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Abstract 

In this work, graphene oxide sheets were functionalized with Octa(aminopropyl)silsesquioxane. 
Then, Octa(aminopropyl)silsesquioxane-functionalized graphene oxide (GO-Amine-SSQ) was 
grafted with Ferrocene through Friedel-Craft reaction. Structural properties of the prepared 
composite (GO-Amine-SSQ-Fc) were analyzed by XPS, FT-IR, XRD, Raman, SEM, TEM, and 
BET tests. Results confirmed the successful synthesis and high porosity. Next, the electrochemical 
properties of GO-Amine-SSQ-Fc were characterized by CV, GCD, and EIS techniques in the 3E 
system. The GO-Amine-SSQ-Fc electrode showed a specific capacitance of 574 F g-1 at 1 A g-1, 
retention capacitance of 90.1% after 10000 charge-discharge cycles, low resistance, and efficient 
diffusion of ions. After confirming the excellent electrochemical performance of this electrode, a 
symmetric supercapacitor system (GO-Amine-SSQ-Fc//GO-Amine-SSQ-Fc) was tested by CV 
and GCD techniques, to determine practical application of system. GO-Amine-SSQ-Fc//GO- 
Amine-SSQ-Fc system recorded a specific capacitance of 304 F g-1 at 0.5 A g-1, retention 
capacitance of 92.5% over 10000 charge-discharge cycles, and specific energy of 10.14 Wh Kg-1 
at a specific power of 500 W Kg-1. Also, the results of computational methodology show that the 
interaction of SSQ, Fc and GO layer in GO-Amine-SSQ-Fc composite, makes it effective as an 
electrode material for supercapacitors. This excellent performance, as a result of the unique 
structure of Amine-SSQ groups and the superior electrochemical behavior of Ferrocene groups, 
suggests that GO-Amine-SSQ-Fc composite has great potential for energy storage devices. 
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1. Introduction 

Today, the development of electrical energy storage devices is vital to the energy generation 
sectors. Energy storage devices' performance determines the cost and operation of the system [1]. 
These systems can be classified as chemical, electrochemical, thermal, and mechanical storage [2]. 
Supercapacitors (SCs) are an energy storage device that has received attention due to high retention 
capacitance, fast charge-discharge cycles, higher specific energy than conventional capacitors and 
higher specific power compared to rechargeable batteries. SCs store energy through ion adsorption 
(electrosorption) mechanism (non-faradaic process), pseudocapacitive process (faradaic 
mechanism through surface redox reactions), or both (hybrid materials) [3]. The non-faradaic 
mechanism, which stores energy by forming electric double-layers (EDL), is performed by 
carbonaceous parts of electrode materials. Devices that operate through the non-faradaic 
mechanism are electric double-layer capacitors (EDLCs) [4]. Pseudocapacitors are another class 
of SCs that stores charges through oxidation-reduction reactions [5, 6]. The third class of these 
devices (hybrid SCs) uses both faradaic and non-faradaic mechanisms [7-9]. Therefore, these 
devices can be classified into EDLCs, pseudocapacitors, and hybrid capacitors. Another type of 
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classification of SCs is based on their configuration. Based on the electrode configurations in a 
SC, these energy storage devices are classified as asymmetric [10, 11], battery-type [12], and 
symmetric [13] SCs. Electrolytes are another important part of SCs that are classified as ionic 
liquids [14], organic [15], aqueous [16, 17], gel [18], solid-state [19, 20], eutectic solvents [21, 
22], polymers [23], redox electrolyte [24], so on. 

Also, SC electrodes can be classified according to the type of storage mechanism [25]. These 
electrodes generally include Pseudocapacitance materials (metal oxides and metal-containing 
materials [26-32], conducting polymers [33-35], biopolymers [25], MOFs [36-38], heteroatom-
containing and heteroatom-doped materials [39-44], etc.), double-layer capacitance materials 
(graphene [45, 46], CNT [47-49], graphene nanoribbons [50], etc.), and hybrid materials 
(composites or materials with both properties) [51]. Hybrid materials significantly impact on future 
developments, which can show superior characteristics over their pure counterparts. Therefore, 
extensive researches have been done on hybrid material-based electrodes [52, 53]. Graphene with 
2D structure has been employed in energy storage devices in recent years due to its unique 
electrical properties [54]. Other graphene derivatives, such as graphene oxide (GO) [55], 
functionalized graphene oxide (fGO) [56], and reduced graphene oxide (rGO) [57-60] have also 
been used to make hybrid composites in the role of SC electrodes [61, 62]. Silsesquioxanes (SSQs) 
are other advance materials which employed in systems. SSQs are organic-inorganic compounds 
that improve the mechanical, chemical, and thermal stability of composites [63]. Also, SSQ-
containing composites have high surface area, which increases the active surface in the application 
of SC electrodes [64]. Another compound employed in preparation of composites is Ferrocene 
(Fc), due to its unique electrochemical properties. Fc leads to more efficient electron-transfer in 
the composite, hence known as redox modifier and probe. High stability of redox states, low 
oxidation potential, and effective electron transfer have made Fc a redox modifier [65, 66]. 

In this work, for the first time, a composite containing GO, Fc, and SSQ (as the bridge) was 
synthesized. This structural design, in which SSQ acts as a bridge, increases the surface area and 
modifies the GO surface. On the other hand, increasing the surface cause the electrode to improve 
energy storage through the EDL mechanism. Also, composites containing GO and SSQ have been 
rarely investigated in SC applications. In addition to improving electrochemical performance 
through the EDL mechanism, electrode performance was also improved through Faradaic 
reactions by Fc groups to achieve an efficient system. Also, simultaneous use of SSQ groups and 
Fc groups for the synthesis of composite to measure SC performance has not yet been performed. 
GO was prepared through the modified Hummer method. Next, the GO surface was functionalized 
with Amine-SSQ, which led to GO-Amine-SSQ composite. Then, through the Friedel-Crafts 
reaction, a Fc-containing composite (GO-Amine-SSQ-Fc composite) was synthesized. The 
preparation of this composite was performed to improve the electrochemical behavior as the SC 
electrode. Successful synthesis and structural characterization of GO-Amine-SSQ-Fc composite 
were investigated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-
IR), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) techniques. Also, 
the electrochemical behavior of GO-Amine-SSQ-Fc composite was carefully studied and 
discussed by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and 
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electrochemical impedance spectroscopy (EIS) techniques. Also, electrochemical properties of 
GO-Amine-SSQ-Fc composite was compared with the GO-Amine-SSQ composite to determine 
the important role of Fc as a redox-active material. Finally, the Fc-containing composite was tested 
in a symmetric SC system to determine the device's performance in practical application. 

