
Stay on the Beat With Tensor-Valued
Encoding: Time-Dependent Diffusion
and Cell Size Estimation in ex vivo
Heart
Samo Lasič 1,2*, Nadira Yuldasheva3, Filip Szczepankiewicz4,5,6, Markus Nilsson4,
Matthew Budde7, Erica Dall’Armellina3, Jürgen E. Schneider3, Irvin Teh3† and
Henrik Lundell 1†

1Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen
University Hospital Amager and Hvidovre, Copenhagen, Denmark, 2Random Walk Imaging, Lund, Sweden, 3Leeds Institute of
Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom, 4Clinical Sciences, Lund University, Lund,
Sweden, 5Harvard Medical School, Boston, MA, United States, 6Brigham and Women’s Hospital, Boston, MA, United States,
7Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States

Diffusion encoding with free gradient waveforms can provide increased microstructural
specificity in heterogeneous tissues compared to conventional encoding approaches. This
is achieved by considering specific aspects of encoding, such as b-tensor shape,
sensitivity to bulk motion and to time-dependent diffusion (TDD). In tensor-valued
encoding, different b-tensor shapes are used, such as in linear tensor encoding (LTE)
or spherical tensor encoding (STE). STE can be employed for estimation of mean diffusivity
(MD) or in combination with LTE to probe average microscopic anisotropy unconfounded
by orientation dispersion. While tensor-valued encoding has been successfully applied in
the brain and other organs, its potential and limitations have not yet been fully explored in
cardiac applications. To avoid artefacts due to motion, which are particularly challenging in
cardiac imaging, arbitrary b-tensors can be designed with motion compensation, i.e.
gradient moment nulling, while also nulling the adverse effects of concomitant gradients.
Encoding waveforms with varying degrees of motion compensation may however have
significantly different sensitivities to TDD. This effect can be prominent in tissues with
relatively large cell sizes such as in the heart and can be used advantageously to provide
further tissue information. To account for TDD in tensor-valued encoding, the interplay
between asynchronous gradients simultaneously applied along different directions needs
to be considered. As the first step toward in vivo cardiac applications, our overarching goal
was to explore the feasibility of acceleration compensated tensor-valued encoding on
preclinical and clinical scanners ex vivo. We have demonstrated strong and predictable
variation of MD due to TDD in mouse and pig hearts using a wide range of LTE and STE
with progressively increasing degrees of motion compensation. Our preliminary data from
acceleration compensated STE and LTE at high b-values, attainable on the preclinical
scanner, indicate that TDD needs to be considered in experiments with varying b-tensor
shapes. We have presented a novel theoretical framework, which enables cell size
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estimation, helps to elucidate limitations and provides a basis for further optimizations of
experiments probing both mean diffusivity and microscopic anisotropy in the heart.

Keywords: tensor-valued diffusion encoding, b-tensor, time-dependent restricted diffusion, cardiac MRI, motion
compensation, mean diffusivity, microscopic anisotropy, isotropic diffusion weighting

1 INTRODUCTION

Diffusion weighted MRI provides non-invasive contrast sensitive
to tissue microstructure. For unbiased assessments, confounding
factors need to be considered, some of which include: bulk
motion of organs, orientation dispersion of anisotropic tissue
micro-environments found within imaging voxels due to the
limited spatial resolution, and time-dependent diffusion
(TDD) effects becoming significant in larger cells, when
diffusion encoding times are comparable to characteristic time
required for spins to diffuse across intracellular spaces.
Addressing these effects can enable increased specificity of
tissue assessments and provide further microstructural
information.

In diffusion tensor imaging (DTI), diffusion is encoded along
several directions to obtain mean diffusivity (MD) and fractional
anisotropy (FA) [1]. In cardiac imaging, DTI has been used to
probe microstructural changes in diseases such as myocardial
infarction [2], hypertrophy [3], fibrosis [4] and dilated
cardiomyopathy [5]. In recent years, multidimensional
diffusion encoding or tensor-valued encoding [6–16],
underwent rapid conceptual and experimental development
gaining traction as a technique capable of providing increased
microstructural specificity unprecedented by DTI. This can be
achieved by varying the encoding direction during the diffusion
weighting, thus yielding b-tensors of various shapes. Special cases
include the traditional linear tensor encoding (LTE), planar
tensor encoding, also known as the double diffusion encoding
[17], and spherical tensor encoding (STE) yielding isotropic
diffusion weighting [9,13,18–20]. STE can be used to
accelerate estimation of MD [19,21,22] and can be combined
with LTE to probe microscopic anisotropy from data at higher
diffusion weighting (b-values), which is unconfounded by
orientation dispersion [6,7,23]. While tensor-valued encoding
has been successfully applied in the human brain
[10,15,24–26] and other organs [27–30], its potential and
limitations are only beginning to be explored in the heart [31].

Due to bulk motion artefacts, diffusion MRI is particularly
challenging in the heart. To avoid motion artefacts, cardiac-
triggering has been applied with stimulated echo (STEAM)
[32]. This method can easily achieve high diffusion encoding
strengths (b-values) but suffers from signal loss [33,34],
sensitivity to myocardial strain [35] and the need for breath-
holding. Furthermore, the TDD effects vary with cardiac cycle,
which cannot be independently controlled. The limitations of
triggered STEAM can be largely avoided by using motion-
compensated spin-echo (SE) methods, which can null gradient
moments up to the first order (M1-nulling), i.e. velocity
compensated [36] or second order (M2-nulling), i.e., velocity
and acceleration compensated [37]. Nulling increasingly higher

moments requires longer echo times, reducing the efficiency of
waveforms with M3-nulling and beyond even on preclinical
scanners [38]. Importantly, it has been shown that M2-nulling
can significantly decrease motion artefacts compared to M1-
nulling [37] and M2-nulling is favourable for in vivo cardiac
diffusion imaging [38].

A method for designing b-tensors of arbitrary shapes with
nulled gradient moments up to the 2nd order and beyond while
also nulling the adverse effects of concomitant gradients was
recently proposed [39,40]. In the initial in vivo and ex vivo
measurements of diffusion in the heart myocardium,
significant variation of MD values from encoding waveforms
with varying degrees of motion compensation was observed [39].
Based on the previous experience with LTE using pulsed and
oscillating gradients applied in ex vivo mouse heart [41], it was
hypothesized that the MD variations are likely caused by
differences in sensitivity to time-dependent diffusion (TDD)
[42–48]. At high b-values, these effects may bias estimation of
microscopic anisotropy [48,49] or they can be used
advantageously to simultaneously assess cell size and
anisotropy [48]. The effects of TDD in tensor-valued encoding
can be understood based on our recent frequency-domain
analysis [50] and the intuitive concepts of spectral tuning and
spectral anisotropy. Tuning refers to the overall similarities in
encoding power distributions between different b-tensors, where
well-tuned b-tensors have similar encoding spectra and yield
similar apparent mean diffusivities also for TDD. Spectral
anisotropy, on the other hand, can only be ascribed to
b-tensors beyond LTE, which have more than one non-zero
eigenvalues. It refers to the encoding power distribution
differences between different encoding axes within any single
b-tensor, which may affect attenuation also at higher b-values
(kurtosis). Here we focus mainly on the concept of tuning
relevant for MD estimation.

