
This is a repository copy of Bayesian Matching Pursuit Based Estimation of Off-grid 
Channel for Millimeter Wave Massive MIMO System.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/186044/

Version: Accepted Version

Article:

You, Y, Zhang, C and Zhang, L orcid.org/0000-0002-4535-3200 (2022) Bayesian Matching 
Pursuit Based Estimation of Off-grid Channel for Millimeter Wave Massive MIMO System. 
IEEE Transactions on Vehicular Technology, 71 (11). pp. 11603-11614. ISSN 0018-9545 

https://doi.org/10.1109/TVT.2022.3169721

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Bayesian Matching Pursuit Based Estimation of

Off-grid Channel for Millimeter Wave Massive

MIMO System
You You, Chuan Zhang, Senior Member, IEEE, and Li Zhang, Senior Member, IEEE

Abstract—Millimeter wave (mmWave) frequency spectrum of-
fers orders of magnitude greater spectrum to mitigate the severe
spectrum shortage in conventional cellular bands. To overcome
the high propagation loss in the mmWave band, massive multiple-
input and multiple-output (MIMO) can be adopted at both
transmitter and receiver to provide large beamforming gains.
At the same time, hybrid architecture is applied to reduce the
huge power consumption caused by devices operating at radio
frequency (RF). However, because of the hybrid architecture and
large number of antennas, it is hard to obtain the channel state
information (CSI) which is crucial for obtaining desirable beam-
forming gains. Off-grid error and sparsity pattern (SP) estimation
error are two main limiting factors of the performance of most
existing compressive sensing (CS) based channel estimation (CE)
algorithms. Off-grid error presents when the true angle does
not lie on the discretized angle grid of mmWave channel in the
spatial domain. In this paper, we first propose a fast Bayesian
matching pursuit method with ‘virtual sparsity’ to improve the
accuracy of SP estimation and name it as the improved Bayesian
matching pursuit (IBMP). Then an enhanced algorithm, named
off-grid IBMP (OG-IBMP), is developed to mitigate the off-
grid problem, followed by a theoretical analysis of OG-IBMP.
This method iteratively updates the selected grid points and
updates the corresponding parameters based on the maximum a
posteriori (MAP) criterion. Numerical simulations are performed
to validate our theoretical analysis and evaluate the performance
of the proposed method. Compared to other existing methods,
the results show that our proposed OG-IBMP algorithm greatly
reduces the off-grid error and significantly enhances the accuracy
of the SP estimation with low computational complexity.

Index Terms—Compressed sensing (CS), Channel estimation
(CE), Bayes methods, Optimization methods.
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M ILLIMETER wave (mmWave) is a promising approach

for the fifth Generation (5G) and beyond wireless

networks because of its large amount of available bandwidths

[1]. The critical challenge is the huge propagation loss in

the mmWave frequency bands. Thanks to the mm-level wave-

lengths, massive multiple-input and multiple-output (MIMO)

can be packed into a small area to provide desirable beam-

forming gain and compensates for the path loss. Additionally, a

hybrid MIMO architecture consisting of an analog beamformer

in the radio frequency domain cascaded with a digital MIMO

processor in the baseband has been proposed for mmWave

communication to reduce the high power consumption of the

power hungry devices such as the analog to digital converters

(ADC) in the radio frequency domain [2].

As in the conventional microwave systems, channel state

information (CSI) is needed to design precoding and combin-

ing procedures at the transmitters and receivers in mmWave

systems. Although massive MIMO and the hybrid architecture

help overcome the path loss and power consumption issues,

the large number of antennas and analog combining also make

it hard to obtain the required CSI. Fortunately, the mmWave

channels exhibit sparsity in the angular domain due to the

large dimension of the channels [3]. Many previous studies

leverage this channel sparsity and apply compressive sensing

(CS) [4] based sparse recovery techniques to estimate the

channel from a smaller set of measurements. Existing works

can be divided into beam training based methods [5], [6] and

open-loop channel estimation (CE) methods [7], [8]. The beam

training-based methods apply various smart searching methods

such as exploiting multi-resolution beamforming codebook [5]

for transmit and receive beam pairs that maximize the received

signal-to-noise ratio (SNR). However, the performance of the

close-loop methods are limited by the design of codebooks and

it is difficult to be applied to long-distance communications.

Because the beam training-based methods begin with wide

pilot beams based on the designed code-book that cover all

of the angles of interest during the initial search stage, high

transmit power is required to maintain SNR.

An alternative way is to apply the open-loop CE methods

which can reduce the feedback overhead and use a fixed

beam width, overcoming the limits of beam training strategies.

Prior works on open-loop CE for mmWave communication

can be divided into non-Bayesian based algorithms [7] and

Bayesian based algorithms [8]–[11]. Orthogonal matching

pursuit (OMP) [7] algorithm is a typical non-Bayesian based

algorithm. It is an iterative algorithm finding the sub-optimal
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solution by selecting at each iteration the column of the

sensing matrix which is the most correlated with the current

residuals. Recently, many low complexity OMP based CE

methods have been proposed for mmWave communication.

Most of these methods require the number of the significant

elements (sparsity) [2], and even with known sparsity, sparsity

patterns (SP) estimation can still be inaccurate. A SP specifies

which elements of the vector are non-zero. And the SP

estimation error is the difference between the estimated SP and

the true SP. In the mmWave CE, non-Bayesian methods are

easily deteriorated by large noise [2]. Sparse Bayesian learning

(SBL) [9] and Bayesian compressive sensing (BCS) [10] are

two typical Bayesian based algorithms. They assume that each

element follows Gaussian distribution with unknown variance

which is assigned the Gamma conjugate prior. SBL utilizes

expectation maximization (EM) method to compute a maxi-

mum a posteriori (MAP) estimate, while BCS adopts a more

efficient method by analysing the properties of the marginal

likelihood function. Another Bayesian based iterative channel

estimation algorithm using the least square estimation (LSE),

EM and sparse message passing (SMP) is proposed to further

improve the mmWave channel estimation accuracy [11]. These

Bayesian based methods show better estimation accuracy than

OMP but with hundreds of times greater complexity. In earlier

works, the authors have proposed Bayesian matching pursuit

(FBMP) [8] which makes appropriate assumptions according

to the characteristics of the mmWave channel and selects a set

of candidate SPs with high posterior probabilities to estimate

CSI. FBMP shows superior performance than other Bayesian

based algorithms. However, error floor occurs at high SNRs as

shown by the simulation results in [8]. In [8], the authors also

have to choose small virtual sparsity or large virtual sparsity

based on the range of real sparsity. If there is a big difference

between the virtual sparsity and real sparsity, the recovery

performance of FBMP will deteriorate. This means, a rough

priori information of sparsity is required to achieve accurate

estimation.