 

2. Experiments 

2.1 Materials 

All reagents and solvents used in this study were purchased from Sigma-Aldrich and Merck 
companies and used without further purification. 

 

2.2 Synthesis and Preparation 

Preparation of GO and acylated GO (GOCl): To prepare GO, the modified Hummer's method 
was used according to this reference: [67]. 2.50 g of graphite powder and 1.25 g of NaNO3 were 
added to 60 ml of H2SO4 solution in a round-bottom flask placed in the ice bath (30 min). Next, 7 
g of KMnO4 (as the strong oxidizing agent) was added while stirring the solution slowly, and slow 
stirring was continued for 12 h. Then 150 ml of distilled water was added to the solution, while 
the reaction solution's temperature reached 96°C, and stirring continued for another 24 h. Next, 50 
ml of H2O2 (30%) was slowly added to the flask, while the stirring rate was 300 rpm. Finally, the 
obtained light black powder was washed several times with H2O and HCl, then dried in a vacuum 
oven at 100°C. To synthesis of GOCl, 2 g of synthesized GO was refluxed in SOCl2 (4 h), then the 
excess SOCl2 was removed. Then, GOCl was filtered and washed repeatedly with 40 ml of CH2Cl2. 
Fig. 1 shows a schematic of synthesis. 
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Fig. 1. Preparation of GO and GOCl 

 

Preparation of octa-aminopropyl SSQ (Amine-SSQ): The synthesis of Amine-SSQ was done 
by a Sol-Gel process according to this reference: [68]. Under N2 atmosphere, 221.4 g of 3-
aminopropyltriethoxysilane was put into a flask equipped with magnetic stirring and reflux cooler. 
Then 22.5 g of water and 64.9 g of 1-propoxy-2-propanol were added together, then the mixture 
was added to the flask. Next, the contents of the flask were refluxed at 80°C (45 min). Finally, by 
vacuum distillation, volatile impurities and solvent were removed (20 mbar, 150°C). A schematic 
of the three-dimensional Amine-SSQ cage is shown in Fig. 2. 
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Fig. 2. 3D Amine-SSQ cage structure 

 

Preparation of GO-Amine-SSQ composite: First, 2.00 g of synthesized GOCl was dispersed in 
50 mL of THF, then reflux was performed for 2 h. Next, 1.00 g of synthesized Amine-SSQ was 
added to the mixture, and contents of the flask were refluxed for 24 h at 65°C. By filtration, the 
obtained black powder was washed repeatedly with 40 ml of CH2Cl2 and then freeze-dried. Finally, 
the obtained GO-Amine-SSQ composite was dried again at 25°C and sealed in a bottle. Fig. 3 
shows a schematic of synthesis. 
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Fig. 3. Preparation of GO-Amine-SSQ composite 

 

Preparation of GO-Amine-SSQ-Fc composite: First, to prepare alkene-functionalized GO-
Amine-SSQ, a substitution reaction was used. First, 1.00 g of GO-Amine-SSQ was dissolved in 
15 ml of isopropanol, and 0.50 g of NaHCO3 was added to the solution. Then, 10 ml of 3-Chloro-
1-propene was added to the synthesis of alkene-functionalized GO-Amine-SSQ. Then, to linking 
of alkene-functionalized GO-Amine-SSQ and Fc groups, the Friedel-Crafts reaction of alkene-
functionalized SSQ (0.50 g) with Fc (0.60 g), in 1,2-dichloroethane (20 ml) at 85°C under stirring 
for 24 h, was used according to this reference: [69]. A schematic of GO-Amine-SSQ-Fc synthesis 
is shown in Fig. 4. 
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Fig. 4. Synthesis of GO-Amine-SSQ-Fc composite 

 

3. Characterization 

3.1 Structural characterization 

XPS is a surface analysis technique that can be employed to investigate the surface chemistry of 
materials [70]. By XPS technique (Kratos Axis Ultra DLD spectrometer (Kratos Analytical Ltd., 
UK)), the elemental composition, structure, and existing bonds of GO-Amine-SSQ-Fc composite 
were analyzed. As shown in Fig. 5a, the appeared peaks at 98.0, 149.0, 196.0, 280.9, 397.4, 528.0, 
and 710.4 eV represent Si 2p, Si 2s, Cl 2p, C 1s, N 1s, O 1s, and Fe 2p, respectively. Due to the 
observed O=C-N bond at 288.1 eV (Fig. 5b), grafting between GOCl and Amine-SSQ is 
performed [71-73]. Also, the binding energies that appeared at 283.7, 284.6, 284.9, 285.7, 285.9, 
286.6, 286.9, and 289.09 eV are related to C-Si, C-C / C=C, C-OH, C-Si-O, C-N, C-Cl, C=O, and 
O=C-O bonds in synthesized functionalized GO, respectively [74, 75]. In the N 1s spectra, grafting 
was further verified by the N-C=O peak appeared at 398.3 eV (Fig. 5c) [76, 77]. Also, Fig. 5d 
represents the high-resolution Si 2p spectrum for GO-Amine-SSQ-Fc composite, which indirectly 
shows the Si atoms in the SSQ molecule's unique structure (Si-C at 101.7 eV, and Si-O / Si-O-C 
at 102.7 eV) [78-80]. The appeared peaks at 710.4, and 723.7 eV show Fe 2p3/2 and Fe 2p1/2 
photoelectron lines, respectively (the iron spectrum (Fe0) at 705.9 eV shows a characteristic peak), 
as shown in Fig. 5e. Their corresponding satellite (sat.) peaks can be seen at 715.4 and 729.6 eV, 
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respectively [81-84]. According to the XPS spectra, the synthesis of the GO-Amine-SSQ-Fc 
composite has been performed successfully. 
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Fig. 5. XPS spectra of GO-Amine-SSQ-Fc composite: a) survey spectrum, b) C 1s spectrum, c) N 1s spectrum, d) Si 2p spectrum, and e) Fe 2p 
spectrum 

 