The overarching goal of this study was to explore the feasibility
of acceleration compensated LTE and STE on preclinical and
clinical scanners ex vivo as the first step toward in vivo
applications in the heart. Our aim was to examine MD bias
caused by anisotropy and TDD, estimate cell sizes in the
myocardium, and assess potential and limitations for probing
microscopic anisotropy. To address these aims, we performed
experiments on mouse and pig hearts using a wide range of LTE
and STE with progressively increasing degrees of motion
compensation. We have developed a novel theoretical
framework, which enables us to understand the MD bias and
estimate cell sizes. We suggest a frequency scaling useful for
comparing encoding and diffusion spectra, and introduce the
normalized cumulative encoding power as a low-pass filtered
b-value useful for comparing size sensitivities across different
encoding waveforms. Our results thus help to elucidate
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limitations and provide a basis for further optimizations of
experiments probing both MD and microscopic anisotropy in
the heart.

2 THEORY

In this section we provide the theoretical framework for analyzing
the apparent MD and discuss the relative frequency scaling of
diffusion and encoding spectra, which is relevant for comparing
size sensitivities across different encoding waveforms. We use
spectral-domain signal analysis [45,50], which provides an
effective way to study TDD at moderate diffusion weighting
and for arbitrary encoding waveforms without well-defined
diffusion times. The novelty of this framework is the
identification of the spectral trace as the key encoding property
affecting MD, which can be applied to arbitrary b-tensor shape.
This property provides means of gauging tuning differences
between different b-tensors. Furthermore, we introduce the
normalized cumulative encoding power and the derived
concepts of the differential size sensitivity and the “relative
detection size” scale.

Within Gaussian approximation of cumulant expansion, the
single compartment signal decay is mono-exponential. We thus
consider negligible any effects of intra-compartmental kurtosis,
which may at high b-values yield deviations from mono-
exponential decay even for a single restricted diffusion
compartment [12,51].

2.1 Signal Attenuation
Consider the dephasing waveform given by

q t( ) � γ∫t
0

g t′( )dt′, (1)

where γ is the gyromagnetic ratio and g(t) is the effective gradient
waveform accounting for polarity change after each successive
180° RF pulse. At the time of spin-echo, the normalized signal is
approximated by E ≈ exp( − β), with attenuation factor

β � 1
2π

∑3
i�1

∑3
j�1

∫∞
−∞

sij ω( )Dij ω( )dω. (2)

Here we used the diffusion spectrum, Dij(ω), which is the
velocity cross power spectral density and is given by the Fourier
transform of velocity cross-correlation tensor [50].We also define
components of dephasing cross power spectral density, which we
simply call encoding spectrum,

sij ω( ) ≡ qi ω( )�qj ω( ), (3)
and are given by the Fourier transform of the dephasing

waveforms,

q ω( ) � ∫∞
−∞

q t( )eiωtdt. (4)

The total encoding power, also known as the b-tensor is
given by

bij � 1
2π

∫∞
−∞

sij ω( )dω. (5)

Note that the trace of b-tensor is given by

b ≡ ∑3
i�1

bii � 1
2π

∫∞
−∞

s ω( )dω, (6)

where we introduced the spectral trace as

s ω( ) ≡ ∑3
i�1

sii ω( ). (7)

The spectral trace, s(ω), provides complete encoding
information needed for predicting MD in powder-samples
comprising multi-compartment time-dependent anisotropic
diffusion within randomly oriented compartments.

Restricted diffusion in simple geometries can be accounted for
by considering eigen-spectra, i.e., diffusion spectra along the
principle compartment axes [45], λk(ω). The diffusion
spectrum can thus be expressed with rotation matrices, R, as

Dij ω( ) � ∑3
k�1

RkiRkjλk ω( ). (8)

At low b-values, rotation-averaged signal decay is given by the
average attenuation factor, obtained by combining Eqs 2, 8 as

〈β〉 � bMD � b �Diso � 1
2π

∫∞
−∞

s ω( )�λiso ω( )dω, (9)

where

�λiso ω( ) � 1
3
∑
k

λk ω( ). (10)

Here we also accounted for averaging over compartments with
potentially different diffusivities, marked by the overline symbol.
Isotropic diffusion spectra for various restricted geometries are
shown as a function of restriction radii in Figure 1.

Note on Signals at Higher b-Values
The deviation from mono-exponential decay for rotation-
averaged signals in multi-compartment systems is to the first
order given by diffusion variance as b2V = 〈β2〉 − 〈β〉2 (see Eqs.
2.119 and 2.134-2.137 in [50]). By changing the shape of the
b-tensor, the variance can be separated to contributions due to the
variance of isotropic apparent diffusivities (tensor traces) and
average diffusion anisotropy [7,53–55]. This encoding strategy
can be used to estimate average diffusion anisotropy not
confounded by the underlying orientation dispersion of
individual compartments. However, TDD can affect both the
initial signal decay (MD) and the deviations from mono-
exponential decay (V). While MD is affected by the spectral
trace of b-tensors (the tuning handle), the variance is affected also
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by the differences in encoding power distribution along different
b-tensor axes, which may be called spectral anisotropy
[48,50,56–59]. This effect has been previously noted by
realizing that isotropic diffusion encoding may be rotation
dependent [60,61]. While preliminary measurements in the
human brain on a clinical scanner did not show rotational
dependence of STE [57], the effect was very strong in fixed
monkey brain on a preclinical scanner with much shorter
encoding times [58].

Here we focus on the differences in spectral tuning across LTE
and STE waveforms with varying degrees of motion
compensation, which can predict differences in apparent MD
values, enabling estimation of cell size. We also estimate the
effects of TDD on rotation-averaged signals at higher b-values,
which is relevant for assessment of microscopic anisotropy.

2.2 Frequency Scaling and Size Sensitivity
Compared to free (Gaussian) diffusion with a flat spectrum,
restricted diffusion spectrum has a characteristic high-pass
(Lorentzian) shape, i.e., contributing minimum attenuation
(Eq. 9) at low frequencies (long times). The low-frequency
expansion of λ(ω) is given by

λ ω( ) ≈ Γ R
4

D0
ω2, (11)

where R is pore radius and

Γ ≡ ∑
i

2ζ−4i
ζ2i + 1 − d

(12)

is the geometric factor determined by d = 1, 2, 3 for planar,
cylindrical and spherical pores, respectively, and ζi are zeros of
Bessel function of the first kind [45,62].

Within the limit of the low-frequency approximation, which
depends on pore size and shape, Eq. 11 can be inserted in Eq. 9,
suggesting a size sensitivity measure in terms of the second
frequency moment of encoding spectra [63] (cf. Eqs 2.108 and
2.154 in [50] 1. However, note that for a given geometry, the full-
range diffusion spectra for different R coincide at equal values of
R2ω (see Figure 1). This suggests a common unitless scale
given by

Ω ≡
R2

D0
ω. (13)

Alternatively, the “relative detection size” axis Rω could be
used, defined as

Rω ≡
���
D0

ω

√
, (14)

which corresponds to the pore size at Ω = 1 from Eq. 13. While
Rω is not an absolute scale, it allows comparing size sensitivities
across waveforms with different degrees of motion
compensation.

In contrast to the diffusion spectrum, the encoding power is
limited to a low-frequency band, with the bandwidth depending
on the oscillatory nature of various gradient waveforms. The
upper encoding frequency limits can be compared across
different waveforms by considering the normalized cumulative
encoding power (see dashed lines in Figures 2, 3 and the
Supplementary Figure S1),

FIGURE 1 | Normalized isotropic diffusion spectra, λiso(ω)/D0, for randomly oriented restrictions of varied shapes and sizes shown as a function of frequency (A) or
the normalized frequency Ω ≡ R2

D0
ω (B). On the Ω-scale, the restricted diffusion spectra are independent of size for any given geometry. In the limit of zero frequency, the

isotropic diffusion spectra are determined by 0, 1, and 2 free diffusion components that exist in spherical, cylindrical and planar geometries, respectively.

