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Current motor imagery-based brain-computer interface (BCI) systems require a long

calibration time at the beginning of each session before they can be used with adequate

levels of classification accuracy. In particular, this issue can be a significant burden

for long term BCI users. This article proposes a novel transfer learning algorithm,

called r-KLwDSA, to reduce the BCI calibration time for long-term users. The proposed

r-KLwDSA algorithm aligns the user’s EEG data collected in previous sessions to the

few EEG trials collected in the current session, using a novel linear alignment method.

Thereafter, the aligned EEG trials from the previous sessions and the few EEG trials from

the current sessions are fused through a weighting mechanism before they are used for

calibrating the BCI model. To validate the proposed algorithm, a large dataset containing

the EEG data from 11 stroke patients, each performing 18 BCI sessions, was used.

The proposed framework demonstrated a significant improvement in the classification

accuracy, of over 4% compared to the session-specific algorithm, when there were as

few as two trials per class available from the current session. The proposed algorithm

was particularly successful in improving the BCI accuracy of the sessions that had initial

session-specific accuracy below 60%, with an average improvement of around 10% in

the accuracy, leading to more stroke patients having meaningful BCI rehabilitation.

Keywords: session to session transfer learning, long-term BCI users, reducing calibration time, EEG, motor

imagery, Brain-Computer Interfaces

1. INTRODUCTION

Brain-computer interface (BCI) allows a person to communicate with a machine directly through
brain signals alone (Berger et al., 2008; Ang and Guan, 2017). Electroencephalogram (EEG)-based
BCIs, in particular, are very popular as the brain signals can be recorded non-invasively with a high
temporal resolution while being inexpensive (Berger et al., 2008; Vidaurre et al., 2011). From the
EEG signals, a range of features associated with different mental states and cognitive functions can
be identified and then used to control a BCI (Berger et al., 2008). This includes BCI systems based
on detecting P300, motor imagery, the user’s mental workload, and emotions. Motor imagery in
particular can be very useful in healthcare, with studies linking the use of motor imagery-based
BCIs with neuro-rehabilitation in stroke patients (Buch et al., 2008; Ang et al., 2010). A motor
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imagery-based BCI provides an active rehabilitation by coupling
motor relevant brain activities with the physical movements of
the impaired limb (Ang et al., 2010; Ang and Guan, 2015).

Typically, motor imagery-based BCIs require calibration
before each session of use, where new labeled EEG data is
collected to train the BCI model. This calibration session is
fatiguing for the user (Costa et al., 2018). CSP-based BCI
commonly require 15–30 min of calibration, collecting 40, 60 or
even 80 trials per class to train the BCI (Lotte, 2015; Proesmans,
2016). This issue is a significant barrier for the use of BCI
by stroke patients as they require regular BCI sessions for
rehabilitation (O’Dell et al., 2009). The time spent on calibrating
the system in each of these sessions reduces the time available for
the patient to receive the actual rehabilitation.

To reduce the BCI calibration time transfer learning can
be used (Azab et al., 2018). Transfer learning is a commonly
employed technique in systems engineering when only a limited
amount of data is available to train the model. Transfer learning
compensates for the limited amount of labeled data available by
extracting relevant information from other sources or domains
to improve the classification model (Azab et al., 2018). However,
transfer learning in BCI is not a trivial task due to the non-
stationary nature of brain signals. The properties of EEG signals
often change considerably from session to session (Dikanev et al.,
2005).

To reduce the affects of the non-stationarities, a range
of approaches have been explored and embedded in transfer
learning algorithms proposed for BCI (Hossain et al., 2016; Peng
et al., 2020). For example, some transfer learning algorithms
applied alignment of the EEG distributions between the source
and target sessions (Sugiyama et al., 2008; Dalhoumi et al., 2015;
Raza et al., 2016; He and Wu, 2018) or weighted the source
sessions according to their similarities with the target session
(Azab et al., 2019b). However these research studies focused on
inter-subject transfer learning, evaluating the proposed solutions
on datasets with only one or two sessions of data available
for each subject. There is a research bias within BCI, with the
majority of studies focusing on datasets where only one or two
sessions are recorded from each subject (Perdikis and Millan,
2020). There is a relatively small amount of literature focused
on long-term users and inter-session transfer learning. One of
the main causes of inter-subject variations in EEG signals is
the varying brain morphology across the users. This issue is
particularly significant for stroke users whose brain is altered by
lesions that vary in size and location from user to user. Inter-
session transfer learning is not affected by this issue with the
majority of the non-stationarities coming from other causes.