Considering the wideband transmission in mmWave sys-

tems, the non-Bayesian based CS methods have been applied

to the mmWave systems in the time domain [12], and in

the frequency domain with simultaneous weighted-OMP (SW-

OMP) [13]. Similarly, the Bayesian based CS methods such

as sparse Bayesian learning (SBL) also has been extended to

the hybrid wideband mmWave MIMO system for channel es-

timation with a single-carrier considering frequency-selective

scenarios [14]. Moreover, in the case of using OFDM system

in the frequency-selective fading mmWave channel estimation,

angular sparsity is shared by multiple sub-carriers and is called

common sparsity [15]. By utilizing the common sparsity,

the channel estimation can be formulated as a CS multiple

measurement vectors (MMV) problem to further improve the

channel estimation performance [16].

All the above mentioned Bayesian based or non-Bayesian

based algorithms take advantages of the channel sparsity

in the angular domain using virtual channel representation

[17] and the CS technology. As a result, these solutions are

based on an assumption that the angles of arrival/departure

(AoAs/AoDs) lie exactly on the grid. However, in practice,

actual AoDs/AoAs are continuous and thus off-grid errors

exist. Off-grid error is defined as the difference between the

continuous angle and the nearest discrete grid point. It has

been proved that the off-grid problem results in power leakage

and degrades the CE accuracy significantly in mmWave com-

munication [18]. The off-grid errors problem has been studied

extensively in compressive sensing literatures such as [19],

[20]. But most of them are not suitable for mmWave CE be-

cause of the unaffordable computational complexity. Recently,

some off-grid mitigation methods have been proposed for

mmWave CE. Optimization methods such as interior point and

gradient descent were applied in [18] and [21] to mitigate the

impact of the off-grid errors, respectively. And [22] proposed

an OMP-based algorithms to exploit the implicit Dirichlet

structure in the Fourier domain to combat the off-grid effects.

However, [18], [21], [22] are non-Bayesian based methods

and the SP estimation error deteriorates the performance.

Some off-grid mitigation methods are proposed for Bayesian

learning based methods to achieve super resolution mmWave

CE. For example, [23] proposed an improved SBL based

method utilizing Taylor expansion to find a more accurate

angle set to reconstruct the CSI. However, Bayesian learning

based algorithms such as [23] all have unbearable complexity

due to the learning process.

In this paper, we first propose a matching pursuit method

named as improved Bayesian matching pursuit (IBMP) for

mmWave CE. After analysing the impact of the off-grid errors,

we further propose an off-grid IBMP (OG-IBMP) method to

solve the existing problems in IBMP. The contributions of this

paper are described as follows:

1) We formulate the mmWave CE problem as a sparse

signal recovery problem and propose the IBMP method

to solve it using virtual sparsity instead of requiring

the real sparsity. Among the methods without any off-

grid error mitigation, IBMP achieves the best perfor-

mance at lower SNRs. Moreover, it has evidently lower

complexity compared with the Bayesian learning based

methods and significantly better performance compared

with the non-Bayesian based methods. However, we find

that error floor occurs at high SNRs, and any significant

difference between the virtual sparsity and real sparsity

deteriorates estimation performance.

2) Theoretical analysis is presented to demonstrate the

impact of the off-grid errors on the IBMP method.

Then OG-IBMP method is proposed to overcome the

disadvantages of IBMP. To the best of our knowledge,

no previous studies have considered the off-grid problem

in Bayesian matching pursuit based algorithms. And the

proposed OG-IBMP is the first Bayesian matching CE

algorithm with off-grid mitigation. It greatly reduces the

computational complexity in comparison with other off-

grid Bayesian learning based CE methods. Simulation

results show that OG-IBMP achieves superior perfor-

mance compared with the existing methods including

IBMP for all SNRs without the need of sparsity infor-

mation.

The remainder of this paper is organized as follows. In
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Section II, we introduce the mmWave communication system

model and formulate the CE as a sparse signal recovery

problem. In Section III, we propose the IBMP algorithm for

mmWave CE. In Section IV, we present theoretical analysis

on IBMP for the performance deterioration at high SNRs

and demonstrate the impact of off-grid errors. Based on the

theoretical analysis, we propose a modified method, i.e. OG-

IBMP based on sequential quadratic programming (SQP) in

order to mitigate the off-grid problem. In Section V, simulation

results are presented to demonstrate the superiority of OG-

IBMP. In Section VI, we conclude the paper.

II. SYSTEM MODELS

A. System Setup

We consider a single user massive MIMO system with

fully connected hybrid architecture as shown in Fig. 1, where

the transmitter employs NT antennas and NRF RF chains to

communicate with a receiver with NR antennas and NRF RF

chains (NRF ≤ min(NT , NR)).
In the CE stage, transmitter applies NB

T (NB
T ≤ NT )

different transmit beams denoted as {fm ∈ C
NT×1 : m =

1, . . . , NB
T } to transmit pilots symbol xp and receiver uses

NB
R (NB

R ≤ NR) different receive beams denoted as {wn ∈
C

NR×1 : n = 1, . . . , NB
R }. We assume that the transmitter

sends training beams fm to receiver successively. Because the

receiver has a limited number of RF chains, it only generates

NRF receive beams simultaneously. The receive signal in

one time slot can be represented by yq ∈ C
NRF×1, q ∈

{1, . . . , N b
R} where q denotes the received block index and

N b
R =

NB
R

NRF
is the number of received blocks. Note that, to

simplify the mathematical expressions, we assume that the

number of RF chains at transceiver are the same and the

number of transceiver beams are multiples of the number of

RF chains. The received vector for the q-th block and the m-th

transmit beam is given by

yq,m = WH
q Hfmxp +WH

q nq,m, (1)

where Wq = [w(q−1)NRF+1, . . . ,wqNRF
] ∈ C

NR×NRF is

the receive beam pattern matrix in the q-th time slot. H ∈
C

NR×NT represents the channel matrix, and n ∈ C
NR×1 is

the noise vector. Collecting yq,m for q ∈ {1, . . . , N b
R}, we get

the complete received signal for the m-th transmit beam as

ym = WHHfmxp + diag(WH
1 , . . . ,WH

Nb
R
)

× [nT
1,m, . . . ,nT

Nb
R,m]T ,

(2)

where W = [W1, . . . ,WNb
R
] ∈ C

NR×NB
R , ym ∈ C

NB
R ×1.