1Errata for Ref. [50]: Eq. 2.108 is missing ω2 term and the definition of effective size
sensitivity after Eq. 2.155 is missing 4-th power in ρk � Γkr4k .
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~b ω( ) ≡ 1
b

1
π
∫ω
0

s ω′( )dω′. (15)

The frequency window in which two encoding waveforms are
expected to yield different MD values due to restricted diffusion
(Eq. 9) is given by the difference in cumulative encoding power
Δ~b(ω).

3 METHODS

3.1 Experiments
To explore the feasibility of motion compensated linear and
spherical tensor encoding, we have performed pilot
experiments on preclinical and clinical scanners ex vivo. The
main goal was to assess effects of TDD on MD estimation from
different diffusion encodings and estimate sizes of cells in the
myocardium. The second goal was to explore signal attenuation
differences between acceleration compensated LTE and STE in
the range of higher b-values (kurtosis), which could be used for
assessment of microscopic anisotropy in vivo.

Mouse Heart on a Preclinical Scanner
Two mouse hearts were arrested in slack state, perfusion fixed,
excised, immersion fixed in PFA and embedded in 1% agarose
PBS gel for MRI. All animal procedures were performed in
accordance with United Kingdom Home Office authorization
and the University of Leeds Animal Welfare and Ethical Review
Committee.

Multi-shot 3DDWEPI data were acquired at 28°C on a Bruker
Biospec 7T MRI scanner (Gmax = 1.5 T/m) using a custom
diffusion waveform sequence: TR = 2 s, TE = 34.8 ms, NSA =

1, FOV = 10.8 × 9, ×, 9 mm, resolution = 225 × 225 × 450 μm.
Twelve different diffusion encoding waveforms, i.e., LTE (3) +
STE (1) with all gradient moments nulled up to zeroth, first and
second order (M0, M1, M2) were applied with the encoding time
τ = 24 ms and b = 50, 800 s/mm2. Note that the encoding time here
represents total waveform duration. We additionally used the
conventional non motion compensated PGSE with the same
b-values and encoding time (Figure 2). To assess the potential
for in vivo assessment of microscopic anisotropy, we performed
pilot experiments with acceleration compensated (M2) encoding
and an extended range of b-values, b = 50, 400, 800, 1200, 1600,
2000 s/mm2. LTE was in all cases applied in 6 non collinear
directions and STE was not rotated and repeated 6 times.

Due to sample preparation and data acquisition issues related
to heart 1, only a small region of heart one was viable for analysis,
and we had to exclude the M0-LTE2 data point. Encoding
waveform details are given below.

Pig Heart on a Clinical Scanner
Two pig hearts were obtained from a local butcher, embedded in
1% agarose PBS gel, and scanned at room temperature. MRI data
were acquired on a Siemens Prisma 3T clinical scanner using a
prototype single-shot spin-echo EPI [64]: TR = 5 s, TE = τ +
22 ms, in-plane resolution = 3 × 3 mm2, partial-Fourier = 6/8,
slice thickness = 8 mm, FOV = 320, ×, 118 mm2 with ZOOM-IT
excitation. Six different diffusion encoding waveforms, i.e., LTE
and STE with all gradient moments nulled up to zeroth, first and
second order (M0, M1, M2) were applied with three different
encoding times (τ = 46, 57, 67 ms) and b-values of 0.1 and
0.45 ms/μm2. In all cases, LTE was applied along 3 orthogonal
directions repeated 4 times for each rotation, while STE was not
rotated and repeated 12 times. In Figure 3, the time and
frequency scales correspond to the encoding with the longest τ.

FIGURE 2 | Encoding on the preclinical scanner. Radio frequency (RF) pulses, effective gradient waveforms g(t), dephasing waveforms q(t), normalized spectral
trace s(ω) (grey shaded) and diagonal components of the dephasing cross power spectral density. The normalized cumulative encoding power ~b(ω) is shown as dotted
line. Individual components (XYZ in red, green, blue) from M0-, M1-, M2-STE were used as M0-, M1-, M2-LTE. Their power spectra is shown below s(ω). In all cases the
encoding time was τ = 24 ms. Note the shift of spectra from zero frequency to higher frequencies, which alters sensitivity to TDD. The STE components with most
similar/different power spectra compared to the spectral trace are marked as LTE1/LTE3.
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Encoding Waveforms
We have used a wide range of diffusion encoding waveforms with
varying encoding times τ, degrees of motion compensation (M0,
M1, M2) and b-tensor shapes (STE, LTE). These waveforms were
designed to simultaneously null arbitrary gradient moments and
concomitant gradients [39] 2. We would like to emphasize that the
employed STE was only “K-nulled” [39,40], meaning that they can
null effects of concomitant gradients only under a specific rotation,
as applied in this study. The employed gradient waveforms,
however, have varying sensitivities to restricted diffusion,
characterized by their encoding spectra (see Figures 2, 3).

On the preclinical scanner we obtained LTE by using single
channels (XYZ, LTE123) from the corresponding STE for each
degree of motion compensation (see Figure 2). To extend the
sensitivity to TDD at long diffusion times, we additionally applied
a traditional pulsed gradient spin-echo (PGSE). At higher
frequencies, relevant for restricted diffusion, the encoding
power spectra for the LTE3 have significantly less power
compared to LTE1, LTE2 and STE. Consequently, LTE3

waveforms are expected to yield lower MD values. For an
unbiased anisotropy assessment, LTE would ideally be equally
sensitive to TDD compared to STE, and thus yield equal MD

FIGURE 3 | Encoding on the clinical scanner. Radio frequency (RF) pulses, effective gradient waveforms g(t), dephasing waveforms q(t) (XYZ in red, green, blue)
and normalized spectral trace s(ω) (grey shaded). The normalized cumulative encoding power ~b(ω) is shown as dotted line. The examples shown in this figure are for the
longest encoding time of τ = 67 ms, which could accommodate all six encodings. In addition, experiments with M0- and M1-nulling were also applied at τ = 57 ms and
experiments without motion compensation (M0) were also applied at τ = 47 ms (see Table 1). While STE is very similar to the one used on a preclinical scanner (see
Figure 2), albeit with a shorter refocusing gap relative to the encoding duration, the LTEs were chosen to maximize b-value.

TABLE 1 | Summary of all diffusion encodings at different encoding times τ,
degrees of motion compensation (M0, M1, M2) and b-tensor shapes (STE,
LTE) on preclinical (Figure 2) and clinical (Figure 3) scanners. For each degree of
motion compensation, the preclinical LTE1/LTE3 waveforms yield similar/different
MD compared to the STE waveforms (see Figure 2).

τ [ms] preclinical scanner–Figure 2

24 M0-STE (Lasic) M1-STE (Lasic) M2-STE (Lasic)
M0-LTE1 M1-LTE1 M2-LTE1
M0-LTE2 M1-LTE2 M2-LTE2
M0-LTE3 M1-LTE3 M2-LTE3
M0-PGSE

clinical scanner–Figure 3

46 M0-STE (Lasic)
M0-LTE (PGSE)

57 M0-STE (Lasic) M1-STE (Lasic)
M0-LTE (PGSE) M1-LTE (bipoloar)

67 M0-STE (Lasic) M1-STE (Lasic) M2-STE (Lasic)
M0-LTE (PGSE) M1-LTE (bipoloar) M2-LTE (Stoeck)2Code for generating motion compensated b-tensor encoding waveforms.
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values. Such waveforms could be considered perfectly tuned.
However, this was not fulfilled in our encoding, where LTE3 is
“less tuned” to STE than LTE1 and LTE2, the latter two being
rather “similarly tuned.”