Despite the limited number of studies on long-term BCI
users, the potential benefits of inter-session transfer learning
to reduce the calibration period is clear. Arvaneh et al. found
that when 11 previous sessions, with 60 trials of each class in
each session, were combined in the form of a “naive transfer
learning”, potentially invariant BCI features could be identified
(Arvaneh et al., 2012). These sessions were collected over a period
of 1 month and showed the potential of inter-session transfer
learning to reduce the need for a calibration session. However,
this approach is very limited. A lot of data is required before

these so-called invariant features can be extracted, while some
users still continue to perform better with the BCI model trained
only using the data collected from the new session, called the
“session-specific model”.

One of the key sources of literature on inter-session transfer
learning for long-term BCI users is from the teams competing
in the Cybathlon BCI event (Perdikis et al., 2018). The BCI
race at the Cybathlon competitions has been held every 4 years
where teams with tetraplegic pilots competed to control an avatar
through a race track using BCI (Novak et al., 2018). This required
the teams to develop BCIs that could detect three different mental
commands and to train a pilot to use the system. The user
training period ranged from a month to over a year for some
teams, allowing an in-depth exploration of BCI for long-term use
and the potential of inter-session transfer learning.

The team led by Hehenberger et al. utilized inter-session
transfer learning and intra-session adaptation for their
BCI model developed for the Cybathlon competition race
(Hehenberger et al., 2021). This team worked with their pilot for
14 months collecting 26 sessions, each containing 120 EEG trials.
Using the collected dataset, in an offline analysis, the authors
highlighted the benefits of inter-session transfer learning over
session-specific BCIs. They combined the data from the past
five sessions and the new data to train the BCI model in the
form of an inter-session naive transfer learning. Although it was
successful to some extent, no optimization was performed when
combining the new and previous data to reduce the inter-session
non-stationarities. Another Cybathlon team led by Benaroch et
al. explored using both inter-session alignment and intra-session
adaptation for their BCI model (Benaroch et al., 2021). Over
a period of 3 months this team collected 20 sessions, with the
length of the sessions varying between an hour and 2 h. To
reduce the calibration time and reduce inter-session variability,
they applied an alignment method projecting the Riemannian
mean spatial covariance matrix from each session to a common
reference point (i.e., the identity matrix). This alignment proved
effective at reducing the non-stationarities and improving
the inter-session transfer learning. However, even with this
alignment still some of the source sessions were detrimental
to the BCI model. Other researchers suggested that the use of
selective transfer learning would reduce the effects of detrimental
source sessions by weighting the source sessions based on their
similarities with the target session (Wei et al., 2016).

Recently, Cao et al. has explored weighting the source
sessions to improve the inter-session transfer learning in long-
term BCI users performing BCI-based stroke rehabilitation
(Cao et al., 2021). For this purpose, they utilized a previously
proposed inter-subject transfer learning algorithm (Azab et al.,
2019b). The proposed transfer learning algorithm added a
regularization parameter to the objective function of the BCI
classifier, aiming at minimizing the dissimilarity between the
classification parameters of the new session and the past sessions
while maximizing the two class separations. Importantly, the
proposed algorithm gave different weights to different source
classifiers based on the similarity between their features and the
features of the target session. Cao et al. validated the utilized
inter-session transfer learning algorithm on a BCI dataset from
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seven stroke patients. The dataset consists of 12 BCI sessions
per stroke patient, each session having 180 trials performed in a
randomized order. The proposed inter-session transfer learning
algorithm significantly increased the classification accuracy
of stroke subjects encountering BCI deficiency. However the
improvement in BCI accuracy was not statistically significant for
all users. Many of the stroke participants performed better when
relying on the standard naive transfer learning; with all source
sessions having the same weight.

This article focuses on inter-session transfer learning to reduce
the required calibration time for stroke patients who use BCI for
rehabilitation. The proposed algorithm reduces this calibration
time by combining previously recorded data from the same user
with a limited number of data recorded from the current session,
reducing the need for an extended calibration session. The
proposed algorithm, called r-KLwDSA, consists of three steps to
make effective use of the inter-session source sessions. Initially,
the algorithm uses linear alignment to reduce non-stationarity
between the current target session and the previous source
sessions. The source sessions are then weighted to minimize the
effects of any detrimental source data. Finally, the algorithm
utilizes regularization to incorporate the target data and the
weighted aligned source data into the BCI model.