Collecting ym for m ∈ {1, . . . , NB
T } to get the received signal

for all NB
T transmit beams as

Y = WHHFX+N

=
√
PWHHF+N,

(3)

where Y = [y1, . . . ,yNB
T
] ∈ C

NB
R ×NB

T , F = [f1, . . . , fNB
T
] ∈

C
NT×NB

T and N ∈ C
NB

R ×NB
T is the noise matrix given by

N = diag(WH
1 , . . . ,WH

Nb
R
)
[

[nT
1,1, . . . ,n

T
Nb

R,1]
T ,

. . . , [nT
1,NB

T
, . . . ,nT

Nb
R,NB

T
]T
]

.
(4)

The matrix X ∈ C
NB

T ×NB
T is a diagonal matrix with xp on

its diagonal. Throughout the paper, we assume identical pilot

symbols so that X =
√
P INB

T
where P is the pilot power.

F and W are regarded as beamforming matrices. Because

hybrid analog/digital architecture is employed in mmWave

communication, they can be decomposed as F = FRFFBB

and W = WRFWBB , where FRF and WRF represent

the RF beamforming matrices, FBB and WBB represent the

baseband processing matrices. Specifically, we assume FRF =
[FRF,1, . . . ,FRF,Nb

T
] ∈ C

NT×NB
T , where FRF,t̄ ∈ C

NT×NRF

represents the transmit RF beamforming matrix in the t̄-th
time slot. Therefore the matrix FRF , containing NB

T /NRF

number of FRF,t̄, has an dimension of NT×NB
T . Similarly, we

assume WRF = [WRF,1, . . . ,WRF,Nb
R
] ∈ C

NR×NB
R , where

WRF,r̄ ∈ C
NR×NRF represents the receive RF beamform-

ing matrix in the r̄-th time slot. Considering the baseband

precoder, we assume FBB = diag(FBB,1, . . . ,FBB,Nb
T
) ∈

C
NB

T ×NB
T , where FBB,t̄ ∈ C

NRF×NRF represents the base-

band precoder matrix in the t̄ time slot. The columns and

rows of FBB are divided into N b
T parts and each sub-matrix

on the diagonal has dimension of NRF ×NRF . Therefore, the

baseband precoder fully uses the RF chains in this case. Sim-

ilarly, we assume WBB = diag(WBB,1, . . . ,WBB,Nb
R
) ∈

C
NB

R ×NB
R , where WBB,r̄ ∈ C

NRF×NRF represents the base-

band precoder matrix in the r̄ time slot. As a result, (3) can

be formulated as

Y =
√
P (WRFWBB)

HH(FRFFBB) +N. (5)

B. Channel Model

The mmWave channel is often represented in the frequency

domain [2]. In general, it can be written as

H(t, f) =

Ncl
∑

i=1

Nray
∑

j=1

αije
j2π(νijt−τijf)ar(θ

r
ij)a

H
t (θtij), (6)

where Ncl and Nray represent the number of clusters and

the number of rays in each cluster, respectively. The (i, j)th
multipath component (the j-th ray in the i-th cluster) is

described by 5 parameters including the AoD θtij , AoA θrij ,

delay τij , complex gain αij and Doppler shift νij . We assume

that each scatterer contributes only one path of propagation

between transmitter and receiver and L represents the number

of paths. Suppose that the channel is slow time varying

and the bandwidth of the channel is sufficiently small. In

mmWave communications, the widely adopted narrowband

spatial channel model [7] can be given by

H =

L
∑

l=1

αlar(θ
r
l )a

H
t (θtl )

≈ ARHbA
H
T ,

(7)

where αl, θrl and θtl are the complex channel gain, AoA

and AoD of the l-th path, respectively. at(θ
t
l ) and ar(θ

r
l )

are the array response vector for the transmitter and receiver,

respectively. Considering only the azimuth, and neglecting

elevation, we assume that the transmitter and receiver only
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Fig. 1. Hybrid Massive MIMO system for mmWave communication [2].

implement horizontal (2-D) beamforming. Extensions to 3-

D beamforming are possible [24]. While the algorithms and

results developed in the paper can be applied to arbitrary

antenna arrays, we consider the uniform linear arrays (ULAs)

in the simulations of Section V so that the OMP [7], IP-

OMP [18], and FBMP [8] can be adopted for performance

comparison. If NT and NR ULA are assumed at transmitter

and receiver, at(θ
t
l ) and ar(θ

r
l ) can be written as

at(θ
t
l )=

1√
NT

[1, e−jβ cos θt
l , . . . , e−jβ cos θt

l (NT−1)]T ,

ar(θ
r
l )=

1√
NR

[1, e−jβ cos θr
l , . . . , e−jβ cos θr

l (NR−1)]T ,
(8)

where d and λ denote the normalized spacing antenna spacing

and wavelength of operation, β = −j2π d
λ . In this paper, we

consider d = λ
2 .

In order to utilize the channel sparsity in angular domain,

virtual channel representation [25] is widely employed in

mmWave CE. Specifically, it assumes that all the angles

fall onto a predefined set of discrete angles, namely, the

‘grid’. In fact, the virtual channel representation is not exactly

equal to the real channel matrix because the true continuous

AoDs/AoAs do not fall onto the grid points precisely.