On the clinical scanner we used similarly designed STE as on
the preclinical scanner and compared it with the b-value
maximizing LTEs from the PGSE sequence (M0), bipolar (M1)
and the waveform by Stoeck et al. [37] (M2). See Figure 3. We
selected the viable encodings at varied encoding times τ to achieve
identical b-values. A summary of all encodings used on
preclinical and clinical scanners can be found in Table 1.

3.2 Size Estimation—Two Compartment
Hindered-Restricted Model
Significant MD differences observed with different diffusion
encoding schemes motivated data modeling and cell size
estimation. Further aim was to validate our theoretical
predictions and assess the range of diffusion encoding times
where TDD effects are expected to affect MD in the myocardium.

The myocardium was manually segmented based on the low
b-value image and the ROI-average MD values were calculated as

MDexp � 1
bhigh − blow

1
Nacq

∑Nacq

n�1
ln

Sn blow( )
Sn bhigh( ), (16)

where Nacq is the total number of acquisitions (directions and
averages), which where identical for LTE and STE. To estimate
cell sizes, we used a simple tissue model consisting of hindered
and restricted compartments,

MDcalc � 〈β〉
b

� fRMDcyl R,D0( ) + 1 − fR( )Dh, (17)

where fR is the apparent signal fraction associated with restricted
diffusion, MDcyl(R, D0) is the rotation-averaged apparent
diffusivity for cylinders (using Eq. 9 with λiso(ω) shown in
Figure 1) and Dh is the hindered Gaussian diffusion
coefficient. For each MDexp data we used the corresponding
encoding spectral trace (see Figures 2, 3) and calculated
MDcyl(R, D0) for 500 cylinder radii between 1-50 μm. The
bulk diffusivity D0 was adjusted according to the temperatures
in preclinical and clinical experiments, i.e. 2.48 μm2/ms at 28°C
and 2.0 μm2/ms at 20°C, respectively3.

The hindered-restricted diffusion model was fitted globally to
the ROI-average MDexp from 13 (preclinical) or 12 (clinical)
different waveforms. MDcalc were calculated for each MDcyl(R,
D0) and for fR between 0-1 (500 values) andDh/D0 between 0.05-1
(500 values). The optimal fit was then found by searching for the
minimal mean square difference between the MDcalc and MDexp

values. The goodness of fit is thus reflected by the root mean
square error (RMSE). Calculations and data fitting where
implemented in MATLAB (The MathWorks, Natick, MA).
Data, fitting and simulation code is publicly available at
{https://doi.org/10.5518/1094} {Stay on the beat with tensor-

valued encoding [Dataset and Code]: https://doi.org/10.5518/
1094}.

3.3 Noise Simulations
The aim of noise simulations was to assess differential sensitivity
to TDD for different encoding schemes. This provides an
overview of expected contrast-to-noise ratios for different
waveforms, noise conditions and cell sizes.

Noise simulations were implemented in MATLAB (The
MathWorks, Natick, MA). We used close form expressions for
diffusion eigen-spectra in simple geometries (spheres and
cylinders) [45,48,50]. In the cases of eccentric cylinders and
axisymmetric spheroids we used the corresponding eigen-
spectra with two different restriction sizes. This approximation
has been previously used and validated by simulations [48,65].

Average signals or signal differences (see Figures 8–13) were
obtained by averaging Eq. 2 over a limited set of rotations, i.e., 15
for axisymmetric restrictions [6,7,48] and 60 for eccentric
cylinders [23,66]. Note that we did not employ the known
analytical expression for the diffusion variance of rotation-
averaged signal [50] (mean kurtosis representation).

We used substrates with a mixture of restricted and hindered
Gaussian diffusion compartments with varying signal fractions fR.
Rician noise, corresponding to varying signal-to-noise ratios (SNR
at b0 for each rotation), was added to signals from different
substrate rotations in 1000 iterations. To have comparable SNRs
between calculations with different number of rotations (15 and
60), the SNRs were rescaled according to SNR60 � SNR15

�����
15/60

√
.

Note that rotating the substrate is equivalent to rotating the
diffusion encoding (both LTE and STE).

Differences between rotation-averaged signals from different
encoding waveforms (STE and LTE or different LTE) were
calculated, yielding average and standard deviation values
subject to noise, ΔS and σΔS, respectively. The contrast-to-
noise ratio ΔS/σΔS was used for evaluation in Figures 10–13.

4 RESULTS

4.1 Apparent Mean Diffusivity and Cell Size
Estimation in Mouse and Pig Myocardia
The two-compartment hindered-restricted model (Eq. 17) fits
experimental data frommouse and pig hearts well in all four pilot

TABLE 2 | Summary of results from the global fitting of the two compartment
hindered-restricted model (Eq. 17) to MD values from all encoding waveforms
applied on preclinical (mouse) and clinical (pig) scanners. The estimated
parameters are: cell radius R, restricted signal fraction fR, hindered diffusivity Dh

and the root mean square error (RMSE). For pig hearts, additional results are
shown from a selected dataset only using long encoding times, τ = 67 ms.

Dataset R [μm] fR Dh [μm2/ms] RMSE [×10−3 μm2/ms]

mouse 1 (all) 7.2 0.24 0.97 7.6
mouse 2 (all) 5.8 0.19 1.06 15
pig 1 (all) 6.1 0.31 0.42 0.010
pig 2 (all) 7.5 0.33 0.32 0.014
pig 1 (τ = 67 ms) 6.2 0.32 0.4 0.011
pig 2 (τ = 67 ms) 7.8 0.34 0.28 0.014

3Diffusion Coefficients of Water.
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experiments both on preclinical and clinical scanners. The results
are summarized in Table 2. Cell size estimates are consistent
between mouse and pig hearts, suggesting diameters in the
interval 11.6-15.6 μm (minimum to maximum estimated
value). The apparent restricted signal fraction fR was in the
interval 0.19-0.34 and the hindered diffusivities were around
1 μm2/ms for the mouse hearts and around 0.37 μm2/ms for
pig hearts.

For mouse hearts, ROI-average MD was in the interval 0.91-
1.28 μm2/ms for heart 1 and 1.04-1.27 μm2/ms for heart 2 (see
Figure 4). The TDD contrast was significant and consistent also
at longer diffusion times (lower encoding frequencies)
attainable on a clinical scanner for the pig hearts (Figure 3).
In this case, the ROI-average MD values were consistently
lower in the interval 0.55-0.8 μm2/ms (Figure 5) in both pig
hearts, however yielding similar size estimates as for the mouse
hearts.

Fitting only MD values probed at long encoding times
yielded comparable results (τ = 67 ms in Table 2,
Supplementary Figure S2). For pig hearts, a small tendency
toward negative fit residuals was observed from LTE data
(Figure 5). Fitting only STE data but accounting for
residuals from the entire dataset yields comparable root
mean square errors (RMSE) of 0.013 and 0.026 μm2/ms but
large negative sums of residuals (−0.055 and −0.164 μm2/ms).