The proposed r-KLwDSA algorithm is evaluated using EEG
signals collected from 11 stroke patients over a period of 6 weeks.
To simulate the real world scenario of long-term BCI use for
stroke rehabilitation, the data will be evaluated chronologically,
only using previously collected sessions for transfer learning. As
such when evaluating the first target session only the screening
session will be available for inter-session transfer learning and
when evaluating session two both the screening session and
session one will be used for transfer learning. This article will
compare the effects of the weighting and alignment separately
as well as the combined effect on classification performance.
Furthermore, the performance of the proposed r-KLwDSA
algorithm will also be compared with the performance of the
session-specific BCI model trained with only the available trials
from the current target session and the naive transfer learning
model trained with only the previous source sessions without
any alignment.

2. METHODOLOGY

In this article, we assume that EEG trials of J sessions, previously
recorded from our current user, are available. These sessions
are called source sessions. The jth source session, Ŝj, can be

represented as Ŝj= (X̂i
j, ŷ

i
j)
m̂j

i=1, where X̂
i
j ∈ X̂j ⊂ Rch×t represents

the ith EEG trial from m̂j total EEG trials available in Ŝj , and

ŷij ∈ ŷj ⊂ R represents the corresponding class label. Moreover,

ch and t, respectively, denote the number of channels and the
number of time samples recorded in each EEG trial.

Similarly, in this article, we have access to a small number of
EEG trials from a new session, collected in a short calibration
session from the same user. This session, referred to as the target
session, is presented as S = (Xi, yi)mi=1, where X

i ∈ X ⊂ Rch×t is

the ith recorded trial and yi ∈ y ⊂ R represents its corresponding

class label. Moreover,m refers to the total number of trials in the
target session.

As can be seen in Figure 1, the proposed r-KLwDSA algorithm
consists of three steps, each attempting to address one of the
challenges of transfer learning in BCI. Step 1 reduces the non-
stationarity between the EEG data from the source sessions
and those from the target session. For this purpose, a linear
transform is performed on the EEG data of each source session
to reduce their distribution difference from the target data.
Subsequently, step 2 defines the similarity between the EEG
distributions of each linearly aligned source session and the target
session using a proposed weighting mechanism. Finally, step 3
fuses the weighted aligned trials from the source sessions with
the few available trials of the target session using a proposed
regularization method. In fact, the regularization controls a
trade-off between the target model from the new session and
the weighted aligned source model from the past sessions. These
three steps are explained in detail in the following subsections.

2.1. Linear Alignment to Reduce
Non-stationarities
When performing transfer learning, one of the key issues is the
presence of non-stationarities which can cause large differences
in the properties of EEG data from session to session. These
differences in the data space can have a very detrimental effect
on the performance of transfer learning in BCI. To address this
issue, we propose the use of a linear transformation, Lj, to reduce
the mismatch between the distribution of each source session,
P(X̂j, ŷj), and the distribution of the target session, P(X, y). For

this purpose, Lj ⊂ Rch×ch needs to be calculated such that
the distribution dissimilarity between P(Zj, ŷj) and P(X,Y) is

minimized where Zj = LjX̂j.
Assuming that EEG signals have Gaussian distributions

(Kullback, 1997), we used Kullback Leibler (KL) divergence for
Gaussian distributions to measure the distribution dissimilarity
between the target session and each source session. Given two
Gaussian distributions, N1(µ1,61) and N2(µ2,62) with µ1 and
µ2 as the means and 61 and 62 as the covariance matrices, the
KL divergence between N1 and N2 is measured as

KL[N1 ‖ N2] =
1

2
(tr(62

†61)+ (µ2 − µ1)
T62

†(µ2 − µ1)

− ln(
det61

det62
)− k),

(1)

where tr, det and ln denote the trace function, the determinant
function and the natural logarithm function, respectively. †

and T denote the pseudo-inverse and the transpose functions,
respectively. Finally, k refers to the dimension of the data.

As the EEG data of the source and target sessions are band-
pass filtered, they have zero means. The co-variance matrices,
representing the distributions of the target session, S, and the jth

source sessions, Ŝj, are calculated using (2) and (3), respectively,
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FIGURE 1 | The proposed r-KLDSA algorithm is comprised of three steps, (1) the EEG data from the source sessions are aligned to the EEG data from the available

target data using data space alignment, (2) weighting the aligned data of the source sessions based on their similarities with the data of the target session, (3) fusing

the weighted aligned source data with the target data using a regularization method.