The FT-IR spectrum was recorded with PERKIN-ELMER Spectrum One IR (450-4000 cm-1, KBr 
pellet). The FT-IR spectrum is shown in Fig. 6. Band located at 3430.20 cm-1 is attributed to the 
characteristic transmission of the -NH (stretching). The band that appeared at 1105.62 cm-1 is 
associated with the stretching band of Si-O-Si [82, 85-87]. The bands located at 1573.27, 1410, 
and 487.46 cm-1 were attributed to C=C stretching vibration, bending vibration of saturated C-H 
bond from cyclopentadienyl rings, and Fe-Cp stretching vibration , respectively, which confirmed 
the successful Friedel-Crafts reaction between GO-Amine-SSQ and Fc framework without 
collapse [69, 88-93]. Also, the transmissions at 1718.37cm-1, 1228.29 cm-1 as well as 2955.41 and 
2872.11 cm-1 as well as correspond to the C=O, stretching band of N-C, and C-H stretching, 
respectively [80, 85, 86, 93, 94]. 
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Fig. 6. FT-IR spectrum 

 

The structural properties of GO and GO-Amine-SSQ-Fc composite were further evaluated using 
XRD as shown in Fig. 7. The XRD spectra were recorded by Bruker AXS-D8 advance (10° to 80°, 
Cu anode, 1.54060 Å). Also, the characteristic peaks of both are listed in Table 1. The X-ray 
spectrum of GO (Fig. 7a) shows two characteristic peaks at 2θ= 12.8° (002) and 2θ= 42.5°, which 
correspond to the interlayer distance of GO sheets and un-exfoliated GO sheets, respectively [95, 
96]. The mentioned peaks have shifted to 2θ= 25.7° (002) and 2θ= 42.9° in the GO-Amine-SSQ-
Fc composite spectrum (Fig. 7b). After the peak shift of 2θ= 12.8° (002) to 2θ= 25.7° (002), the 
d-spacing is decreased from 0.69 nm to 0.35 nm, because by functionalization of GO, the d-spacing 
is decreased (cards No. 00-001-0640; 96-901-2233) [97]. Also, the characteristic peak at 2θ= 20.5° 
correspond to Si-O-Si linkage confirms that SSQ exists without collapsing in the composite 
structure (cards No. 00-007-0544; 96-705-2732) [98, 99]. Peaks appearing at 2θ= 15.4°, 17.8°, 
18.6°, 19.2°, 24.5°, 27.1°, 36.4°, and 41.1° are characteristic peaks of Fc derivatives (cards No. 
00-030-1544; 00-044-1740; 96-220-6824) [100-105]. Also, peaks appearing at 2θ= 31.1° and 
32.2° can be attributed to H···π interaction and hydrogen bonding [106]. In addition to confirming 
a porous structure of GO-Amine-SSQ-Fc composite, XRD data guarantees the successful synthesis 
of this composite. 
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Fig. 7. XRD pattern of a) GO, and b) GO-Amine-SSQ-Fc composite 

 

Characteristic peaks 

of 

Peak (2θ (degree)) Correspond to Reference(s) 

GO 12.8 Interlayer distance of GO sheets [95, 96] 
(Codes: 00-

001-0640; 96-
901-2233) 

42.5 Un-exfoliated GO sheets 

GO-Amine-SSQ-Fc 

composite 

15.4 Characteristic peaks of Fc derivatives [100-105] 
(Codes: 00-

030-1544; 00-
044-1740; 96-

220-6824) 

17.8 

18.6 

19.2 

24.5 

27.1 

36.4 

41.1 

25.7 Interlayer distance of GO sheets [95, 96] 
(Code: 00-
001-0640) 

42.9 Un-exfoliated GO sheets [107] 
(Code: 96-
901-2233) 
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20.5 Si-O-Si linkage [98, 99] 
(Codes: 00-

007-0544; 96-
705-2732) 

31.1 H···π interaction and hydrogen 
bonding  

[106] 

32.2 

Table 1. Characteristic peak list of GO and GO-Amine-SSQ-Fc composite 

 

Raman spectroscopy (TakRam N1-541, Teksan Co, 532 nm laser source, 1000-3200 cm-1) was 
employed to characterize the structural properties of GO and GO-Amine-SSQ-Fc composite. The 
G and D bands are the two peaks attributed to the sp2 bonded carbon bonds and the sp3-defect in 
the carbon lattice in the Raman spectrum, respectively (robing the nature of defects in graphene 
by Raman spectroscopy) [108, 109]. As shown in Fig. 8, these bands have appeared in the spectrum 
of both GO (G band at 1578.0 cm-1 and D band at 1349.9 cm-1) and GO-Amine-SSQ-Fc composite 
(G band at 1600.0 cm-1 and D band at 1343.5 cm-1). Here, the structural defects of graphene will 
be investigated by both band intensities described as ID/IG ratio. It is clear that ID/IG ratio for GO 
is larger than ID/IG ratio for GO-Amine-SSQ-Fc composite, indicating that the sp3-defects 
decreased. This phenomenon may be due to the formation of amide bonds and Functionalizing the 
GO surface. 
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Fig. 8. Raman spectra of GO and GO-Amine-SSQ-Fc composite 

 

SEM (TESCAN Vega3 Model) and TEM (Philips EM208S Model) techniques were applied to 
accurately analyze the structure, morphology, and microstructural properties of the GO-Amine-
SSQ-Fc composite. Due to easy sample preparation and the useful information it provides on 
sample morphology, SEM is the most utilized technique in the characterization of external 
morphology (texture) [110]. As can be seen in Fig. 9, SEM images clearly show flakes with a large 
surface area. To further investigate the effect of grafting on the surface morphology of GO, the 
prepared composite was analyzed using TEM. The TEM images are shown in Fig. 10. According 
to these images, functionalized GO layers show conventional edges with wrinkled and exfoliated 
and un-exfoliated sheets. Also, SEM and TEM images of GO were added for comparing the 
morphology of GO and GO-Amine-SSQ-Fc composite. According to Fig. 11, GO show 
conventional edges with exfoliated and un-exfoliated sheets morphology. 