4.2 Feasibility of Microscopic Anisotropy
Assessment - Acceleration Compensated
STE and LTE at High b-Values in the Mouse
Heart
ROI-average signals fromM2-LTE and M2-STE with b-values up
to 2000 s/mm2 are shown in Figure 6. In both hearts a small
deviation between the STE and LTE is visible, which can be

FIGURE 4 |ROI-averagemean diffusivity in the left ventricle myocardium in the central slice (long-axis view) of twomouse hearts (1-top, 2-bottom) and prediction of
the hindered-restricted model. Left column (A1,A2): measured MD (markers) and prediction (lines) vs. cylinder radius, R. Right column (B1,B2): measured MD vs.
prediction with error bars corresponding to the distance between measurement and prediction (dotted line for unity relation). For every degree of motion compensation
(M0, M1, M2), the LTE waveforms correspond to the X,Y,Z channels of the STE waveforms.
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attributed to microscopic anisotropy. However, also clearly
visible is a deviation between LTE1 and LTE3, while LTE1
and LTE2 coincide well. These differences are well above the
noise level, indicating a significant effect of TDD corresponding
to the differences in encoding power spectra. The largest
deviation from STE is seen for LTE3, which has more power
at low frequencies compared to LTE1 and LTE2 waveforms. See
Figure 2.

4.3 Differential Size Sensitivity From
Different Encoding Waveforms
To examine size sensitivity differences between different LTE and
STE waveforms (Figure 4), we calculated the differences in
normalized cumulative encoding power spectra as a function
of Rω (Eq. 14), which we call differential size sensitivity ~b(ω) (Eq.
15). This is shown in Figure 7 for the differences between LTE3
and STE (A), LTE1 and STE (B) and between LTE1 and LTE3 (C)
from our preclinical M0, M1 and M2 waveforms. For reference
we included also results for the velocity compensated STE based

on the magic-angle spinning of q-trajectory (qMAS) [6,7,48]
(shown in the Supplementary Figure S1). Higher values
indicate ranges where MD bias is expected. These ranges
represent windows of size sensitivity, providing opportunity
for cell size estimation. The shift of maxima to smaller sizes
(higher frequencies) from M0 to M2 can be seen. The relatively
high values for qMAS in panel A indicate poor tuning, while the
low values in panel B indicate good tuning4 between STE and LTE
qMAS waveforms, a useful feature noted in our earlier work [48].
The differential sensitivity for the ”detuned” LTE from qMAS is
similar to that of the M1 waveforms (A, C). Large values in panel
C are indicative of large spectral anisotropy for the preclinical
STE, which tends to generally decrease with the degree of motion
compensation.

FIGURE 5 | ROI-average mean diffusivity in the left ventricle myocardium in the central slice (short-axis view) of two pig hearts (1, 2-bottom) and prediction of the
hindered-restricted model. Left column (A1,A2): measured MD (markers) and prediction (lines) vs. cylinder radius, R. Right column (B1,B2): measured MD vs. prediction
with error bars corresponding to the distance between measurement and prediction (dotted line for unity relation).

4“Good tuning” reflects similar encoding power distribution in the frequency range
where diffusion spectrum varies most with frequency, consequently yielding
similar apparent MD values.
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4.4 MD Bias—Effect of Anisotropy and
Time-Dependent Diffusion
Figure 8 shows the theoretical prediction for rotation-averaged
normalized signal vs. b-value encoded with the preclinical M0,
M1 and M2 waveforms (Figure 2, Table 1) for a substrate of
randomly oriented impermeable cylinders with varying radii (1,
2.5, 5 μm). While in this single-compartment example STE
always yields mono-exponential signal decay regardless of size,
microscopic anisotropy can cause deviation from mono-
exponential decay for LTE, which is particularly visible for
smaller sizes (1 μm). In this case, the results among LTEs are
approximately matching while deviating from STE. This
illustrates the first potential source of MD bias when
comparing estimations from LTE and STE data at increasing
b-values. The second source of MD bias is due to TDD, which
becomes dominant for larger restrictions, where different initial
slopes or ”true” apparent MD values (dashed lines) are expected
from LTE and STE data. This effect is due to the different
sensitivities to restricted diffusion. A pronounced deviation
from STE attenuation is visible for the LTE3 (red lines), while
the LTE1 approximately matches the STE.

The MD bias is shown as the ratios MDLTE3/MDSTE and
MDLTE1/MDSTE in Figure 9 vs. b-value and size of randomly
oriented cylinders for the preclinical M0, M1 and M2
waveforms. The relative size scale R/

����
D0τ

√
is provided to

allow comparison with different encoding times. While the
MD ratios approach unity for small and large sizes, when
diffusion becomes Gaussian, MD from STE and LTE can
deviate significantly at higher b-values and intermediate
sizes. For LTE3, the deviation will occur for an extended size
range even at low b-values (upper row), while for LTE1, the
deviation is only significant at high b-values (bottom row). The
ratio slightly above unity is in the latter case due to imperfect
tuning (see Figure 2).

4.5 Size Detection Limits for Different Pore
Geometries
What signal differences, and thus restriction sizes, can be reliably
detected is determined not only by the relative encoding and
diffusion power spectra but also by SNR. We thus considered the
contrast-to-noise ratio, ΔS/σΔS in Figures 10–13.

The frequency shift in cumulative encoding power differences
shown in Figure 7 is reflected in Figure 10, where we consider a
substrate of randomly oriented cylinders with varying fractions of
restrictions measured at a large b-value. When comparing signals
from LTE and STE (Figure 10A), the differences can be seen to
vanish for large cylinder radii, when diffusion becomes Gaussian
and less anisotropic. On the other hand, the anisotropy is
maximized in the limit of small sizes, reflected by large signal
differences. When comparing differently tuned LTEs
(Figure 10B), the signal difference is maximized at intermediate
sizes, depending on the degree of motion compensation, and
vanishes in the limits of large and small sizes when diffusion
becomes Gaussian. This observation is similar as for the MD-bias
shown in Figure 9. Varying the fraction of restrictions resulted
mainly in modulation of the contrast magnitude not causing any
relative shifts along the size axis. We thus show results for a single
fraction fR = 0.5 in Figures 11–13.

Figure 11 illustrates the feasibility of detecting signal
differences for varying cylinder radii and at various SNR
levels. Contour lines, shown at the contrast-to-noise value of
3, can be used to identify the range of detectable sizes. For
completeness, we performed a similar analysis for eccentric
cylinders and prolate spheroidal pores. For eccentric cylinders
(Figure 12) and spheroids (Figure 13), two different diffusion
eigen-spectra, associated with different pore dimensions, can in
principle be sensed. For eccentric cylinders, size sensitivity as a
function of geocentric mean pore radius is largely not affected by
eccentricity. Only for eccentricities larger than approximately 0.8

FIGURE 6 | ROI and rotation-averaged signals from mouse hearts measured with acceleration compensated waveforms (M2-LTE and M2-STE) at high b-values
(A) and MD estimates (B). The LTE waveforms correspond to the individual channels from the STE. In panel A, a small deviation can be seen between signals measured
with STE and LTE, attributed to microscopic anisotropy. The signals for LTE1 and LTE2 coincide well. The largest deviation from STE occurs for LTE3, which has more
encoding power at low frequencies (see Figure 2). In panel B we can see the differences between the MD estimates for the three encodings in both hearts (labelled
1 and 2). Note the similar values for LTE1 and LTE2 and the relatively lower values for LTE3, which is related to spectral anisotropy of the STE. Even though the MD values
are higher for LTE1 and LTE2 compared to STE (as expected from the encoding power distributions), the signals at higher b-values are clearly less attenuated for LTE
compared to STE, supporting the inference of diffusion anisotropy.
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a significant broadening of the size sensitivity band can be seen.
As noted in our previous work [48], due to imperfect tuning the
signal differences do not vanish in the intermediate size range
even in the limit of spherical pores, R3/R1 = 1 (Figure 13). For
large anisotropies, signal differences between differently tuned
LTEs (lower row) trace two sensitivity bands, which are diverging
with increasing anisotropy. One of the bands, related to the long
R3 axis, can be seen drifting “out of sight” accessible to the applied
encoding spectra.