6
c = 1

mc

mc∑

i=1

Xc,i(Xc,i)T

tr(Xc,i(Xc,iT))
, (2)

6̂c
j =

1

m̂c
j

m̂c
j∑

i=1

X̂c,i
j (X̂c,i

j )T

tr(X̂c,i
j (X̂c,i

j )T)
, (3)

where, c denotes the class, andmc is the total number of trials for
the class c. Subsequently, the linearly transformed Ŝj, presented

as LjŜj, has a zero mean and the covariance matrix calculated

as Lj6̂
c
j LjT. Given (1), the distribution dissimilarity between the

linearly transformed jth source session and the target session can
be calculated as:

KL[Lj Ŝj ‖ S] = 1

2

2∑

c=1

[tr(6
c†
Lj6̂

c
j Lj

T )− ln(
det (Lj6̂

c
j LjT)

det(6
c
)

)− ch]. (4)

The linear transform Lj aims to minimize the distribution

dissimilarity between Ŝj and S. To calculate Lj, the first order
derivation of the loss function (5) with respect to Lj is
computed and set to zero, as shown in (6) and (7). For more
details on how optimum Lj has been calculated, please see the
Supplementary Materials.

A(Lj) = min
Lj

2∑

c=1

1

2
[tr(6

c†
Lj6̂

c
j Lj

T)− ln(
det(Lj6̂

c
j Lj

T)

det(6
c
)

)− ch].

(5)

dA

dLj
=

2∑

c=1

1

2
[
d

dLj
tr(6

c†
Lj6̂

c
j Lj

T)− d

dLj
ln(det(Lj6̂

c
j Lj

T))] = 0.

(6)

Lj =
√
2

2∑

c=1

(6̂c
j 6

c†
)†0.5. (7)

By applying the linear transform Lj to each of the source
sessions, the KL divergence between the target and the aligned
source session is minimized. This reduces the effect of the non-
stationarities from session to session.

2.2. Weighting According to EEG
Distribution Similarity
Although reducing the non-stationarity can help improve
transfer learning, some source sessions can still be detrimental to
the BCI. The second step of the proposed r-KLwDSA algorithm,
shown in Figure 1, weights the aligned source data of each
previous session to reduce the impact of adverse data while
placing more weight on data that is similar to the target session.
In (4), we proposed using the KL divergence between Gaussian
distributions to measure dissimilarity between the aligned jth

source session and the target session. Subsequently, the assigned
weight for the aligned jth source session, ωj, presenting its
distribution similarity to the target session, is calculated through
equation (8),
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ωj =
(KL[LjŜj ‖ S])−1

∑J
i=1(KL[LiŜi ‖ S])−1

, (8)

where, KL[LjŜi ‖ S] is calculated using (4). According to (8),
source sessions with similar data to the data of the target session
are assigned larger weights, whereas aligned source sessions with
less similarity to the target session are given small weights.
Consequently, the weighted aligned source data are used to
calculate the co-variance matrix of past data, called the transfer
learning co-variance matrix, 6̂c

TL, as

6̂c
TL =

J∑

j=1

ωjLj6̂
c
j L

T
j . (9)

2.3. Regularized Transfer Learning
Between Past and Present Data
Transfer learning can be very effective for some of the target
sessions, while for some other target sessions, the source data
might be detrimental, even after weighting and alignment.
These target sessions usually tend to be able to achieve high
classification accuracy even when only a few target trials are
available for training. As such the third step of the proposed r-
KLwDSA algorithm uses a regularization method to find a trade-
off between data from the previous sessions and the new data
from the new target session in the final BCI model. Thus, the final
regularized co-variance matrices are calculated using (10) with
a regularization parameter, r ∈ {0, 0.1, ..., 1}. The individualized
regularization parameter is calculated for each target session
and selected through leave-one-out cross validation method on
the available target trials. The parameter achieving the highest
average leave-one-out classification accuracy was then used to
produce the final co-variance matrix, 6c

F for class c. The final
co-variance matrices are then used for training the Common
Spatial Patterns (CSP) features (Blankertz et al., 2008), as further
elaborated in Section 3.2.

6c
F = r6

c + (1− r)6̂c
TL (10)

3. EXPERIMENT

3.1. Dataset
The dataset used to evaluate the proposed algorithm is known as
the nBetter dataset (Foong et al., 2020). This dataset was collected
by the Institute for Infocomm Research, A*STAR, Singapore to
evaluate the efficacy of the Neurostyle Brain Exercise Therapy
Toward Enhanced Recovery (nBETTER) system in post-stroke
upper limb rehabilitation. The clinical trial obtained ethical
approval from the Institution’s Domain Specific Review Board
(IRB), National Healthcare Group, Singapore and is registered in
ClinicalTrials.gov under NCT02765334. The use of this dataset
to evaluate our proposed algorithm was approved through IRB
Reference: 2020-103.

