spectra: the original PSD of 
the signals and the selected PSD bands. These bands were specific to the 
signal type and further details on the extracted features can be found in 
Leco et al. [30]. A total number of 230 features were extracted, including 
two that were independent of the signals, but carried information about 
the hole number and position within the 44-holes pattern of the panels. 

4.3. Countersink depth measurements 

The countersink depth measurements obtained upon inspection of 
the machined holes after the first cut (in blue) and after the second cut 
(in red) are illustrated in Fig. 6. The horizontal dashed lines indicate the 
two nominal depth targets (denoted by D1 and D2) and the vertical 
dotted lines refer to the panel indices. 

Fig. 6 highlights the presence of a systematic error in the countersink 
depths obtained from the first cuts, which resulted in most of the holes 
being over the desired target D1 = 2 mm. Note that these cuts were 
originally set to a target with a zero mean random perturbation and 
centred at D1. The systematic error observed in the countersink depths of 
the first cuts was associated to a tool calibration error and, as shown in 
the depths of the second cuts, this was compensated by the target 
correction of the two-step process method. The large data variability 
introduced by the perturbation signal in the first cuts was also 

Fig. 6. Countersink depth measurements obtained from the experiment.  
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significantly reduced in the case of the second cuts, resulting in final 
depths within the +/- 0.2 mm tolerance from the nominal target D2 =
2.74 mm. These depth measurements confirm the effectiveness of the 
two-step method to deliver right-first-time countersinking features in 
the considered case study. 

5. Results and discussion 

This section discusses the results obtained by the proposed learning 
approach for the robotic countersinking case study. Even though the 
procedure considered reducing the number of inspections, all holes were 
inspected in order to test the performance of the learning method. Only 
the data that was required for inspection as part of the learning pro-
cedure was used in model building and decision making, and the holes 
that didn’t require inspection were only used in performance assess-
ment. The two datasets of the learning problem consisted of the features 
extracted from the acquired sensor signals and the depth data provided 
by the inspection system, with respect to the first and second cut. Model 
1 and Model 2 were trained using instances of the extracted signal fea-
tures (i.e. the feature vectors) as input data and the corresponding 
countersink depth as output data, obtained from the first and second 
cuts, respectively. 

5.1. Decision-making results 

The two-step active learning procedure requires an initial dataset for 
the GPR models to start making predictions. In a production scenario, 
this can be obtained by performing the inspection task and collecting the 
camera measurements for a pre-set number of process iterations (i.e. the 
initial DS size). In the tests here, the initial dataset consisted of a fixed 
number of holes that were cut from Panel 1, up to the whole of Panel 1. 
Another parameter that requires specification in advance is the uncer-

tainty threshold (θ), defined on the standard deviation (σ̂) output of the 
GPR model. This is also the key parameter that determines the decision 
on whether to inspect or not. Finally, the last parameter to set in advance 
corresponds to the minimum size of the Feature Subset (FS). The feature 
selection strategy consisted in the selection of a reduced subset of fea-
tures according to the ARD-SE feature selection method described in the 
Appendix. Initial choices of these three parameters were inferred from 
prior knowledge of the process and cross-validation tests performed on 
the two datasets (one for each model) obtained from the experimental 
work. A minimum FS size of 20 and an uncertainty threshold of 0.06 mm 
were selected for both models. The initial DS size was set at 43 corre-
sponding to the whole of Panel 1. Note that due to the bad signal quality, 
one of the holes of Panel 1 (hole number 42) was excluded from the 
dataset, leaving Panel 1 with a total of 43 holes. 

The results of the two-step active learning algorithm in terms of 
decision-making on the inspection task are shown in Fig. 7a) Model 1 
and b) Model 2. The predicted standard deviations σ̂ are illustrated by 
the blue vertical bars and the uncertainty threshold θ (applied to σ̂) is 
indicated by a horizontal red line. For reference, the panel indices are 
also shown in the figure by the vertical dashed lines. 