5 DISCUSSION

This study was motivated by the potential of using motion
compensated tensor-valued diffusion encoding for
microstructure assessment of the heart. Our main objectives
were to explore the experimental feasibility of various
diffusion encodings and develop a theoretical framework
accounting for TDD. Different encodings yielded significantly
different MD values, which can be fitted with the hindered-
restricted diffusion model and allow for cell size estimation.
Acceleration compensated encoding can be applied with high
b-values on a preclinical scanner and the signal differences from
STE and differently tuned LTE can be understood in terms of
anisotropy and varying sensitivity to TDD. Also our contrast-to-
noise assessments based on simulations with various substrates
and encodings suggest that sensitivity to TDD in the myocardium
is expected within the experimentally feasible range.

While STE can be employed for microstructure imaging, when
combined for example with LTE, it can also be used to accelerate
MD estimation [19,21,22]. If gradient waveforms are allowed to
be asymmetric with respect to the refocusing pulse in spin-echo
sequences, they can be optimised with the benefit of shorter TE
and higher SNR, as suggested for M2-nulled LTE encoding [67].
This strategy can be applied also for optimizations of tensor-
valued encoding [68]. However, if not accounted for, asymmetric
waveforms are prone to adverse effects of concomitant gradients
leading to signal bias and image artefacts [14]. This consideration
has been central in our tensor-valued encoding design featuring
arbitrary gradient moment nulling as well as the suppression of
concomitant gradient effects[39], which has been further
optimized for maximum b-values and SNR [40].

In terms of sensitivity to time-dependent diffusion, STE can be
advantageous compared to OGSE-LTE, due to its efficient
q-trajectories capable of achieving high b-values at short
diffusion times (high frequencies), thus extending the size
resolution limit [63]. The gradient waveforms applied in our
experiments comprised a similar range of diffusion times
(encoding power in the frequency range up to about 200 Hz)
compared to a previous mouse heart study with PGSE and OGSE
[41] (Figure 2). We remark however that our experiments were
not optimized for probing size, since the encoding spectra of
various waveforms were broad and overlapping. Nevertheless, we
obtained reasonable size estimates and provide insights useful to
optimize size measurements.

The frequency-domain analysis allows gauging sensitivity to
restricted diffusion for LTE and STE gradient waveforms, each
comprising broadly distributed diffusion times (Figures 2, 3).
This enables global fitting of apparent mean diffusivities from 13
different waveforms and thus provides estimates for ROI-average
cell sizes. As predicted, a significant variation of MD estimates,
encoded with a wide range of waveforms, was observed in mouse
and pig hearts measured on preclinical and clinical scanners,
respectively (Figures 4, 5). Consistently lower MD values for pig
hearts on the clinical scanner were due to the lower temperature
compared to the preclinical scanner (20 vs. 28°C). Accounting for
different encoding spectra, the MD values could be globally fitted
with the hindered-restricted diffusion model. The results suggest

FIGURE 7 | Differential size sensitivity for different degrees of motion
compensation. Absolute differences in normalized cumulative encoding
power between STE and LTE3 (A), STE and LTE1 (B), and between LTE3 and
LTE1 for the preclinical M0 (red), M1 (green) and M2 (blue) waveforms.
As a reference, a comparison between the “detuned” LTE and STE, “tuned”
LTE and STE and between “tuned” and “detuned” LTE are shown for qMAS
(black doted lines) in panels A, B and C, respectively. The x-axis shows the
“relative detection size” Rω for D0 = 2.5 μm2/ms. Note that the maxima shift to
smaller sizes (higher frequencies) from M0 to M2. The relatively high values for
qMAS in panel A indicate poor tuning, while the low values in panel B indicate
good tuning between STE and LTE waveforms. The differential sensitivity for
qMAS is similar to that of the M1 waveforms, which is particularly visible in
panels A and C. Large values in panel C are indicative of large spectral
anisotropy for the preclinical STE. Note that the differential sensitivity tends to
generally decrease with the degree of motion compensation, which is
characterized by increasing power at higher frequencies.
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that the range of encoding waveforms applied on preclinical and
clinical scanners had nearly optimal diffusion times for detecting
restricted TDD effects in the heart. The resulting size estimates
are consistent between mouse and pig hearts, suggesting cell
diameters in the interval 11.6-15.6 μm, which correspond well to
the cells in human heart estimated with microscopy and Coulter

Channelyzer [69]. While some variation of cardiomyocytes size in
mammals may be expected, similar sizes have been reported in
calf (12-13 μm) [70], rat (18-21 μm) [71], pig (12-22 μm) [72,73]
and human (10-25 μm) [74]. These size range estimates are
however often from small sample sizes and prone to
preparation artefacts.

FIGURE 8 | Predicted signal vs. b-value illustrating the competing effects of anisotropy and TDD at different sizes. Rotation-average signals are calculated from
apparent diffusivities in 15 randomly oriented cylinders (D0 = 2.48 μm2/ms, radius R) probed by the preclinical encoding waveforms LTE1 (red), LTE3 (blue) and STE
(grey) with varying degrees of motion compensation (M0-M2, bottom to top rows). Dotted lines indicate attenuation in the limit of low b-values. Arrows mark the
differences due to anisotropy and TDD (visible at intermediate and large sizes). For small restrictions, the initial attenuations coincide and the signal deviation
between LTE and STE at higher b-value is due to compartment anisotropy. With increasing cylinder radius the difference between size sensitivities of different encoding
waveforms become visible. Note the higher signals for the LTE3 compared to the LTE1 and similar initial slopes for LTE1 and STE. For very large cylinders, the anisotropic
diffusion variance (mean kurtosis) is overshadowed by an increased MD and can no longer be detected (for M1 and M2). However, the effect of TDD on MD remains
clearly visible.
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The restricted signal fractions deduced here were lower than that
deduced by a two-compartment model in the calf heart [70] and a
range of two-compartment models in ex vivomouse heart [75], and
likely underestimate the cell volume fraction. This may arise from
the presence of sheetlet gaps, cell dispersion, permeability and
relaxation effects that were not explicitly modeled. The lower
hindered diffusivities Dh observed in pig hearts cannot be
explained only by lower temperature. This could be a
consequence of handling and storage before the hearts were
obtained from the butcher. Lower RMSE values for the pig hearts
reflect a comparably better fitting of the hindered-restricted model,
which could potentially be associated with higher restricted signal
fractions or with a more optimal range of diffusion encoding times
used on the clinical scanner. Interestingly, the M0 waveforms and
the longer encoding time used on the clinical scanner (Figure 5)
appears to be advantageous for detecting the inferred relatively large
cells. Indeed, using only the subset of data from the clinical scanner,
employing waveforms with the longest encoding times (67ms),
yields similar results as from the entire dataset.