To complete the problem formulation without losing gen-

erality and simplicity, we assume that the AoAs, and AoDs

are taken from the uniform grids of Gr and Gt grid points,

respectively. Specifically, the uniform grid points for the AoAs

are selected from [0, π
Gr−1 ,

2π
Gr−1 , . . . ,

π(Gr−1)
Gr−1 ], and Gr≫L

for the desired resolution as in [5] and [7]. The Gt uniform

grid points for the AoDs are selected in a similar way. Note

that other well-designed grids such as those in [25] and [7] can

be employed to improve the accuracy of mmWave CE. The im-

pact of the different grid designs will be discussed and shown

in Section V. In this section, we only consider the uniformly

quantized AoAs/AoDs. Based on the discrete angle grid, the

channel matrix H in (7) can be approximated as ARHbA
H
T

where AR = [ar(0), . . . , ar(
π

Gr−1 ), . . . , ar(
π(Gr−1)
Gr−1 )] ∈

C
NR×Gr , AT = [at(0), . . . , at(

π
Gt−1 ), . . . , at(

π(Gt−1)
Gt−1 )] ∈

C
NT×Gt and Hb ∈ C

Gr×Gt is a L-sparse channel gain matrix.

In this paper, we assume that Gt = Gr = G for simplicity.

The difference between H and ARHbA
H
T is caused by the

off-grid error as a result of quantification.

C. Problem Formulation

Considering the system model in (3) and the large di-

mension of channel matirx H, conventional CE such as the

least square (LS) requires very large training overhead in the

mmWave systems. In order to reduce the training overhead and

computational load by utilizing the channel sparsity in angular

domain, the problem can be formulated as a sparse signal

recovery problem by vectorizing Y in (3). Using the property

of Kronecker product [7] vec(ABC) = (CT ⊗ A) · vec(B)
for Y and H, we can get

yv≈
√
P (FT ⊗WH) · vec(H) + vec(N)

=
√
P (FT ⊗WH)vec(ARHbA

H
T ) + nQ

=
√
P (FT ⊗WH)(A∗

T ⊗AR)vec(Hb) + nQ

=
√
P (FT ⊗WH)ADh+ nQ

=Q · (h) + nQ,

(9)

where yv ∈ C
M×1 is the vectorized received signal and

M = NB
T NB

R is the measurement dimension. AD = A∗
T⊗AR

is an NTNR × G2 dictionary matrix that consists of the G2

column vectors, and the
(

G(u−1)+v
)

th column is calculated

from a∗t (θu)⊗ ar(θv), with θu and θv , the uth and vth points

of the angle grid. h = vec(Hb) = (h1, h2, . . . , hN )T is

the vectorized channel gain of the corresponding quantized

directions where N = G2 and {hn}Nn=0 are the elements.

Q =
√
P (FT ⊗ WH)AD ∈ C

M×N is the sensing matrix.

According to (9), sparse vectorized channel path gain h can

be recovered from the noisy received signal yv with known

sensing matrix Q by the CS methods.

III. PROPOSED IMPROVED BAYESIAN MATCHING PURSUIT

ALGORITHM

CS based algorithms including OMP, SBL, BCS and FBMP

have been applied in mmWave CE. Among them, FBMP has

significantly better performance compared with other methods

especially at low SNRs [8]. In the FBMP method, appro-

priate assumptions are made according to the characteristics

of mmWave channel and a set of candidate SPs with high

posterior probabilities are selected for a minimum mean square

error (MMSE) estimator to improve the CE performance.

However, it has many disadvantages such as relatively high

complexity, and degradation due to off-grid errors. Thus, in

this section, we simplify the FBMP based CE method from

a MMSE estimator to a MAP estimator with appropriate

assumption to reduce the computational load.

In order to apply the Bayesian matching pursuit idea, we

need to choose our signal model and priors according to the

characteristics of the mmWave channel. In this paper, we

assume that the path amplitudes αl are Rayleigh distributed,
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i.e., {αl}Ll=1 ∼ CN (0, σ2) with σ2 = 1 the average power

gain and the noise nQ in (9) is assumed to be white circular

Gaussian noise as nQ ∼ CN (0, σ2
nIM ).

In this application, {hn}Nn=0 are assumed to be drawn from

two specific Gaussian distributions indexed by sn = t ∈
{0, 1}. sn = 0 indexes the distribution with (µ0, σ

2
0) = (0, 0)

which implies hn = 0 and sn = 1 indexes the distribution with

(µ1, σ
2
1) which allows hn ̸= 0. Without prior information,

we choose (µ1, σ
2
1) = (0, J) where J can be any positive

number. We choose J = 1 in this section and different values

of J will be discussed according to the specific application

in Section V. {sn}N−1
n=0 are treated as i.i.d random variables

as Pr{sn = t} = λt (0 < λt ≤ 1). λt is the probability

that hn follows Gaussian distribution indexed by sn = t.
We make λ1 ≪ 1 to ensure that h is sparse. Considering

h = [h0, . . . , hN−1]
T and s = [s0, . . . , sN−1]

T , the condi-

tional probability of h given that s occurs can be written as

h | s where

h | s ∼ CN (µ(s),R(s)), (10)

[µ(s)]n = µt and R(s) has diagonal [R(s)]n,n = σ2
t .

Considering (9), the channel vector h and the received signal

yv are joint Gaussian conditioned on the mixture parameters

s as

[

yv

h

]
∣

∣

∣

∣

s ∼ CN
([

Qµ(s)
µ(s)

]

,

[

Φ(s) QR(s)

R(s)Q
H

R(s)

])

, (11)

where

Φ(s) , QR(s)Q
H
+ σ2

nIM . (12)

To estimate the CSI, we store the set of all possible SPs as

S and seek to find the MAP estimate of h from yv as

ĥmap , E{h|yv, smap}, (13)

where smap is the sparsity pattern which has the largest poste-

rior probability p(smap|yv) among all possible 2N p(s|yv)s∈S.

From (11) it is straightforward [26] to obtain

E{h|yv, smap} = µ(smap) +R(smap)Q
H
Φ(smap)

−1

(

yv −Qµ(smap)
)

.
(14)

We note that the primary challenge in the computation of (14)

is to find out smap and calculate Φ(smap)
−1

. So, we first apply

a fast method to search for smap.

A. Search for the Most Likely SP

We search for smap by selecting s ∈ S with the largest

posterior probability p(s|yv). According to the Bayesian rule,

the posterior probability can be written as

p(s|yv) =
p(yv|s)p(s)

p(yv)
, (15)

where p(s|yv) are equal to p(yv|s)p(s) up to a scale. For

convenience, we work in logarithm domain and define α(s,yv)
as SP selection metric:

α(s,yv) , ln p(yv|s)p(s)

= ln p(yv|s) +
N−1
∑

n=0

ln p(sn)

= −
(

yv −Qµ(s)
)H

Φ(s)
−1(

yv −Qµ(s)
)

− ln det
(

Φ(s)
)

−M lnπ +

N−1
∑

n=0

lnλsn .