One of the key features of the two-step active learning procedure is 
the reduced need for inspection if sufficient confidence in the model’s 
predictions is achieved and, at the same time, the inclusion of the in-
spection measurements into the training dataset for all the cases of 
predictions with higher uncertainty. Note that most of the predicted 
standard deviations are below the uncertainty threshold for both the 
models, indicating that, in most cases, sufficient information was 
available at the time the models made the predictions. This means that 
the proposed decision-making method of requesting an inspection only 
for the cases where σ̂ > θ, has successfully reduced the total number of 
post-process inspections. This characteristic is better illustrated in Fig. 8, 

Fig. 7. Predicted standard deviations obtained from the GPR models according to the two-step active learning algorithm: a) Model 1; b) Model 2.  
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where the indices of all inspected holes, as requested by the two models, 
have been highlighted: a) Model 1 and b) Model 2. Only the depth 
measurements of the inspected holes were included into the training 
dataset, and thus, made available for all subsequent model predictions. 
At the end of the procedure, the final DS size was 154 for Model 1 and 
134 for Model 2, representing 50.7% and 44.1% respectively, of the total 
number of machined holes. 

The results of Fig. 8 show that for both models, the learning algo-
rithm had requested to inspect one or more holes from each of the panels 

considered in the experiment. In the case of Model 1, the initial dataset 
composed of Panel 1 provided sufficient information for the GPR model 
to confidently predict the countersink depths of most holes from panels 
2, 3 and 4. Here, the intervention of the inspection camera was occa-
sionally requested by the learning method. In contrast, the holes of Panel 
5 were inspected more often, indicating that the acquired in-process 
signals were probably slightly different from those observed in the 
presiding panels. Panel 6 and the start of Panel 7 required frequent in-
spections too, until sufficient data were collected to make confident 

Fig. 8. Inspections requested by the two-step active learning algorithm: a) Model 1; b) Model 2.  

Fig. 9. A heatmap representation of the number of inspections per hole requested by the two-step active learning algorithm in accordance with the spatial layout of 
the panel: a) CFRP panel; b) Model 1; c) Model 2. 
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predictions for the depths of the remaining holes of Panel 7. Similarly, 
Model 2 was able to achieve a high level of confidence in the prediction 
of most depths of Panel 2 after training on the data from Panel 1 initially. 
Frequent camera interventions at the beginning and middle of Panel 3, 
further increased the confidence of model for the depth predictions of 
Panel 4. The start of Panel 5 required more inspections, suggestive of a 
small change in the process conditions. Frequent camera measurements 
were also requested at the end of the Panel 5 and through the start of 
Panel 6. Differently from Model 1, Panel 6 didn’t require so many in-
spections for Model 2. There were only a few holes around the middle of 
the panel that were occasionally inspected. For Panel 7, direct mea-
surements were occasionally needed during the first half of the panel, 
indicating that the model had built up sufficient training data to make 
depth predictions with a high level of certainty for the remaining holes. 

Finally, Fig. 9 illustrates a heatmap representation of the inspected 
holes arranged following the panel layout for both models: a) CFRP 
panel; b) Model 1 and c) Model 2. This representation highlights the 
regions of the panel that required more inspections. Out of seven panels 
in total, the maximum times that the same hole position was inspected 
across the panels was six, whereas the minimum was one time. It can 
also be observed that consistent results between the two models were 
achieved from the learning algorithm. 

The two heatmaps of Fig. 9 reveal that the top half of the panels was 
inspected more often than the bottom half for both models (165 vs. 123 
in total), meaning that the knowledge acquired by the inspection of 
these first few holes of each panel had useful information for the models 
to improve their confidence in the prediction of the countersink depths 
of the remaining holes. The small variations in the number of inspections 
are due to the random perturbation signal added to the target depth, 
giving rise to slightly different (un-modelled) process conditions as re-
flected through the in-process signals. 

5.2. Performance assessment 

Although the goal of the two-step active learning algorithm was to 
reduce the total number of the post-process inspections, all the holes 
machined during the experiment were inspected after each cut and their 
countersink depth data was used for assessing the performance of the 
proposed approach. 