 

   

Fig. 9. SEM images of GO-Amine-SSQ-Fc composite with different magnifications  
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Fig. 10. TEM images of GO-Amine-SSQ-Fc composite 

 

 

  

Fig. 11. SEM (right image) and TEM (left image) image of GO 

 

For further morphological investigation (specific surface area, adsorption-desorption behavior, 
pore-volume, pore diameter, etc.), the GO-Amine-SSQ-Fc composite was analyzed by BET 
analysis using N2 sorption measurements at 77 K. The sample was pre-treated before analysis (2h, 
120°C). Two devices Finetec and Belsorp mini (JAPAN), were used for analysis. The International 
Union of Pure and Applied Chemistry (IUPAC) explained N2 Adsorption Isotherms into six types 
(I-VI) [111, 112]. According to Fig. 12a, the isotherm appears to be of type IV. Given that the 
desorption curve at p/p0 > 6.0 is almost connected to the adsorption curve, it indicates that the 
cavities are almost open. The adsorption isotherm remains almost constant in the low and medium 
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p/p0 range, which means mono-molecule layer adsorption. Then, at high p/p0, N2 adsorption is 
suddenly increased, indicating the mesoporous nature of the composite [113, 114]. Mesoporous 
materials are a group of nanoporous materials with a pore size of 2 nm to 50 nm [115] (materials 
smaller than 2 nm are called microporous, and materials larger than 50 nm are called macroporous 
[116]). The results of the BET analysis also confirm this behavior. According to these results, the 
GO-Amine-SSQ-Fc composite's average pore diameter is 11.257 nm. Also, the volume of N2 
adsorbed in monolayer (Vm), total pore volume (at p/p0= 0.990), and BET surface area (as BET) were 
30.063 cm3(STP) g-1, 0.3682 cm3 g-1, and 130.85 m2 g-1, respectively. Also, GO was analyzed by 
BET to determine the influence of surface modification and functionalization. The Vm, total pore 
volume (at p/p0= 0.990), and as BET were 7.129 cm3(STP) g-1, 0.0553 cm3 g-1, and 31.03 m2 g-1, 
respectively. The specific surface area of the GO-Amine-SSQ-Fc composite is 4.2 times larger 
than that of GO. Also, Fig. 12b shows the Barrett-Joyner-Halenda (BJH) plot, which provides 
useful additional information about the distribution of the pores. According to this diagram, there 
is a good distribution of pores (from circa 6.9 nm to circa 95.3 nm). Also, the pore volume (Vp) 
and critical radius (rp,peak, the radius of the largest pore that completely filled at any particular 
pressure [117]) were 0.3195 cm3 g-1 and 53.04 nm, respectively. Unique properties such as meso- 
and macro- pores and high specific surface area (more active sites) improve electrolyte access and 
increase specific capacitance due to the synergistic effect of both faradaic (enhanced redox 
reactions at electrode-electrolyte interfaces) and non-faradaic mechanisms [118-121]. All of these 
properties make the GO-Amine-SSQ-Fc composite an excellent choice for SC electrodes. 
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Fig. 12. a) Adsorption/desorption isotherms, and b) BJH plot 

 

3.2 Electrochemical characterization 
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Now that the properties of synthesized composite have been characterized, this section studies and 
analyzes the electrochemical behavior. All these measurements were performed by Autolab 
potentiostat PGSTAT 302N (in KCl (3 M) electrolyte, at 25°C). First, the electrochemical 
properties of the GO-Amine-SSQ composite and GO-Amine-SSQ-Fc composite in a 3-electrode 
(3E) system are investigated, which electrodes containing composites, Pt sheet, Ag/AgCl (3 M 
KCl) electrode were used as working electrode, counter-electrode, and reference electrode, 
respectively. Working electrodes include 70% composite, 15% carbon black, 10% graphite, and 
5% PTFE, which were mixed using ethanol and then pressurized on a stainless-steel current 
collector (1 cm× 1 cm) under a pressure of 10 MPa. After analyzing the two composites by CV, 
GCD, and EIS tests in the 3E system, the composite that exhibited better electrochemical behavior 
was examined in the 2-electrode (2E) system by CV and GCD tests as a symmetric SC. For this 
purpose, a stainless steel cell was utilized where a polypropylene sheet separates positive and 
negative electrodes. The same method as before was applied to prepare the electrodes. 

 

3.2.1 Electrochemical performance of composites 

To determine the electrochemical behavior of the prepared composites, CV was used in a potential 
window of -0.3 to 0.7 V in the 3E system. The graphs are shown in Fig. 13a, which are correlated 
to the CV results at a scan rate of 50 mV s-1, confirm that the CV loop of GO-Amine-SSQ-Fc 
composite has a larger surface area and higher current than the GO-Amine-SSQ composite. In 
addition to having a larger surface area and higher CV current, the shape of loops should also have 
a lower contact resistance to be introduced as an excellent electrode in SC application. The effect 
of contact resistance on the diagrams is that the larger resistance contorts the CV pattern, leading 
to a narrower loop with an oblique angle [122]. To investigate this phenomenon, the two 
composites' CVs were recorded at a scan rate of 5 to 100 mV s-1, to determine what pattern the 
graphs of each composite show at low and high scan rates. According to Fig 13b, the diagrams 
recorded in the 3E system, where the electrode containing GO-Amine-SSQ composite performs 
as the working electrode, show the quasi-rectangular images, corresponding to the both EDL (by 
carbonaceous parts) and pseudocapacitive behavior (by heteroatom-containing groups) of 
composite [123, 124]. This pattern is also maintained during increasing scan rates. Fig. 13c shows 
the CV diagrams of GO-Amine-SSQ-Fc composite in the same system. Clearly, composite 
containing Fc exhibit different electrochemical behavior. In the CV diagrams of GO-Amine-SSQ-
Fc composite, the distortion from the rectangular shape originated from the pseudocapacitive 
behavior of Fc. The Fc/Fc+ (Ferrocene/Ferrocenium) is a reversible redox pair that enables the 
system to store energy through faradaic reactions (Fe(II)Cp2 ⇋ Fe(III)Cp2 + e-) [125-127]. It can 
be concluded that the GO-Amine-SSQ-Fc composite, as the hybrid material, stores the charge 
through both faradaic (by Fc/Fc+ couple and GO-Amine-SSQ contains heteroatoms groups) and 
non-faradaic (by carbonaceous parts) mechanisms. Results attest to the synergistic effect between 
GO-Amine-SSQ and Fc groups. 