All participants in the study had their first-ever stroke 3–24
months before participating the clinical trial, affecting their upper

limb movements. They all provided informed consent before
enrollment in the study. Potential participants attended a 40 min
BCI screening session, and only those who achieved BCI accuracy
above 57.5% 10-fold cross validation accuracy were invited to
attend the nBetter intervention. The EEG data was collected
from 24 EEG channels, placed in the international 10-20 system
positioning: F3, F4, FC3, FC4, C3, C4, CP3, CP4, P3, P4, FT7,
FT8, T3, T4, TP7, TP8, Fz, Oz, FCz, Cz, CPz, Pz, A1, and A2, and
digitally sampled at 256 Hz for a voltage range of±300 mV.

In total the nBetter dataset contains the EEG data from 11
stroke patients completing one screening session, 18 supervised
sessions and 18 therapy sessions supervised by an occupational
therapist. The screening session, collected at the start of the study,
contains four runs, each consisting of 20 idle trials and 20 motor
imagery trials. For the idle class the participant was instructed
to relax, whereas for the motor imagery class the participant was
instructed to imagine movement of their affected hand. As shown
in Figure 2, each supervised session followed by one therapy
session on the same day, conducted thrice weekly over a 6 week
period. In each of the supervised sessions 40 labeled trials were
collected, half motor imagery and the other half idle trials. The
therapy sessions contain four runs each consisting of 40 motor
imagery trials. Each of the trials in these sessions lasted 13 s,
as illustrated in Figure 3 with the instruction to perform motor
imagery being presented for 4 s after giving the participant 2 s
to prepare.

To evaluate the proposed r-KLwDSA algorithm, only the
screening and supervised sessions were used. These sessions
contained clearly labeled trials with equal numbers of each of
the two classes. When considering each supervised session as
the target session the first 10 trials of each class were used as
training data, while the rest were kept for evaluation. When the
supervised session was used as a source session all trials were
used for transfer learning. To simulate a real world scenario the
supervised sessions were evaluated chronologically. As a result,
when the supervised session one was evaluated as the target
session, only the screening session was used as source data.
Similarly, when the supervised session 18 was used as the target
session, the supervised sessions 1–17 and the screening session
were used as the source sessions.

3.2. Data Processing
Any of the trials missing time samples were removed, other
than this no artifact rejection algorithms used. A zero phase
elliptic band pass filter from 8 to 35 Hz was used to filter the
EEG data as this range contains the key range of frequencies
that are linked to motor imagery. The band-passed EEG signals
from 2.5 to 5 s after the presentation the cue were used for
feature extraction. This time interval considers sufficient time
for the participant to react to the motor imagery instruction. Six
different feature extraction algorithms, including the proposed r-
KLwDSA algorithm, are used in this article. These six algorithms
utilize CSP filters to calculate the features. The CSP diagonalizes
the covariance calculated for each class to find the subspace
that maximizes the variance of one class while minimizing the
variance of the second classes. The first and last two rows of
the CSP were selected as the most discriminative spatial filters
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FIGURE 2 | Illustration of the data collection of the nBetter dataset. First a screening session is collected at the start of the 6 weeks. Following the screening session,

a supervised session followed by a therapy session is collected three times a week.

for feature extraction. The normalized variances of the spatially
filtered EEG signals from the training part of the target session

were used as the features to train a Linear Discrete Analysis
(LDA) classifier.

Frontiers in Neuroergonomics | www.frontiersin.org 6 April 2022 | Volume 3 | Article 837307
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FIGURE 3 | A trial from the nBetter supervised session. Each supervised session consists of 20 motor imagery (MI) trials and 20 idle trials.

Despite all using CSP for calculating the features, the
covariance matrix of each class, used to calculate CSP, was
obtained differently in the six applied methods. For the proposed
r-KLwDSA algorithm, the covariance of each class was calculated
as described above in (10). The proposed KLwDSA algorithm is
a special case of the proposed r-KLwDSA algorithm with r =
0. In other words, the proposed KLwDSA algorithm uses the
covariance matrices calculated in (9) to obtain the CSP filters.
The standard session-specific (SS) algorithm is also a special case
of the proposed r-KLwDSA algorithm with r = 1. As when r = 1
no transfer learning occurs making it the same as a standard
CSP-LDA BCI. Thus, the SS uses only the training data available
in the target session to calculate the CSP filters. The naive
transfer learning algorithm, nTL, concatenates all the source
sessions with equal weights and without alignments to calculate
the covariance of each class for the CSP algorithm. The DSA
and KLw algorithms are extensions to nTL. The DSA algorithm
applies the DSA linear transform to each of the source sessions
before calculating the CSP covariance matrices by concatenating
the aligned source trials. The KLw algorithm weights each of the
source sessions using the weighting method proposed in step
2 of the proposed algorithm without any alignment. Then the
weighted covariance matrices of the source sessions are used for
calculating the CSP filters. All these algorithms are compared
in terms of the classification results to understand their merits
and disadvantages.