A small tendency toward negative fit residuals observed from
LTE data (Figure 5) could potentially be a consequence of
diffusion anisotropy, which causes higher signals for LTE
compared to STE at larger b-values leading to negatively
biased MD values. On the preclinical scanner, b-values up to
2000 s/mm2 could be reached with M2 waveforms and the echo-
time of 34.8 ms (encoding time of 24 ms). At this range of
b-values, deviations between STE and LTE rotation-average
signals attributed to microscopic anisotropy can be seen

(Figure 6A). Although the deviations are small, indicating
small anisotropy, they are well above noise.

We remark that multi-exponential signal attenuation is not
necessarily related to microscopic anisotropy and could arise due
to distribution of diffusivities within a voxel. To reiterate, microscopic
anisotropy can only be disentangled from the isotropic diffusion
variance by varying b-tensor shape. Presence of anisotropy can be
inferred from the experimental results in Figure 6. SimilarMD values
weremeasured for LTE1 and LTE2 and the relatively lower values for
LTE3. These MD differences are consistent with the differences in
encoding power spectra (Figure 2). Since the LTEswhere constructed
from individual channels of the STE, the observedMDdifferences are
related to spectral anisotropy of STE [50,58]. Even though the MD
values are higher for LTE1 and LTE2 compared to STE, the signals at
higher b-values are clearly less attenuated for LTE compared to STE.
This could only be explained by anisotropic diffusion.

Simulation results (Figure 8) mimic well the experimental
observations and thus also suggest the presence of anisotropy.
These results clearly illustrate the need for careful tuning of STE
and LTE in microscopic anisotropy measurements. Comparably
larger signal deviations could be observed in fixed monkey brain
tissue [48] using velocity compensated qMAS STE and tuned/
detuned LTEs. As suggested previously, we speculate that the
prominent sensitivity to TDD in the heart could also be used to
probe correlations between cell sizes and anisotropy by combining
tuned and detuned encoding while also varying b-tensor shape.

Internal or “background” magnetic field gradients may arise
for example due to heterogeneous magnetic susceptibility within

FIGURE 9 |MD bias due to anisotropy and TDD. Apparent diffusivities were calculated for cylinders and for a range of radii R and b-values as in Figure 8. Shown
are the ratios between MD values from LTE3 and STE, MDLTE3/MDSTE (upper row) and between LTE1 and STE, MDLTE1/MDSTE (bottom row) for the preclinical M0, M1
and M2 waveforms (left to right), which shown in Figure 2. The normalized size scale is shown on the right, where the normalization constant represents a characteristic
diffusion distance during encoding time τ and

����
D0τ

√
≈ 7μm. Contour lines are shown at 0.85. While all the ratios are unity at the low left corners, MD from STE and

LTE can deviate significantly at higher b-values and intermediate sizes. For LTE3, the deviation occurs for an extended size range even at low b-values (upper row), while
for LTE1, the deviation is only significant at high b-values (bottom row). Note the ratio slightly above unity in the latter case, which is consistent with experimental results
shown in Figure 6 and calculations in Figure 8.
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the tissue, which would be exacerbated at higher external fields.
Coupling between the encoding gradients and background gradients
give rise to undesired “cross-terms” [76], which are a well-known
source of potential bias in the quantification of MD and other DTI
metrics as well as kurtosis [77]. Effects of the cross-terms can be
corrected or estimated by employing encoding pairs along antipodal
directions [76,78,79]. A novel encoding waveform design strategy for
eliminating or minimizing the cross-terms has been recently
proposed, which can be applied to tensor-valued encoding
sequences with arbitrary configurations of RF pulses [80]. The
effect is quantified in terms of the “cross-term sensitivity” index.

We report this index for the employed encodings in the
Supplementary Figure S3. The cross-term sensitivity varies
significantly and is relatively low or nulled for M0-LTE1, M0-
LTE2, M1-LTE2, M1-LTE3, M2-LTE1 and M2-LTE2. Note that
the cross-term sensitivity is largely affected by the encoding gradient
symmetry around the refocusing pulse. The sensitivity is commonly
lower for motion compensated encoding and for waveforms with
more encoding power at higher frequencies, as can also be seen in
our analysis (Supplementary Figure S3). To further assess the effect
of background gradients, we have simulated signals for randomly
oriented cylinders (as in Figure 8) in the presence of relatively strong
background gradients (3, 10 and 30mT/m) applied in 50 evenly
distributed directions (Supplementary Figure S4). In addition, we
have considered an example of isotropic Gaussian diffusion
(Supplementary Figure S5), similar as presented by
Szczepankiewicz and Sjölund [80]. The effects of background
gradients decrease with increasing degree of motion
compensation and they are expected to be negligible for our M1
and M2 encodings even at relatively strong background gradient
magnitudes. This is however not a general conclusion, since cross-
term sensitivity also depends on the configuration of RF pulses.
Importantly, the differences between the rotation-averaged signals
due to time-dependent anisotropic diffusion are expected to remain
prominent for our encoding also in the presence of background
gradients. Given stronger fields and gradients on preclinical systems,
the effect of cross-terms at equal b-values is generally lower in
preclinical compared to clinicalMRI (see Supplementary for details).

The differential size sensitivity, given by the difference between
cumulative encoding powers of different waveforms as a function
of frequency (Figure 2), provides a probe into diffusion spectrum
characteristic for TDD. The differential sensitivity is manifested
in the measured signal differences yielding different MD values,
thus enabling estimation of cell sizes. This is shown in Figure 7 as
a function of Rω ≡

��
D0
ω

√
, which corresponds to the pore size atΩ =

1 from Eq. 13. The sensitivity shown in Figures 7A,B
qualitatively informs about the extent restricted diffusion is
expected to influence assessment of microscopic anisotropy
when inferred from the difference between STE and LTE3 and
STE and LTE1, respectively. It is interesting to note that the
sensitivity shifts from larger to smaller sizes and becomes less
pronounced when increasing the degree of motion compensation
from M0 to M2. As a reference, the differential size sensitivity is
rather small for the qMAS encoding, featuring comparably better
tuned LTE [48] (Figure 7B). As discussed earlier in relation to the
experimental results shown in Figure 6, the sensitivity shown in
Figure 7C is related to spectral anisotropy of STE [50,58]. Again
we note that the differential size sensitivity decreases by shifting
encoding power to higher frequencies (cf. Fig. 2.1fig21 in [50]).

Interestingly, even though the differential size sensitivity is
independent of the biophysical model, it reflects well the size
ranges shown in Figures 9, 10 for simulations of diffusion in
cylindrical restrictions as well as for eccentric cylinders
(Figure 12) and spheroidal pores (Figure 13) probed by the
preclinical waveforms. To enable comparison of encodings with
different durations τ, the relative size scale R/

����
D0τ

√
is also shown

in Figures 9–13 (cf. supplementary materials in [48]). Noise
simulations predict a consistent compression of sensitivity bands,