(16)

The largest p(s|yv) corresponds to the largest value of

α(s,yv). So we search smap based on metric α(s,yv) using

a non-exhaustive search tree method.

The search starts with s = 0 at Layer 0. We change only one

element from 0 to 1 in s which leads to N different ‘one non-

zero element’ SPs in Layer 1. We calculate the metric α(s) for

all SPs at Layer 1 and store the SP with the largest metric as

S1. For Layer 2, we activate one more element from S1 so that

we have N − 1 possible ‘two-element active’ SPs. Again, we

calculate the metrics for SPs at Layer 2 and store the SP with

the largest metric as S2. This procedure is repeated K times

to get the ‘K-element active’ SP with the largest posterior

possibility as the smap. An example of the non-exhaustive

search tree method is shown in Fig. 2, where N = 5 and

K = 3.

[1,0,0,0,0] [0,1,0,0,0] [0,0,0,0,1]

[1,1,0,0,0] [0,1,1,0,0] [0,1,0,1,0]

[0,0,1,0,0] [0,0,0,1,0]

[0,1,0,0,1]

[1,1,0,0,1] [0,1,1,0,1] [0,1,0,1,1]

[0,0,0,0,0]

[0,1,1,0,1]

Layer 0

Layer 1

Layer 2

Layer 3

Output: SP with 3 non-zero elements

Fig. 2. Example of the non-exhaustive search tree (K = 3, N = 5).

However, we don’t know the real sparsity of mmWave

channel so that we can not determine the proper value of K.

K should be a little larger than the real sparsity to ensure that

we have enough nonzero elements in SPs. In fact, we can stop

the searching after enough layers or set a reasonable threshold

to stop. It means that we need a rough priori information of

sparsity. For mmWave communication, we know that the real

sparsity for mmWave channel is generally less than 10 based

on real world measurements [1]. So it is reasonable to set a

fixed number of layers to stop and we only need to search for

the most likely SP instead of the absolutely correct SP.

In this case, we introduce a virtual sparsity L′ according to

specific applications. For mmWave CE, we choose L′ = 5
considering that the real sparsity is generally less than 10

. Then we calculate the non-zero probability λ1 with vir-

tual sparsity which is L
′

/N . Because L
′

follows Binomial

(N,λ1) distribution, it is common to use the approximation

L
′ ∼ N (Nλ1, Nλ1(1 − λ1)), in which case Pr(L

′

> K) =
1
2erfc(

K−Nλ1√
2Nλ1(1−λ1)

). Through choosing a very small target

value of Pr(L
′

> K) as K0 = 0.01, we can find the proper
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value of K as ⌈erfc−1(2K0)
√

2Nλ1(1− λ1) + Nλ1⌉. The

use of pre-determined virtual sparsity L′ provides superior

performance with low complexity without the need to know

real sparsity. Note that, it may induce degraded performance

when the real sparsity is much bigger than the virtual sparsity.

We will solve this problem in Section IV.

B. Fast Metric Update

Another primary challenge in the computation of (13) is the

high computational load for calculating Φ(sM)
−1

. We adopt

the fast metric update method that we proposed in [8] to reduce

the computational complexity.

In our search tree, the search begins from the root node

(S0 = 0) which has the following metric

α(0,yv) = − 1

σ2
n

∥yv∥22 −M lnσ2
n −M lnπ+N lnλ0. (17)

We notice that the candidate SPs in the kth layer have only

one additional non-zero element compared with the chosen SP

SK in the (k − 1)th layer. This characteristic can be used to

derive fast metric update. We use [s]n to represent the value of

the nth element in s. For the case that [s]n = 0 and [s′]n = 1,

where s and s′ are identical except for the nth coefficient,

we describe an efficient method to compute ∆n,δ(s,yv) ,

α(s′,yv)−α(s,yv). For brevity, we define µδ , µ1−µ0 and

σ2
δ , σ2

1 − σ2
0 . To derive the fast metric update, starting with

property

Φ(s′) = Φ(s) + σ2
δqnq

H
n , (18)

where qn is the nth column of Q. The matrix inversion lemma

implies

Φ(s′)
−1

= Φ(s)
−1 − βncnc

H
n , (19)

cn , Φ(s)
−1

qn, (20)

βn , σ2
δ (1 + σ2

δq
H
n cn)

−1. (21)

According to [8], (18)-(21) imply

∆n,δ(s,yv) = βn

∣

∣cHn
(

yv −Qµ(s)
)

+ µδ/σ
2
δ

∣

∣

− |µδ|2/σ2
δ + ln (βn/σ

2
δ )

+ ln(λ1/λ0),

(22)

where ∆n,δ(s,yv) quantifies the change to α(s,yv) corre-

sponding to the change of the nth index in s from 0 to 1.

And then we can work out the metric for s′ as α(s,yv) +
∆n,δ(s,yv).

Even though, the complexity still remains high. The main

reason is that cn needs O(M2) operations using standard

matrix multiplication according to (20). We further reduce

this complexity to O(M) by making use of the structure of

Φ(s)
−1

.

Assuming that s is the SP which is identical with spre but

with one more active element at the npre
th coefficient, if we

have computed and stored the corresponding parameters for

spre as βnpre
and cnpre

, (20)-(21) imply that

cn = [Φ(s)
−1
pre − βnprecnprec

H
npre

]qn

= cnpre
− βnpre

cnpre
cHnpre

qn.
(23)

Comparing (23) and (20), we can successfully reduce com-

plexity by M times via making use of the stored cnpre
.

Accordingly, z(s) , y−Qµ(s) can be recursively updated as

z(s) = y −Qµ(spre)− qnpre
µδ. (24)

If we define C , [c0, . . . , cN−1], and have computed

{cn}N−1
n=0 and {βn}N−1

n=0 , (14) can be represented as

E{h|yv, smap} = µ(smap) +R(smap)C
H
z(smap), (25)

because C = Φ(smap)
−1

Q and Φ(smap) is Hermitian.