It is important to note that the two outputs of the GPR model, the 
depth prediction and its standard deviation, were computed based on 
the currently available dataset of the model at the time that the pre-
diction was made. For instance, when attempting to predict the coun-
tersink depth of a hole in Panel 2, the model would rely on the 
information collected from the whole of Panel 1 and any other data from 
Panel 2 that have previously been included into the training dataset. 
Consequently, in the experiment considered here, the largest dataset 
would be available for the holes of the last panel (Panel 7). Also, in a 
real-time scenario, if the algorithm decides to skip the inspection step 
and use the model prediction instead, then the actual depth measure-
ment won’t be available to compute the prediction error. In the 
following, however, for evaluation purposes, the prediction errors are 
reported for all the cuts performed in the experiment, regardless of the 
algorithm’s decision on the inspection step. 

A scatter plot of the depth prediction error against the GPR predicted 
standard deviation for each hole is given in Fig. 10 for both models: a) 
Model 1 and b) Model 2. The uncertainty threshold is also indicated by 
the red dashed line in both plots. With the error acceptance range being 
[-0.2 0.2] mm, it is observed that both models gave sufficiently accurate 
predictions, especially considering that these predictions were 
computed online, based on the current knowledge of the models. With a 
choice of 0.06 for the uncertainty threshold, the proposed selection 
criterion was effective in the identification of all the holes that showed 
higher model prediction errors, as all significant prediction errors 
beyond the required accuracy range were also associated with higher 
values of the predicted standard deviation. This is consistent with the 

Fig. 10. Scatter plots of the GPR prediction errors against their standard deviations: a) Model 1; b) Model 2.  

Fig. 11. A histogram representation of the prediction errors of all the holes divided as inspected (blue) and non-inspected (orange): a) Model 1; b) Model 2.  
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active learning strategy, where the uncertainty threshold is used to 
request an inspection and expand the current dataset. This inspection 
request according to the decision made by the learning algorithm avoids 
making model predictions that would exceed the acceptable error range. 

Finally, a histogram representation of the prediction errors obtained 
by the models for all the machined holes is illustrated in Fig. 11a) Model 
1 and b) Model 2. The holes are categorised as inspected holes (in blue), 
i.e. those which data was included in the training set of the corre-
sponding model, and the non-inspected holes (in orange), i.e. those with 
lower predicted standard deviations, showing higher model confidence. 

The histograms of Fig. 11 emphasise the separation of the holes ac-
cording to the decision made by the learning algorithm. The prediction 
error range was considerably reduced from the inspected holes to the 
non-inspected ones for both models. Most prediction errors for the non- 
inspected holes were within the [-0.2 0.2] mm interval and [-0.15 0.15] 
mm for Model 1 and Model 2, respectively. This confirms the ability of 
the proposed method to successfully identify the holes that didn’t 
require inspection, thus reducing the total number of inspections by 
49.3% for Model 1 and 55.9% for Model 2. The prediction accuracies are 
of comparable magnitude to the Leave-One-Out Cross-Validation (LOO- 
CV) results of the GPR models obtained in Leco et al. [30] and hence, the 
active learning represents an efficient modelling strategy. 

6. Conclusions 

This paper presented an innovative two-step process method to 
enable right-first-time robotic machining operations. The division of the 
manufacturing process into two similar steps and the inclusion of an 
inspection step in between allowed for the prediction and then 
compensation of the robot-related systematic machining errors. The 
Gaussian Process Regression (GPR) framework combined with a 
perturbation-based data generation approach was applied to build and 
train the models online, without the need for any process interruption. 
The models predicted the quality of the machined part based on in- 
process sensory information as opposed to measuring it directly by the 
post-process inspection step. Moreover, a two-step active learning 

procedure for making online decisions on the inspection step was 
implemented and then tested in a robotic countersinking experiment. 
The proposed method was able to successfully identify the cutting in-
stances that exhibited high confidence in the model predictions and 
therefore did not require an inspection step. In addition, the instances 
that contained new information to the current process knowledge were 
detected using an uncertainty threshold on the GPR model variance 
prediction. The appropriate information of those instances was added to 
the model training data in an active learning framework that allowed 
continual improvement in the prediction accuracies for the subsequent 
process data. Finally, by correction of the systematic depth errors 
observed in the first step, the proposed two-step countersinking method 
was able to achieve final countersink depths within the process tolerance 
of ±0.2 mm from the desired target, demonstrating the potential of this 
approach for right-first-time robotic machining. 
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Appendix 