The energy storage mechanism of GO-Amine-SSQ-Fc composite has led to a significant 
improvement in energy storage performance. Fig. 13d shows specific capacities at various scan 
rates, which are calculated using this equation [128]: SC = (∫I.dv)/(Vs.∆V.m), where SC, ∫I.dv, Vs, 
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∆V, and m are specific capacity, integral area under the CV diagram, scan rate, applied potential 
window, and active material’s mass loading, respectively. The specific capacities of GO-Amine-
SSQ composite at different scan rates are as follows: 377 F g-1 at 5 mV s-1; 325 F g-1 at 10 mV s-

1; 284 F g-1 at 20 mV s-1; 253 F g-1 at 30 mV s-1; 231 F g-1 at 40 mV s-1; 211 F g-1 at 50 mV s-1; 181 
F g-1 at 75 mV s-1; 164 F g-1 at 100 mV s-1; 131 F g-1 at 200 mV s-1. Also, the specific capacities 
of GO-Amine-SSQ-Fc composite at various scan rates are as follows: 598 F g-1 at 5 mV s-1; 545 F 
g-1 at 10 mV s-1; 499 F g-1 at 20 mV s-1; 461 F g-1 at 30 mV s-1; 429 F g-1 at 40 mV s-1; 399 F g-1 at 
50 mV s-1; 348 F g-1 at 75 mV s-1; 323 F g-1 at 100 mV s-1; 284 F g-1 at 200 mV s-1. With increasing 
scan rates, the specific capacities of both composites have decreased. The reduction of specific 
capacities can be interpreted as reducing the effective electrode/electrolyte interaction at high scan 
rates [129, 130]. Interestingly, while increasing the scan rate from 5 to 200 mV s-1, the specific 
capacities of GO-Amine-SSQ composite and GO-Amine-SSQ-Fc composite are decreased by 
65.3% and 52.5%, respectively. The improved capacitive performance of GO-Amine-SSQ-Fc 
composite compared to GO-Amine-SSQ composite can be attributed to the less mass transport 
resistance and the more efficient electrode/electrolyte interaction [75, 131]. 
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Fig. 13. a) CV diagram of GO-Amine-SSQ composite vs. CV diagram of GO-Amine-SSQ-Fc composite at scan rate 
of 50 mV s-1, b) CV diagrams of GO-Amine-SSQ composite at scan rates of 5 to 100 mV s-1, c) CV diagrams of 

GO-Amine-SSQ-Fc composite at scan rates of 5 to 100 mV s-1, and d) Calculated specific capacities at various scan 
rates (5 to 200 mV s-1) 

 

GCD technique was applied to more investigate the electrochemical properties and storage 
performance as well as practical applicability of the two composites. All measurements were 
performed in the potential window of -0.3 to 0.7 V in the 3E system. Fig. 14a presents the charge-
discharge diagrams of both composites at a current density of 2 A g-1 in one frame. The slope 
deviation of graphs from the symmetrical triangular shape confirms that both composites 
simultaneously benefit from faradaic and non-faradaic mechanisms, which confirms the CV results 
[132-134]. One of the parameters that is considered to evaluate the performance of an electrode is 
the discharge time in the charge-discharge diagram, which directly affects the specific capacity, 
according to this equation [135]: SC = (I.Δt)/(m.ΔV), where SC, I, Δt, m, and ΔV are specific 
capacity, charge-discharge current, discharge time, active material’s mass loading, and applied 
potential window, respectively. The discharge times of GO-Amine-SSQ composite and GO-
Amine-SSQ-Fc composite at the current density of 2 A g-1 are 176 and 280 s, respectively, which 
confirms the significantly higher discharge time of GO-Amine-SSQ-Fc composite (59.1% higher 
discharge time) compared to the GO-Amine-SSQ composite. The results once again confirm the 
synergistic effect of the compounds in Fc-containing composite in the application of SC electrode. 

Also, GDC tests were recorded at different current densities to study the electrochemical behavior 
of both electrodes at different current densities and the calculation of specific capacities using 
discharge times. Fig. 14b and Fig. 14c show the charge-discharge plots of GO-Amine-SSQ 
composite and GO-Amine-SSQ-Fc composite, respectively (at the current densities of 1 to 16 A 
g-1). As the current densities increase, the charging and discharging times decrease, owing to the 
limited accessibility of electrolyte ions [136]. The specific capacities of two composites at current 
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densities of 1 to 32 A g-1 are shown in Fig. 14d, which is calculated using the equation described 
in the previous paragraph (SC = (I.Δt)/(m.ΔV)). The specific capacities of GO-Amine-SSQ 
composite at various current densities are as follows: 363 F g-1 at 1 A g-1; 352 F g-1 at 2 A g-1; 332 
F g-1 at 4 A g-1; 288 F g-1 at 8 A g-1; 240 F g-1 at 16 A g-1; 160 F g-1 at 32 A g-1. Also, the specific 
capacities of GO-Amine-SSQ-Fc composite at various current densities are as follows: 574 F g-1 
at 1 A g-1; 560 F g-1 at 2 A g-1; 540 F g-1 at 4 A g-1; 488 F g-1 at 8 A g-1; 416 F g-1 at 16 A g-1; 320 
F g-1 at 32 A g-1. The specific capacities of Fc-containing composite are significantly higher so 
that at a current density of 32 A g-1, its specific capacity is two times higher than GO-Amine-SSQ 
composite. Also, while increasing the current density from 1 to 32 A g-1, GO-Amine-SSQ 
composite and GO-Amine-SSQ-Fc composite retained 44.1% and 55.7% of initial specific 
capacitance, respectively, which agrees with the CV results. The improved electrochemical 
behavior of GO-Amine-SSQ-Fc composite than GO-Amine-SSQ composite can be explained as 
that after the interaction of GO-Amine-SSQ groups and Fc groups, the diffusion path for 
accessibility of electrolyte ions is shortened, and charge transfer is facilitated [137, 138]. 
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Fig. 14. a) GCD diagram of GO-Amine-SSQ composite vs. GCD diagram of GO-Amine-SSQ-Fc composite at a 
current density of 2 A g-1, b) GCD diagrams of GO-Amine-SSQ composite at current densities of 1 to 16 A g-1, c) 

CV diagrams of GO-Amine-SSQ-Fc composite at current densities of 1 to 16 A g-1, and d) Calculated specific 
capacities at various current densities (1 to 32 A g-1) 

 

Also, the stability of both composites during successive charge-discharge cycles was analyzed. As 
shown in Fig. 15, GO-Amine-SSQ composite and GO-Amine-SSQ-Fc composite retained 94% 
and 90.1% of initial specific capacitance after 10000 charge-discharge cycles at a current density 
of 16 A g-1, respectively. Although the faradaic reactions can improve the pseudocapacitive 
behavior of active materials, these reactions cause the electrodes to be destroyed during successive 
charge-discharge cycles [3]. However, both electrodes granted good retention capacities and high 
stability for practical applicability. 
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Fig. 15. Retention capacitance of a) GO-Amine-SSQ composite, and b) GO-Amine-SSQ-Fc composite 