4. RESULTS AND DISCUSSION

4.1. Comparison of Classification Accuracy
Results
Figure 4 shows the average classification accuracy of the
six above-mentioned algorithms across all the subjects and
sessions when a different number of target trials were available
for BCI calibration. As shown in Figure 4, the proposed r-
KLwDSA algorithm outperformed all the other algorithms across
different numbers of available target trials. Given the number
of available target trials between 2 to 10 per class, r-KLwDSA
consistently outperformed SS by an average more than 4%. The
sensitivity and specificity were also calculated for the proposed
r-KLwDSA algorithm and have been included in a table in the
Supplementary Materials.

A 6 (algorithms = SS, nTL, KL, DSA, KLwDSA, and r-
KLwDSA) × 5 (target trials per class = 2, 3, 4, 5, and 10) ×
18 (available source sessions= 1, 2, ... , 18) repeated measures
ANOVA test was performed on the classification results using

the SPSS software. The statistical results showed that only the
number of trials satisfied Mauchly Sphericity, so the Greenhouse
Geisser was used to evaluate the effects of the algorithms, the
number of target trials and sessions on the classification results.
The results showed that the number of target trials and the
algorithms had statistically significant effects on the classification
accuracy with P-values of less than 0.001 and 0.048, respectively.
The post hoc analysis showed using 3, 4, 5, and 10 target trials per
class led to significantly better classification results compared to
when we used only 2 target trials per class (p < 0.001). Similarly
using 10 target trials per class significantly outperformed the
results of using 3 trials per class (p = 0.008). When comparing
the algorithms separately, the post hoc analysis showed that the
proposed r-KLwDSA algorithm significantly outperformed all
the other algorithms. P-values of less than 0.001 were obtained
when comparing the proposed r-KLwDSAwith the SS, nTL, DSA,
KLw, and KLwDSA algorithms. The post hoc analysis did not
show any significant difference between the SS, nTL, KLw, and
DSA algorithms. Interestingly, by combining KLw and DSA, the
proposed KLwDSA algorithm significantly outperformed the SS,
nTL, DSA, and KLw algorithms, with the P-values of 0.006, 0.013,
0.012, and 0.032, respectively. We corrected the p-values for the
multiple comparisons using the Bonferroni correction method.

To better understand the merits of the proposed r-KLwDSA
over the standard SS algorithm, the best two features of these
two algorithms, obtained using the target data from subject
6, session 16, were compared in Figure 5. Figure 5 highlights
the benefit of implementing the proposed algorithm when
there are only a limited number of target trials available.
As shown the SS algorithm suffers greatly from overfitting
due to the lack of target training trials. The SS algorithm
extracts session-specific CSP features which perform very
well with the available training data with only two features
on the incorrect side of the hyperplane. However when
transferring to the target test data the features from both
classes overlap. The r-KLwDSA algorithm is not affected
by this overfitting due to the integration of the source
sessions data. While the trained target features overlap slightly
more than the SS algorithm the test target features are
much more distinctive.

4.2. Effects of Number of Target Trials and
Source Sessions on the Performance of
r-KLwDSA
Further statistical analyses were carried out to investigate the
effects of the number of target trials and source sessions on the
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FIGURE 4 | Average classification accuracy of six different algorithms across all subjects and sessions, when different number of target trials were available for

calibration. SS denotes the target session-specific algorithm; nTL, naive transfer learning; proposed KLw, Kullback Liebler weighted transfer learning; proposed DSA,

data space alignment transfer learning; proposed KLwDSA, aligned and weighted transfer learning; and proposed r-KLwDSA, the regularized, aligned, and weighted

transfer learning algorithm.

performance of the proposed r-KLwDSA algorithm. A 5 (target
trials per class = 2, 3, 4, 5, and 10)× 18 (available source sessions=
1, 2,..., 18) repeated measures ANOVA test was performed on
the r-KLwDSA classification results. Mauchly Sphericity was
satisfied for the number of trials per class, so the sphericity
assumed results were used. The ANOVA results confirmed that
the number of available target trials had a main affect on the
classification accuracy with a P-value of less than 0.001. This
is aligned with previous literature, as increasing the number of
target trials improves the estimation of the average target trials
for each class. The improved average target trial results in a better
DSA alignment and a more accurate KL weighting, consequently
improving the r-KLwDSA accuracy.