C. Computational Complexity Analysis

In summary, we speed up the algorithm by reducing FBMP

[8] from a MMSE estimator with multiple candidate SPs to

a MAP based single SP estimation with some appropriate

assumptions. The proposed algorithm is shown in Algorithm

1 and named as IBMP. When the search ends, the algorithm

returns the estimation of h based on (14). In contrast to IBMP

Algorithm 1 Matching Pursuit Based on MAP

αroot = − 1
σ2
n
∥yv∥22 −M lnσ2

n −M lnπ +N lnλ0,

for n = 0 : N − 1 do

c
(0)
n = 1

σ2
n
qn, β(0)

n = σ2
1(1 + σ2

1q
H
n c(0)

n )−1,

α(1)
n = αroot + ln

β(0)
n

σ2
1
+ β(0)

n |(c(0)
n )Hyv|2 + ln λ1

λ0
,

end for

n=[], ŝ(0) = 0, z = yv ,

for k = 1 : K do

n∗ = n indexing the largest element in {α(k)
n }n=0:N−1

which leads to an unexplored node,

α(k) = α
(k)
n∗

, ŝ(k) = ŝ(k−1) + δ[n∗], n = [n, n∗],
while k < K do

for n = 0 : N − 1 do

c
(k)
n = c

(k−1)
n − β

(k−1)
n∗

c
(k−1)
n∗

(c
(k−1)
n∗

)Hqn,

β
(k)
n = σ2

1(1 + σ2
1q

H
n c

(k)
n )−1,

α
(k+1)
n = α(k) + ln

β(k)
n

σ2
1

+ β
(k)
n |(c(k)n )Hz|2 + ln λ1

λ0
,

end for

end while

end for

h =
∑K

k=1[σ
2
1c

H
[n]k

z].

which only selects one candidate SP smap, multiple (D) ‘K-

element’ candidate SPs smmse are selected in FBMP for the

MMSE estimator and thus the computational complexity is D
times higher than IBMP. As a result, it is straightforward to

find that the number of multiplications required by IBMP and

FBMP are O(NMK) and O(NMKD), respectively, where

D ≥ 5 [27]. Comparisons with other algorithms will presented

in Section V.

D. Disadvantages

Although IBMP is able to reduce the complexity of FBMP,

it has some similar disadvantages as the FBMP. For example,

both IBMP and FBMP have error floor at high SNRs. In

addition, both IBMP and FBMP are not reliable when the

selected ’virtual sparsity’ is too different with the real sparsity.
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In Section IV, the causes of the problems will be analysed

and an off-grid error mitigation method will be proposed

to overcome the problems including the need of sparsity

information and the performance degradation at high SNRs.

IV. PROPOSED OFF-GRID IMPROVED BAYESIAN

MATCHING PURSUIT ALGORITHM

A. Theoretical Analysis of the Performance Deterioration

In order to overcome the disadvantages of IBMP, we first

focus on the analysis of the performance deterioration at high

SNRs.

According to model (9), we define hs which is the sub-

vectors of h containing only the non-zeros elements. And

Qs is defined as the sub-matrix consisting of columns of the

matrix Q corresponding to hs. (9) can be rewritten as

yv = Qshs +E. (26)

When the off-grid error is ignored in the IBMP, E is the same

as nQ in (9). The metric in (16) can be represented as

α(s,yv) = −yv
HΦ(s)

−1
yv − ln det

(

Φ(s)
)

−M lnπ +
N−1
∑

n=0

lnλsn ,
(27)

where yv , M and N are known and unchanged. And it

can be found that Φ(s) is essential for metric comparison

at each layer. According to (12), Φ(s) , σ2
1QsQ

H
s +

σ2
nIM . At high SNRs, ln det

(

Φ(s)
)

can be approximated as

ln det
(

σ2
1QsQ

H
s

)

because σ2
n is extremely small. Considering

that the column vectors of matrix QsQ
H
s are linearly related,

det
(

σ2
1QsQ

H
s

)

= 0. As a result, − ln det
(

Φ(s)
)

tends to

infinity. And the metrics α(s,yv) in (27) turns to be infinity

with respect to any different supports. Hence the metrics based

support selection does not function properly and this causes

performance deterioration at high SNRs.

Another reason limiting the performance is the ignorance

of the off-grid errors. Considering that the true continuous

AoDs/AoAs may lie off the grid, (26) can be written as

yv = Qshs + nQ + ne, (28)

where ne represents the off-grid error. Because the continuous

AoDs/AoAs are independent with noise and follow uniform

distribution, after uniform quantization, the off-grid error

should also follow uniform distribution with fixed variance

σ2
e which only depends on the grid size G. It means that ne

is always a non-zero value and doesn’t decrease as nQ does

at high SNRs. As a result, at high SNR where nQ decreases

and ne dominants, ignoring the off-grid error causes problem.

B. Proposed Solution

Because the off-grid error can not be reduced to a certain

extent by increasing SNR or increasing resolution of the grid

[18], we modify the existing grid points according to the off-

grid error as

yv = Qshs + nQ + ne = Q̂shs + nQ, (29)

where Q̂s is the new sensing matrix with ’modified grid

points’. If we take into account the quantification error, it

is possible to find out a more accurate estimated AoD/AoA

pair AoD′/AoA′ around the initial estimated AoD/AoA by

maximizing metric. In this paper, we choose to employ the

sequential quadratic programming (SQP) method. In this way,

off-grid errors can be mitigated. Incorporating this method into

IBMP, we propose the OG-IBMP algorithm to solve the off-

grid problem, as summarised in Algorithm 2 and explained

below.

In the initial stage, root metric αroot, c
(0)
n and β(0)

n for layer

0 are calculated so that we can obtain candidate metrics for

layer 1 as α
(1)
n . Iteration begins for layer k = 1 : K. In each

iteration, we choose the largest metric from candidate metrics

α
(k)
n for layer k and store the index as n∗. Then the 4-step

off-grid mitigation begins.

In the first step, we estimate the initial value of AoD/AoA

using the column index n∗. Specifically, AD = Ā∗
T ⊗ ĀR is

an NTNR ×G2 dictionary matrix that consists of G2 column

vectors. And the
(

G(u− 1)+ v
)

th column is calculated using

a∗t (θu)⊗ar(θv), where θu and θv are the uth and vth discrete

points of the uniform angle grid, respectively. As a result, the

estimated initial AoD/AoA are AoDk = 0+ ceil(n∗

G ) π
G−1 and

AoAk = 0 + (mod(n∗ − 1, G) + 1) π
G−1 , where u = ceil( j

G ),
v = mod(n∗ − 1, G) + 1.