FIGURE 10 | Size sensitivity for cylindrical pores at SNR = 50 and varying
signal fractions fR. Contrast-to-noise ratio, ΔS/σΔS at b = 2 ms/μm2 for
diffusion restricted within cylindrical pores of varying radii R encoded with the
M0- (red), M1- (green), M2- (blue) LTE1, LTE3 and STE preclinical
waveforms and for the tuned, detuned and STE qMAS waveforms (black
dotted). Substrate consists of compartments with hindered Gaussian (Dh =
1 μm2/ms) and restricted diffusion (D0 = 2.48 μm2/ms), with varying signal
fractions fR = 0.25, 0.5, 0.75, 1 corresponding to increasing signal differences.
Differences between rotation-averaged signals from LTE3 (or detuned qMAS)
and STE (A) and from LTE1 and LTE3 (or tuned and detuned qMAS) (B) were
calculated, yielding average and standard deviation values subject to noise,
ΔS and σΔS, the ratios of which are shown in A and B.
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represented by the contrast-to-noise ratios, reducing the upper
size limit for higher degrees of motion compensation (M0 toM2).
Significant contrast is expected at SNR > 20 for all encodings
(Figure 10). A considerably lower contrast is however expected

for the M2 waveforms with encoding power concentrated in a
narrower spectral range (Figure 2). An interesting observation
can be made for the case of eccentric cylinders (Figure 12), where
the size sensitivity depends mainly on the geocentric mean pore

FIGURE 11 | Size sensitivity for cylindrical pores at varying SNR. Contrast-to-noise ratio,ΔS/σΔS at b = 2 ms/μm2 (as in Figure 10) and for fR = 0.5 is shown for M0-,
M1-, and M2- (left to right) LTE and STE waveforms. Two common colour scales are used to show contrast-to-noise ratios for rotation-averaged signals from LTE3 and
STE (top row) and from LTE1 and LTE3 (bottom row). Contour lines indicate ΔS/σΔS = 3.

FIGURE 12 | Size sensitivity for eccentric cylindrical pores at SNR = 25. Contrast-to-noise ratio, ΔS/σΔS at b = 2 ms/μm2 and for fR = 0.5 is shown for M0-, M1-, and
M2- (left to right) LTE and STE waveforms as a function of mean radius R and eccentricity ϵ. For ellipsoidal cross-section with semi-axes R1 and R2 < R1, we have
ϵ �

�����������
1 − (R2/R1)2

√
and define R ≡

�����
R1R2

√
, so that R2,1 � R(1 − ϵ2)±1/4. Two common colour scales are used to show contrast-to-noise ratios for rotation-averaged

signals from LTE3 and STE (top row) and from LTE1 and LTE3 (bottom row). Contour lines indicate ΔS/σΔS = 3. For comparison with Figures 11, 13, were 15
rotations were used in directional averaging instead of 60 required for asymmetric pores, the SNR was here rescaled according to SNR60 � SNR15

������
15/60

√
.
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radius and is largely not affected by eccentricity. This suggests
that eccentric cylinders are not expected to provide a significant
refinement of the much simpler cylinder model.

Figure 8 illustrates two potentially competing sources of MD
bias, i.e., anisotropy and TDD, based on calculations for
randomly oriented impermeable cylinders. While the effect of
anisotropy is dominant for small sizes, effects of TDD prevail for
larger sizes. TDD causes signal differences for differently tuned
encodings at low b-values and affects apparent anisotropic
diffusion variances from LTEs at higher b-values. In the limit
of large sizes, the signal attenuation becomes mono-exponential.
Comparison of these calculations and the measured signal
attenuations (Figure 6) suggest that our simple model can
indeed quite adequately predict signals at higher b-values.
However, one possibility to improve our model would be to
introduce size dispersion. This would yield multi-exponential
signal decay, since mostly signal from smaller cells would
contribute to the attenuation at larger b-values. Another
important factor to consider is molecular exchange, which could
homogenize the system, leading from amulti-compartment towards
a mono-compartment scenario, characterized by a strong intrinsic
kurtosis [12,51]. In the case of effective compartmental mixing, the
Gaussian approximation of cumulant expansion used in our
calculations could become invalid in the range of higher b-values
[81, 82]. However, we still expect our predictions of MD, estimated
from low b-values, to be valid, while tuning of different waveforms
will impact signals both at low and high b-values. In light of the
multi-exponential signal decay observed experimentally (Figure 6),
the results of our noise simulations (Figures 10–13) might be
considered rather conservative in terms of SNR, i.e. skewed
towards higher SNR, but more elaborate biophysical models

would be needed to assess the contrast-to-noise ratio more
accurately.

6 CONCLUSION

In this study we have developed a novel theoretical framework to
predict the effects of time-dependent diffusion (TDD) in tensor-
valued encoding using arbitrary gradient waveforms. The theory can
be used to predict bias in measurements of apparent mean
diffusivities (MD) and estimate cell sizes. To asses accessible
ranges for detecting diffusion restricted in simple anisotropic
geometries, we have performed noise simulations using various
encoding schemes. The theory was applied on experimental data
from ex vivo hearts using linear and spherical tensor encoding (LTE
and STE) with simultaneous nulling of concomitant fields and all
gradient moments up to progressively higher orders (M0, M1, M2).
Furthermore, to prepare for in vivo measurements of microscopic
anisotropy, we have assessed the feasibility and limitations of
acceleration compensated LTE and STE at high b-values.

The presented theoretical framework is based on the
frequency-domain analysis of tensor-valued diffusion encoding
with arbitrary gradient waveforms, which, in contrast to the
narrow gradient pulses, encode diffusion at a wide range of
diffusion times. The sensitivity to TDD can be effectively
gauged by the encoding power spectra. Our experimental
results confirm that the spectral trace (the tuning handle) is
the key encoding feature needed to predict apparent MD due to
the effects of time-dependent anisotropic diffusion. Furthermore,
our results indicate that proper tuning is necessary also for
unbiased assessment of microscopic anisotropy in the heart

FIGURE 13 | Size sensitivity for spheroidal pores at SNR = 50. Contrast-to-noise ratio, ΔS/σΔS at b = 2 ms/μm2 (as in Figure 12) and for fR = 0.5 is shown for M0-,
M1-, and M2- (left to right) LTE and STE waveforms as a function of semi-axis R1 = R2 and ratio R3/R1. Two common colour scales are used to show contrast-to-noise
ratios for rotation-averaged signals from LTE3 and STE (top row) and from LTE1 and LTE3 (bottom row). Contour lines indicate ΔS/σΔS = 3.
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when using variable b-tensor shapes, as for example in q-space
trajectory imagining. As has been previously demonstrated,
almost perfect tuning could be achieved with qMAS encoding,
exemplified by overlapping signals at high b-values from LTE and
STE in isotropic yeast cells [48]. However, the tuning was much
less favourable in the encoding applied in this study. We believe
that achieving good tuning is both feasible and necessary for
microstructure assessment, particularly when quantifying low
anisotropies at short encoding times (high frequencies). The
goal of achieving ideal tuning will be a subject of future work.

The simple two-compartment hindered-restricted diffusion
model yields cell size estimates that are consistent across mouse
and pig hearts measured on preclinical and clinical scanners and
correspond well to cells sizes in the human heart. However, revised
biophysical models would be needed to accurately predict signals at
higher b-values. Such models may require including size
polydispersity, effects of exchange, and considering signal
attenuation beyond Gaussian phase approximation.
Furthermore, no histological images were acquired in this study,
which could provide valuable validation and additional
information needed for more realistic tissue modelling.

In conclusion, our pilot ex vivo experiments are a first step
toward a range of potential applications employing motion
compensated tensor-valued encoding in vivo. We have
demonstrated strong and predictable TDD effects in the
myocardium. Our results are important for unbiased MD and
microscopic anisotropy assessment. The presented theoretical
framework could be employed in future optimizations of
diffusion encoding protocols. We are therefore encouraged to
further explore applications of MD and microscopic anisotropy
assessment both ex vivo and in vivo on healthy and diseased hearts.
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