While increasing the available target trials significantly
improved the classification accuracy, the number of available
source sessions did not have a main effect on the classification
results of the proposed r-KLwDSA algorithm (P = 0.472). A
potential factor contributing to the lack of a significant effect
of the number of source sessions on the r-KLwDSA results
could be the non-stationarity of the EEG signals. The users’
EEG signals vary from session to session, and these variations

can be significant over extended periods. Thus, increasing the
number of the source data could not necessarily improve the
BCI accuracy. Please note that to mimic practical scenarios, we
considered the data chronologically and used all the available
source sessions for training r-KLwDSA. Thus, our results did not
make a direct comparison between the different number of source
sessions as by increasing the number of the source sessions the
target sessions were changed. To better analyse the impact of
number of source sessions on the r-KLwDSA performance, we
fixed the target session to session 18 and used different numbers
of the nearest source sessions. However still we did not observe
a statistically significant effect of number of source sessions on
rKLwDSA results. The details of these results are available in the
Supplementary Material.

4.3. Change in Classification Accuracy for
Those Encountering BCI Deficiency
Figure 6 presents scatter plots showing all the classification
results obtained using SS against those obtained using the
proposed r-KLwDSA algorithm, when 2, 3, 5, and 10 target trails
were available for BCI calibration. As can be seen, compared to
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FIGURE 5 | An example of the distribution of the two best features obtained by the session-specific CSP and the proposed r-KLwDSA. These features were collected

from subject 6, session 16. The blue crosses and red squares denote the normalized features of the hand motor imagery and the rest class, respectively. The black

line represents the LDA hyperplane obtained by the target train data.

the SS algorithm, the increased classification accuracy from using
the proposed r-KLwDSA algorithm was pronounced for stroke
users encountering BCI deficiency (i.e., SS accuracy less than
60%). As expected, increasing the number of available target trials
led to a larger improvement in the classification accuracy of the
users who were identified as BCI deficient using the SS algorithm.

To better investigate the benefit of using r-KLwDSA, Table 1
splits the 198 available target sessions based on the classification
accuracy achieved by the SS algorithm, when 10 target trials
per class were available for BCI calibration. Impressively, for
the total 73 sessions where the SS encountered BCI deficiency
(i.e., accuracy below 60%), the use of r-KLwDSA yielded a
significant increase in the classification accuracy with an average

improvement of 13.22% and p-value of 0.Moreover, the proposed
r-KLwDSA significantly improved the classification accuracy
of the total 87 sessions achieving between 60% and 85%
accuracy using the SS algorithm. However, the observed average
improvement was smaller, with the average accuracy increasing
by 2.99%. On the contrary, sessions with a SS classification
accuracy more than 85% observed an average decrease in
the accuracy when r-KLwDSA was applied. This shows when
the session-specific model performs very well, adding source
sessions to the model could be detrimental and the proposed
regularization method could not deal with it as expected. This
could be because the regularization values were chosen using
cross validation on only very few target trials, which increases the

Frontiers in Neuroergonomics | www.frontiersin.org 9 April 2022 | Volume 3 | Article 837307



Giles et al. Reducing Brain-Computer Interface Calibration

FIGURE 6 | Four scatter plots showing the SS classification accuracy against the classification accuracy of the proposed r-KLwDSA algorithm. Each star represents

one test session of a patient. (A) Two trials per class, 64.9% users improve with r-KLwDSA. (B) Three trials per class, 66.7% users improve with r-KLwDSA. (C) Five

trials per class, 62.4% users improve with r-KLwDSA. (D) Ten trials per class, 62.6% users improve with r-KLwDSA.

TABLE 1 | The sessions are separated into those achieving below 60%, between

60 and 85% and above 85% classification accuracy using the session specific

(SS) BCI model, when there were 10 target trials per class available for calibration.

Below 60% 60–85% 85–100%

SS Mean Acc 45.82% 68.56% 91.71%

r-KLwDSA Mean Acc 59.04% 71.55% 88.68%

SS Count 73 87 38

P-value 0 0.016 0.003

The average classification accuracy achieved by these sessions using the proposed r-

KLwDSA and the session specific BCI are presented with the p-value calculated from the

t-test between them.

risk of over fitting. Thus, there is a need to investigate novel ways
to find the optimum regularization values, particularly for those
with very good initial SS performance.