 

The EIS test was deployed for a deeper understanding of the behavior and properties of active 
material in a system and to conclude its performance as the SC electrode. By EIS technique, charge 
transfer, ion diffusion, and capacitance behavior at the electrode and electrolyte interface were 
analyzed. The results of this test are shown in Fig. 16 as a plot called Nyquist (100 kHz to 0.01 
Hz). According to Nyquist plots, a smaller semicircle at the high-frequency regions indicates lower 
charge transfer resistance (Rct) of the Fc-containing composite. Also, the more inclined the linear 
region of the Nyquist plot (Warburg diffusion element (Zw)) in low-frequency areas to the vertical 
line confirms the efficient diffusion path, which agrees with the more efficient diffusion path of 
the GO-Amine-SSQ-Fc composite [73, 139]. The extracted data after fitting are also studied 
(Table 2). Fc-containing composite shows lower bulk solution resistance (Rs) and Rct than GO-
Amine-SSQ composite. Also, value of Zw for GO-Amine-SSQ-Fc composite is around two times 
more than GO-Amine-SSQ composite, confirming more efficient diffusion of ions. Energy storage 
efficiency through non-faradaic (Q1) and faradaic (CF) mechanisms is also shown in Table 2. 
Clearly, the energy storage performance of the GO-Amine-SSQ-Fc composite is much better than 
the GO-Amine-SSQ composite through both mechanisms. 
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Composite Rs (Ω) Rct (Ω) Zw Q1 (mF)  CF (mF) 

GO-Amine-SSQ composite 1.22 3.30 0.06 0.41E-3  0.04 

GO-Amine-SSQ-Fc composite 1.20 1.90 0.13 0.75E-3  0.10 

Table 2. The extracted data after fitting 

 

As a brief conclusion, both composites have excellent electrochemical behavior as SC electrodes. 
However, the Fc-containing electrode has better electrochemical properties, making it suitable for 
application in a 2E system. Also, the electrochemical properties of the GO-Amine-SSQ-Fc 
composite were compared to electrodes containing similar components. The compared data can be 
seen in Table 3. 

 

Active material Specific capacitance Retention capacitance Reference 

Fc-MWCNTs (containing 

MWCNT and Fc) 

50 F g-1 at 0.25 A g-1 90.8% after 5000 cycles [140] 
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FcGA (containing 

polyaniline, graphene, and 

Fc) 

960 F g-1 at 1 A g-1 
~500 F g-1 at 3 A g-1 

86% after 5000 cycles [137] 

GQD-Fc/PPy (containing 

polypyrrole, graphene, and 

Fc) 

284.01 F g-1 at 2.5 A g-1 86% after 5000 cycles [141] 

GO-PolyFc (containing GO 

and Fc) 

200 F g-1 at 1 A g-1 96% after 2000 cycles [124] 

Ferrocene modified GO 

(containing GO and Fc) 

127 F g-1 at 1 A g-1 93% after 5000 cycles [142] 

GO-Amine-SSQ-Fc 

(containing GO, SSQ, and 

Fc) 

574 F g-1 at 1 A g-1 
~555 F g-1 at 2.5 A g-1 
~550 F g-1 at 3 A g-1 

90.1% after 10000 cycles This work 

Table 3. Electrochemical properties of Fc-containing composites in the 3E system 

 

By comparing the electrochemical properties of the composites listed in Table 3, the design of 
SSQ-functionalized GO and its grafting to sandwiched Fc has significantly improved the 
electrochemical behavior. What is being compared here is electrochemical performance, along 
with cyclic stability. The system with high cyclic stability maintains its efficiency during 
successive charge-discharge cycles and generates less electronic waste, which causes less damage 
to the environment [143, 144]. Specifically, the GO-Amine-SSQ-Fc composite shows high 
stability compared to the composites listed in Table 3 (except Ferrocene modified GO composite). 
The stability of Ferrocene modified GO composite is slightly higher than that of GO-Amine-SSQ-
Fc composite, however, its specific capacitance is 4.5 times less than that of GO-Amine-SSQ-Fc 
composite [142]. Also, one of the unique properties of SCs is the quick charge and discharge, 
which enables the system to show acceptable electrochemical performance at high charge-
discharge current densities. In terms of specific capacitance, FcGA composite [137] and GQD-
Fc/PPy composite [141] are competitors of the GO-Amine-SSQ-Fc composite. At high current 
densities, GO-Amine-SSQ-Fc composite has superior electrochemical performance; this 
composite also has higher cyclic stability than the two composites FcGA and GQD-Fc/PPy. 
Superior electrochemical performance of GO-Amine-SSQ-Fc composite can be thanks to 
increasing the active surface area in the presence of SSQ groups, reducing the composite 
resistance, more efficient diffusion path, so on. Fig. 17 provides a simple schematic of the design 
of GO-Amine-SSQ-Fc composite and the results of this design. 

 



25 

 

 
 

Fig. 17. A simple schematic of the GO-Amine-SSQ-Fc composite design and the results of this design 

 

GO-Amine-SSQ-Fc composite is examined in the following subsection as positive and negative 
electrodes in a symmetric SC system. 

 

3.2.2 Electrochemical performance of GO-Amine-SSQ-Fc//GO-Amine-SSQ-Fc system 

To investigate the electrochemical behavior and energy storage mechanism of the GO-Amine-
SSQ-Fc//GO-Amine-SSQ-Fc system, CV was performed in a potential window of 0 to 1.0 V at 
scan rates of 5 to 100 mV s-1 (Fig. 18a). The quasi-rectangular shape of the CV diagrams suggests 
the combination of both EDL and pseudocapacitive mechanisms. Also, CV patterns are remained 
during various scan rates, which confirms the low resistance of the system [145, 146]. Also, 
specific capacitance changes at different scan rates (5 to 200 mV s-1) are drawn in a graph (Fig. 