In step 2, we set xk = (AoDk, AoAk) as the original point

corresponding to the n∗
th column in Q. And we define the

objective function for optimization as f with

qn∗
=

(

FT ⊗WH
)

(a∗ (AoDk)⊗ a (AoAk)) , (30)

c(k−1)
n∗

= Φ(̂s
(k−1)

)−1qn∗
, (31)

β(k−1)
n∗

= σ2
1(1 + σ2

1q
H
n∗
c(k−1)
n∗

)−1, (32)

α(k)
n∗

= ln
β
(k−1)
n∗

σ2
1

+ β(k−1)
n∗

|(c(k−1)
n∗

)Hz|2 + ln
λ1

λ0
, (33)

f = −α(k)
n∗

. (34)

Through minimizing the objective function f between the

adjacent grid points, we can obtain new angle pair x′
k =

(AoD′
k, AoA′

k) which results in the largest metric α
(k)
n∗

. This

optimization problem based on (IV-B)-(34) is formulated as

min
AoD′

k,AoA′

k

f(AoD′
k, AoA′

k),

s.t.

{

|AoD′
k −AoDk| < π

2(G−1) ,

|AoA′
k −AoAk| < π

2(G−1) .

(35)

SQP method is adopted because it is proved to be highly

effective for solving constrained optimization problems with

smooth nonlinear objective function and constraints [28]. In

step 3, after obtaining x′
k using SQP method, we refine the

grid point by adjusting the corresponding dictionary vector

AD, so that the column indexed by n∗ is updated as (IV-B) as

qn∗
=

(

FT ⊗WH
)

(a∗ (AoD′
k)⊗ a (AoA′

k)). When the grid

points are adjusted towards the continuous true angle point,

off-grid impact is reduced.

In step 4, we update c
(k−1)
n∗

, β
(k−1)
n∗

, α
(k)
n∗

as (31)-(33) based

on the updated q̄n∗
from step3. α

(k)
n∗

is the optimized largest
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Algorithm 2 Off-Grid Improved Bayesian Matching Pursuit

αroot = − 1
σ2
n
∥yv∥22 −M lnσ2

n −M lnπ +N lnλ0,

for n = 0 : N − 1 do

Φ(̂s(0))−1 = (σ2
nIM)−1,

c
(0)
n = 1

σ2
n
qn, β(0)

n = σ2
1(1 + σ2

1q
H
n c(0)

n )−1,

α(1)
n = αroot + ln

β(0)
n

σ2
1
+ β(0)

n |(c(0)
n )Hyv|2 + ln λ1

λ0
,

end for

n=[], ŝ(0) = 0, z = yv ,

for k = 1 : K do

n∗ = n indexing the largest element in {α(k)
n }n=0:N−1

which leads to an unexplored node,

*Off-grid mitigation begins

1: AoDk = 0 + ceil(n∗

G ) π
G−1

AoAk = 0 + (mod(n∗ − 1, G) + 1) π
G−1

xk = (AoDk, AoAk)
2: min

AoD′

k,AoA′

k

f(AoD′
k, AoA′

k)

output: x′
k = (AoD′

k, AoA′
k), F = f(x

′

k)
3: q̄n∗

=
(

FT ⊗WH
)

(a∗ (AoD′
k)⊗ a (AoA′

k))

4: update c
(k−1)
n∗

, β
(k−1)
n∗

and optimized α
(k)
n∗

*Off-grid mitigation ends

α(k) = α
(k)
n∗

, ŝ(k) = ŝ(k−1) + δ[n∗], n = [n, n∗]

Φ(̂s(k−1))−1 = Φ(̂s(k−1))−1 − β
(k−1)
n∗

c
(k−1)
n∗

(c
(k−1)
n∗

)H

while k < K do

for n = 0 : N − 1 do

c
(k)
n = c

(k−1)
n − β

(k−1)
n∗

c
(k−1)
n∗

(c
(k−1)
n∗

)Hqn,

β
(k)
n = σ2

1(1 + σ2
1q

H
n c

(k)
n )−1,

α
(k+1)
n = α(k) + ln

β(k)
n

σ2
1

+ β
(k)
n |(c(k)n )Hz|2 + ln λ1

λ0

end for

end while

end for

ĥ =
∑K

k=1[σ
2
1c

H
[n]k

z]

metric with updated grid points for ŝ(k−1). Till now, off-grid

mitigation is completed and it is ready to calculate α
(k+1)
n for

the next layer.

We continue the iteration as IBMP does for all the K layers

and find the ŝ(K) with the largest metric as the estimated SP.

Finally, the estimated channel matrix ĥ can be obtained using

(25). It is worth noting that the complexity of the optimization

process can be reduced by reuse the calculated parameters. For

example, in the third step in Algorithm 2, the n∗ column in the

sensing matrix Q is updated as , where FT ⊗WH remains the

same in each iteration and can be obtained in the calculation

of the sensing matrix Q according to (9).

C. Convergence Analysis

Considering that the proposed OG-IBMP algorithm is an

iterative optimization based method, the convergence analysis

of the OG-IBMP algorithm is described in this subsection. Fig.

3 first investigates the convergence of the optimization method

for each layer in the proposed algorithm. Then, the impact of

the varying iteration numbers on the channel estimation at

different SNR is presented in Fig. 4.

We assume that each estimated SP has K non-zero elements

which are selected in K layers. For each element selection,

SQP method is used to optimize the estimated angles itera-

tively. The changes of the objective function of the k-th layer

in the i-th iteration is measured by vk(i) as

vk(i) = |fk(i)− fk(i− 1)|, (36)

where fk(i) denotes the objective function of the k-th layer

in the i-th iteration. In Fig. 3, we show the vk(i) from layer

k = 1 to layer k = 7 (K = 7) with the increasing number

i of the iterations when SNR = 0 dB. The iteration process

stops when the vk(i) is less than 10−6. The parameters are

summarized in Table I with σ2
1 = 100, σ2

n = Pr/10 and the

simulation results are averaged over 500 channel realizations.