Considering the r-KLwDSA results and regardless of the
number of target trials available, we observed consistent

improvements in the classification accuracy of the sessions with
BCI deficient SS models. For those sessions, the proposed r-
KLwDSA algorithm improved the classification accuracy by
an average of 9.29, 9.54, 8.93, 9, and 13.22% for 2, 3, 4, 5,
and 10 trials per class, respectively. Importantly, the observed
improvements in the classification accuracy were significant for
all these different number of available target trials with P-values
of less than 0.001.

In summary, Figure 6 and Table 1 show that the proposed
r-KLwDSA could potentially reduce the number of sessions
encountering BCI deficiency while limiting the calibration
time to less than 4 min. Thus, r-KLwDSA could help more
stroke patients have a meaningful and potentially effective
BCI-based rehabilitation.

4.4. Impact of Number of Source Sessions
on the Regularization Value
Figure 7 illustrates the effects of the number of available target
trials and source sessions on the regularization value in the
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sessions available. In the proposed r-KLwDSA, the r-value, r, is used to weight the available target trials while 1− r is used to weight the aligned weighted source trials.

proposed r-KLwDSA algorithm. The regularization value, r,
defines a trade-off between the weighted aligned source trials
and the target trials in the final r-KLwDSA model. Figure 7
shows larger weights were given to the target trials when more
target trials per class were available for training the r-KLwDSA
model. For example, given one source session available, when
10 target trials per class were used for training, the target trials
on average got weighted as r = 0.52, whereas the average
obtained r was 0.17 when there were two target trials per class
available for calibration. These results suggest that when more
target trials are getting available for calibration, r-KLwDSA gets
more similar to the target session-specific model rather than
the transfer learning model extracted from the source sessions.
However, when there are only a couple of target trials available for
training, although the proposed r-KLwDSA algorithm still finds
them useful, the focus has to be on the source data available as
a clear representation of the target session cannot be calculated
from the limited data available.

When there were less than 5 source sessions available, the
effects of the number of source sessions on r was opposite to
the effect of the number of target trials. Figure 7 shows when
there was only one previous source session available, the average
r-value was high; however, as the number of sessions available

increased, the average weight given to the target trials decreased.
This drop in the r-value is presumably due to the increasing
amount of source data available for transfer learning. As the
amount of transfer learning data increased, the proposed r-
KLwDSA could find more source sessions which were similar
to the target session and could produce more robust features
without relying too much on the available target trials. However,
this trend is not consistent as the further increase in the number
of available sessions did not lead to a further decrease in the r-
value. This end to the trend could be due to the user adapting
to using the BCI over time. As the user continues to use the
BCI for rehabilitation, they would start learning how to produce
more consistent and separable target EEG signals. Due to this
the proposed r-KLwDSA algorithm would adapt to this change
and increase the r-value to rely more on the target data when
calibrating the BCI model.

4.5. Limitations and Future Work
Although the results collected show that the proposed r-
KLwDSA performed best for the majority of the stroke patients
in a few cases other method performed better. In particular
for some users the SS performed much better for a couple
of sessions.
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Ideally if the correct regularization parameter r was calculated
for each session the proposed r-KLwDSA should always
outperform the standard SS algorithm. Utilizing regularization
improved the classification accuracy however applying leave-
one-out cross validation to select the r value is rather lacking.
This method is prone to overfitting due to the limited number
of target trials available. Finding a better alternative method to
calculate the r value that works well with limited trials would be
very beneficial.

The current proposed r-KLwDSA assumes that there are no
non-stationarities within each session which is not an always
correct assumption. Further work could be done to reduce the
effects of these non-stationarities. Different variants of CSP have
been produced to reduce the effects of these non-stationarities
such as the KL-CSP and DTW-CSP (Arvaneh et al., 2013b;
Azab et al., 2019a). Alternatively, online adaptation algorithms
have also been developed to reduce these non-stationarities and
could further improve the classification accuracy (Arvaneh et al.,
2013a).

5. CONCLUSION

This article proposed a novel algorithm for transfer learning
combining linear alignment, weighting and regularization to
reduce the calibration time for long-term BCI users. The linear
alignment aimed to reduce the non-stationarity between the
source and target sessions, whereas the weighting mechanism
adjusted the impact of each source session on the BCI
model based on its similarity to the target data. Finally, the
regularization step combined the weighted aligned source data
and the few available target data to build the final BCI model.
The proposed algorithm significantly outperformed the session-
specific model and a number of other state-of-the -art transfer

learning algorithms when the number of available target trials
was very few and the number of available source sessions was
between 1 to 18. Importantly, the proposed algorithm remarkably
reduced the number of BCI sessions with deficient session-
specific accuracy (i.e., less than 60%) with an average accuracy
improvement of around 10%.
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