18b). The specific capacities of GO-Amine-SSQ-Fc//GO-Amine-SSQ-Fc system at different 
current densities are as follows: 288 F g-1 at 5 mV s-1; 253 F g-1 at 10 mV s-1; 227 F g-1 at 20 mV 
s-1; 206 F g-1 at 30 mV s-1; 191 F g-1 at 40 mV s-1; 178 F g-1 at 50 mV s-1; 154 F g-1 at 75 mV s-1; 
143 F g-1 at 100 mV s-1; 124 F g-1 at 200 mV s-1. The CV results confirm the high performance and 
excellent electrochemical behavior of SCs based on hybrid materials. 
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Fig. 18. a) CV diagrams of GO-Amine-SSQ-Fc//GO-Amine-SSQ-Fc system at scan rates of 5 to 100 mV s-1, and b) 
Calculated specific capacities at various scan rates (5 to 200 mV s-1) 

 

GCD test was utilized to evaluate the practical application of the GO-Amine-SSQ-Fc//GO-Amine-
SSQ-Fc system. The GCD technique studies the shape of charge-discharge plots, stability during 
charge-discharge cycles, specific capacities, specific energy densities, and specific power 
densities. By GCD technique, the shape of charge-discharge plots, discharge times, stability during 
charge-discharge cycles, specific capacities, specific energy densities, and specific power densities 
were studied. The shape of the charge-discharge diagrams at different current densities are shown 
in Fig. 19a. The curves have a quasi-triangular shape originating from the EDL capacitive and 
pseudocapacitive behavior of the system [147]. The specific capacities at different current densities 
are shown in Fig. 19b, which is as follows: 304 F g-1 at 0.5 A g-1; 292 F g-1 at 1 A g-1; 272 F g-1 at 
2 A g-1; 224 F g-1 at 4 A g-1; 160 F g-1 at 8 A g-1; 96 F g-1 at 16 A g-1. Values prove the excellent 
capacitance of the system. Ragone plots (specific energy (Wh Kg-1) vs. specific power (W Kg-1)) 
are used to compare the performance of different energy storage devices. The Ragone plot of the 
GO-Amine-SSQ-Fc//GO-Amine-SSQ-Fc system can be seen in Fig. 19c. The symmetric SC 
system has a specific energy of 10.14 Wh Kg-1 at a specific power of 500 W Kg-1. The system 
shows high both specific power and specific energy. Since the high retention capacitance is an 
important parameter for evaluating the energy storage devices, charge-discharge cycles were 
analyzed for 10000 consecutive cycles at 16 A g-1 (Fig. 19d). The system achieved retention 
capacitance of 92.5% over 10000 charge-discharge cycles, which guarantees high stability for 
long-term usage. 
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Fig. 19. a) GCD diagrams at current densities of 1 to 16 A g-1, b) Calculated specific capacities at various current 
densities (0.5 to 16 A g-1), c) Ragone plot, and d) Retention capacities during 5000 charge-discharge cycles 

 

Low resistance, ideal specific capacity, high specific power, high specific energy, and excellent 
retention capacity confirm the system's applicability. 

 

4. Computational methodology 
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In the present study, the theoretical charge density distribution analysis of the GO-Amine-SSQ-Fc 
composite on the basis of Bader’s Atoms in Molecules (AIM) [148] analysis was performed. Prior 
to topological analysis, the GO-Amine-SSQ-Fc complex was optimized using density functional 
theory (DFT) [149, 150]. The hybrid DFT calculations were carried out employing Becke Lee-
Yang-Parr (B3LYP) [151] hybrid functional in Vienna Ab Initio Simulation Package VASP [152]. 
The electron-ionic core interactions were described using the Projector augmented wave (PAW) 
potentials [153], considering dispersion correction of Grimme to include the Van der Waals 
interactions [154], where the cutoff energy of a plane-wave basis set was set to 500 eV. The 
Monkhorst-Pack [155] scheme of Brillouin zone sampling was applied with the k-point grid of 
1×1×1. The geometry optimization was stopped when the force on each ion was less than 0.01 
eV/Å and total energy converged to within 10-5 eV.   

Then, the charge density information obtained was used from VASP optimization as inputs to the 
AIM-UC [156] package to calculate the topological properties and electron density distribution of 
GO-Amine-SSQ-Fc complex at the bond critical points (BCP) of C−C bonds of the GO layer. The 
critical point search has been done for the (3,-1) type critical points of C−C bonds of the structures 
[157]. The calculations were done using Quantum Theory of Atoms in Molecules (QTAIM), [157-
159] where analysis of the Laplacian of electron density distribution over the atomic basins help 
us to identify the amount of atomic charges (electrons) and value of the concentration or depletion 
of charge density. the same calculations for the pristine GO layer were performed to see the effect 
of the functionalization on the charge density distribution on the GO layer. 

First, computing started from the graphene primitive cell to create a single layer of graphene. 
Beginning, a unit cell with the graphene monolayer was constructed at the middle where it is 
replicated into an infinite layer by the periodic boundary condition. Then, the GO monolayer by 
adding different O-containing functional groups of hydroxyl, carbonyl, and carboxyl randomly 
around the edge and on the basal plane of graphene sheet was constructed, based on the Lerf-
Klinowski [160] model. Finally, the GO-Amine-SSQ-Fc complex by adding SSQ and Fc groups 
to GO layer was created. The optimized structure of GO-Amine-SSQ-Fc used in the calculations 
is shown in Fig. 20. 
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Fig. 20. The optimized structure of GO-Amine-SSQ-Fc (C, O, Si, N, Fe, and H atoms are shown in brown, red, dark 
blue, light blue, gold, and white spheres, respectively) 

 

4.1 Computational results 

To gain more insight into the charge density distribution of GO-Amine-SSQ-Fc electrode in 

supercapacitor devices, topological analysis of electron density ρbcp(r) and its Laplacian ∇2ρbcp(r) 

at their BCP was carried out, where the same analysis was done for the pristine GO layer. The 

values and differences of ρbcp(r) and ∇2
ρbcρ(r) of C−C bonds of pristine GO layer and GO-Amine-

SSQ-Fc composite are represented in Table 4 and Fig. 22, where all the corresponding carbon 

atoms of GO layer in the considered systems are presented in Fig. 21. 
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Fig. 21. The GO layer used in the DFT calculation (C, O, and H atoms are shown in brown, red, and white spheres, 

respectively) 

 

 
Fig. 22. The differences of the a) electron density ρbcp(r), and (b) Laplacian of electron density ∇2ρbcp(r) of C−C 

bonds at their bonding critical points (bcp) of pristine GO surface and GO layer of GO-Amine-SSQ-Fc complex (C, 
O, and H atoms are shown in brown, red, and white spheres, respectively) 
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Table 4. The topological properties of electron density of carbon bonds on GO layer of GO-Amine-SSQ-Fc 
complex. The values for a pristine GO surface are also provided. For finding the atoms refer to the Fig. 20. 