A.1 Gaussian Process Regression (GPR) 

To take into account the various sources of error affecting the output of the process, a probabilistic learning approach based on Gaussian Process 
Regression (GPR) [26] has been considered in this work for process modelling. 

The GPR is probabilistic approach to regression, which considers inference directly in the function space by generalising the conventional multi- 
variate Gaussian probability to describe a distribution over functions rather than scalars or vectors [26]. In a d-dimensional regression problem, let D 

= {(xk , yk)
⃒⃒k = 1,…,N} denote a training dataset of N instances of pairs of the input vector xk ∈ R

d and the output value yk ∈ R. Furthermore, let f(x)
denote a Gaussian Process (GP) that defines the mapping between the input vector x and the output y = f(x)+ ε, where ε ∼ N (0, σ2n ) is the output 
measurement noise with variance σ2n . In the GPR framework, f(x) is assumed to be a random function that can be fully specified by its mean function 
m(x) and the covariance (also called kernel) function k(x, x

′
). Note that the kernel function defines the covariance of the input pairs x and x

′ . In 
general, a zero mean function is used when the prior information about f(x) is scarce, therefore the choice of the kernel function would completely 
define the GP. A typical kernel choice is the Squared Exponential (SE), also called Gaussian covariance, which assesses the covariance of two input 
vectors in terms of their Euclidian distance in the d-dimensional space. The kernel function chosen in this work is of the type of the SE covariance 
performing Automatic Relevance Determination (ARD), which is referred to as the ARD-SE kernel and defined as: 

kARD(x, x
′

) = σ2

f exp

[
−

1

2

∑d

i=1

(
‖ xi − x

′

i‖
2

l
2

i

)]
(12)  

where d is the dimension of the input vector x, σf refers the signal standard deviation and li is the individual length-scale hyper-parameter for each 
input dimension xi. The ARD is achieved by the fact that each of the input dimensions has an individual li. A large value of li would lead to a small 
covariance term for xi, resulting in an input dimension that has little influence in the inference. The values of the hyper-parameters specified in the 
covariance function are optimised from the available dataset in the training process using a maximum likelihood estimation approach. 

A GPR model makes predictions on new testing points X* by considering the joint distribution of the observations y (i.e. the training targets) and 
the new predictions f * = f(X*). According to the GP framework, the predictions are computed by conditioning this joint distribution to the training 
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data (i.e. inputs X and the outputs y), which leads to the following expressions for the conditional mean f̂ * and covariance cov(f *) of new testing 
points X*: 
f̂ * = K(X*,X)

[
K(X,X) + σ2

nI
]−1

y

cov(f *) = K(X*,X*) − K(X*,X)
[
K(X,X) + σ2

nI
]−1

K(X,X*)
(13)  

where K(X*,X), K(X,X*) and K(X*,X*) are the covariance matrices evaluated at all pairs of testing and training points accordingly and with respect to 
the ARD-SE kernel defined in Eq. (12). Note that Eq. (13) represents the two key predictive expressions of the GPR: the first gives the model predictions 
on new testing inputs and the second gives the model predictive variance, which is useful additional information on the model reliability. 

This work applies GPR models to map the relationship between the sensor signals acquired during the cutting process (input data) and the post- 
process inspection result (output data). In addition, the ARD-SE kernel defined in Eq. (12) was chosen to select the relevant features during model 
training. The relevance of each input dimension was assessed based on the value of their length-scale hyper-parameter li and the dimensions with 
major influence in the model’s output prediction were selected for further analysis. The reduced input space allowed for efficient model 
computations and faster prediction times on new unseen data. 
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