 

Also, ∇2
ρbcρ(r) of GO layer of GO-Amine-SSQ-Fc is plotted in Fig.23 indicating accumulation of 

charge density between the bonds, where the positive (red contours) and negative (blue contours) 

imply charge concentration and depletion, respectively. The ranges of electron density of C  ̶C 

bonds of pristine GO layer are 1.731 to 2.224 eÅ-3 with average of 1.988 eÅ-3 compared to those 

of 1.748 to 2.303 eÅ-3 and average of 2.020 eÅ-3 on GO layer of the GO-Amine-SSQ-Fc complex, 

respectively. For Laplacian of C  ̶C bonds at their bonding critical points, in case of pristine GO 

layer, the results revealed ranges of -16.189 to -28.009 eÅ-5 with average of -22.531 eÅ-5, while 

Bonds ∇2ρbcp(r) , ρbcp(r) 

GO-Amine-SSQ-Fc 

∇2ρbcp(r) , ρbcp(r) 

GO 

Bonds ∇2ρbcp(r) , ρbcp(r) 

GO-Amine-SSQ-Fc 

∇2ρbcp(r) , ρbcp(r) 

GO 

C0-C3 -26.775, 2.159 -26.778, 2.160 C18-C21 -28.179, 2.230 -28.009, 2.224 

C0-C4 -25.299, 2.092 -24.845, 2.080 C20-C22 -26.187, 2.157 -26.748, 2.179 

C1-C3 -25.361, 2.091 -25.123, 2.097 C20-C23 -19.760, 1.869 -19.346, 1.871 
C1-C5 -25.372, 2.103 -25.365, 2.098 C18-C22 -19.684, 1.862 -19.688, 1.876 
C2-C4 -25.263, 2.093 -24.624, 2.080 C22-C25 -20.985, 1.914 -18.240, 1.808 
C4-C7 -19.077, 1.824 -18.147, 1.802 C25-C27 -25.895, 2.126 -25.083, 2.092 

C2-C5 -26.844, 2.158 -26.540, 2.148 C25-C29 -24.888, 2.093 -19.186, 1.848 
C7-C9 -24.054, 2.048 -23.562, 2.043 C24-C28 -25.299, 2.099 -23.768, 2.029 

C7-C11 -24.076, 2.054 -23.949, 2.054 C24-C27 -26.959, 2.165 -26.760, 2.165 

C20-C32 -18.590, 1.814 -16.189, 1.731 C26-C28 -27.682, 2.204 -25.124, 2.097 
C6-C9 -26.190, 2.139 -25.894, 2.131 C26-C29 -26.015, 2.145 -21.779, 1.957 

C6-C10 -25.992, 2.122 -25.943, 2.120 C1-C28 -19.725,1.844 -19.361, 1.844 
C8-C10 -25.975, 2.125 -26.058, 2.126 C11-C31 -16.953, 1.748 -17.158, 1.766 

C8-C11 -25.954, 2.129 -25.516, 2.115 C9-C30 -18.460, 1.800 -16.510, 1.744 
C18-C33 -18.542, 1.811 -17.081, 1.769    

C10-C13 -19.463, 1.838 -19.294, 1.841    

C13-C15 -23.431, 2.018 -22.869, 1.984    
C12-C15 -20.392, 1.912 -19.872, 1.893    

C12-C16 -21.809, 1.958 -20.052, 1.925    
C14-C16 -17.450, 1.828 -18.469, 1.776    

C14-C17 -20.792, 1.903 -19.568, 1.862    
C13-C17 -30.079, 2.303 -27.902, 2.213    

C16-C19 -26.871, 2.162 -26.150, 2.132    

C19-C21 -24.175, 2.043 -23.898, 2.030    
C19-C23 -17.470, 1.774 -18.249, 1.818    
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ranges of -16.953 to -30.079 eÅ-5 with average of -23.381 eÅ-5 were obtained for GO layer of GO-

Amine-SSQ-Fc complex. The results indicate that the electron densities distributions of most C  ̶C 

bonds of GO layer are increased and the bond charges are more concentrated on GO-Amine-SSQ-

Fc compared to those on pristine GO surface, which are due to the interactions of the connected 

SSQ and Fc to the GO layer in the GO-Amine-SSQ-Fc complex, which makes it more effective as 

an electrode material for SC.   

 

 
Fig. 23. The contour line plots of Laplacian of electron density of five phenyl rings of GO layer of GO-Amine-SSQ-
Fc obtained from charge density calculation. Contours are drawn in 5 eÅ-5 intervals. The red and blue lines represent 

positive and negative values of Laplacian, respectively (C, O, and H atoms are shown in brown, red, and white 
spheres, respectively) 

 

5. Conclusion 

Herein, structural and electrochemical properties of GO-Amine-SSQ-Fc composite were 
characterized after chemical synthesis. The composite showed a specific surface area of 130.85 m2 
g-1, which can be due to the presence of SSQ groups in the composite structure. Both energy 
storage mechanisms (faradaic and non-faradaic mechanisms) were confirmed by electrochemical 
tests. GO-Amine-SSQ-Fc composite in 3E system recorded specific capacitance of 574 F g-1 at 1 
A g-1, and retention capacitance of 90.1% over 10000 cycles. The prepared composite was also 
compared with other electrodes containing similar components, and its superiority was confirmed. 
Then, a symmetric supercapacitor device was assembled with positive and negative electrodes 
containing GO-Amine-SSQ-Fc composite that guaranteed excellent capacitive behavior. In 
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addition to the high specific capacity (304 F g-1 at 0.5 A g-1), the device showed good retention 
capacity (92.5% after 10000 cycles). Also, system recorded specific energy of 10.14 Wh Kg-1 at a 
specific power of 500 W Kg-1. The results exhibit the high potential of the GO-Amine-SSQ-
Fc//GO-Amine-SSQ-Fc system in practical application. The computational results indicate that the 
electron densities distributions of most C  ̶C bonds of GO layer are increased and the bond charges 
are more concentrated on GO-Amine-SSQ-Fc compared to those on pristine GO surface, which 
are due to the interactions of the connected SSQ and Fc to the GO layer in the GO-Amine-SSQ-
Fc composite, which makes it more effective as an electrode material for supercapacitor.   
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