1 3 5 7 9 11 13
0

10

20

30

40

50

60

70

80

90

100

Iterations i

v
k
(i
)

7-th layer optimization in OG-IBMP

6-th layer optimization in OG-IBMP

5-th layer optimization in OG-IBMP

4-th layer optimization in OG-IBMP

3-rd layer optimization in OG-IBMP

2-nd layer optimization in OG-IBMP

1-st layer optimization in OG-IBMP

Fig. 3. Metric changes of different layers with increasing iterations.

As shown in Fig. 3, the iterations of all the layers stop

(vk(i) < 10−6 ) after 13 iterations. It can be found that

the later layer converges more quickly and less iterations are

required for a desirable optimization, because the later layer

is based on the result of the previous layer, which has been

improved by the optimizations. Specifically, in the 1-st layer,

9 iterations are needed to achieve vk(i) < 1. Compared with

the 1-st layer, vk(i) can be reduced to 0.301953 with only

4 iterations in the 7-th layer. Fig. 3 proves that the proposed

algorithm converges quickly, even at the first layer with large

noise.

The impact of the number of iterations on the channel

estimation at different SNR is evaluated via simulations in

terms of the normalized mean square error (NMSE) which is

defined as 10 log10
(

E(∥H − Hestimate∥2F /∥H∥2F )
)

. The pro-

posed algorithms are named as OG-S-IBMP and OG-L-IBMP

with the virtual sparsity L1 = 5 and L2 = 10, respectively. As

expected, the estimation accuracy tends to be the same when

the number of iterations increases. In Fig. 4, OG-S-IBMP and

OG-L-IBMP with more than 20 iterations achieve almost the

same NMSE performance at all SNRs.
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Fig. 4. NMSE vs SNR with different iterations.

In summary, based on the above simulations, it can be found

that the proposed OG-IBMP algorithm is able to converge

in limited number of iterations. In addition, with enough

iterations, the proposed algorithm can achieve almost the same

best estimation accuracy.

V. SIMULATION RESULTS

The performance of the proposed methods IBMP and OG-

IBMP are evaluated via computer simulations in terms of

NMSE. ULAs are assumed at both transmitter and receiver. All

simulation results are averaged over 500 channel realizations

with carrier frequency at 60GHz. At each channel realization,

the system parameters are listed in Table I.

TABLE I
SYSTEM PARAMETERS IN THE SIMULATIONS.

Parameters Values

Number of antennas: (NT , NR) (32, 32)

Number of beams: (NB

T
, NB

R
) (32, 32)

Number of scatterers: L 7
Virtual Sparsity: (L1, L2) (5, 10)

Channel gains: {αℓ}
L

ℓ=1
CN (0, 1)

AoD/AoA: {θt
l
}L
ℓ=1

, {θr
l
}L
ℓ=1

U(0, π)
Grid size: G 64

∗ In this case, the off-grid error follow uniform distribution U(0, π
2(G−1)

)

with σ2
e = ( π

2(G−1)
)2/12.

The design of hybrid precoding and combining matrices

have been extensively investigated, so we adopt the precoder

and combiner presented in [29]. F = (Λ
−1/2
F UH

F )T where UF

and ΛF are the matrices of the eigenvectors and eigenvalues

of A∗
T (A

∗
T )

H . W = (Λ
−1/2
W UH

W )H where UWΛWUH
W =

AR(AR)
H . For our proposed IBMP method, two different

‘virtual sparsity’ (L1 = 10 and L2 = 5) are considered

as L-IBMP and S-IBMP respectively. The proposed IBMP

algorithm with off-grid mitigation method is named as OG-

IBMP. BCS is included for comparison because of its state-of-

the-art performance. Note that the true noise power is given

to BCS to decrease the huge complexity to comparable level

with other algorithms.

In order to reduce the complexity in our application, we

first investigate the impact of σ2
1 (variance of the Gaussian

distributions assumption indexed by sn = 1) and σ2
n (variance

of the noise) so that we can choose the value of parameters

accurately and achieve desirable performance. Simulation re-

sults for IBMP with varying σ2
1 and σ2

n are presented in Fig. 5

and Fig. 6, respectively. Note that, σ2
1 and σ2

n can be estimated

by EM algorithm to improve the performance at the cost of

complexity.

Specifically, In Fig. 5, we compare the performance with

different σ2
1 and known σ2

n. σ2
1 is chosen as 0.1,1 and 100.

In fact, we can choose any positive value for σ2
1 . But it is

straightforward to find that, with small σ2
1 and large σ2

n, value

of Φ(s) is dominated by the noise and so is the value of the

metric. As a result, the support estimation evidently deterio-

rates at low SNRs. As shown in Fig. 5, IBMP performance is

even worse than OMP when σ2
1 is 0.1 and 1 at low SNRs. On

the contrary, choosing larger σ2
1 = 100 significantly improves

the estimation accuracy. Our simulation based analysis shows

that variance larger than 100 would not improve performance

further in mmWave CE. Thus, we choose σ2
1 = 100 for IBMP

and OG-IBMP in our application.
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1 = 0.1 L-IBMP, σ2
1 = 1

L-IBMP, σ2
1 = 100

Fig. 5. NMSE [dB] comparison of IBMP at different SNRs [dB] with different
σ2

1
and known σ2

n.

In Fig. 6, we fix σ2
1 = 100 and compare the performance

with different σ2
n. We select σ2

n as Pr/100, Pr/10, and true

noise where Pr is the received signal power. Although all

IBMP results are better than that of OMP, IBMP with known
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σ2
n achieves the best performance among them. Without the

knowledge of σ2
n, different assumptions of σ2

n do not affect

much estimation accuracy. We found that S-IBMP achieves

better performance at low SNRs (SNR < 2 dB) and is more

noise resistant, but bigger virtual sparsity is required for higher

SNRs. This is because the accuracy of CE is affected by both

the noise and off-grid errors. At higher SNRs, where off-grid

error dominates, additional active elements can help mitigating

off-grid error impact and improving the estimation perfor-

mance. On the contrary, noise dominates at lower SNRs. In

such case, it is very difficult to choose extra correct locations

of active elements. The increasing number of wrong active

locations will lead to even worse performance. Compared the

performance of L-IBMP with and without known σ2
n, there is

a significant performance gap at low SNRs. The theoretical

analysis also proves that large σ2
n degrades the performance

of L-IBMP which is more sensitive to noise than S-IBMP.

In our application, σ2
n is usually unknown so that L-IBMP

can not perform well at low SNRs. As a result, for mmWave

CE, we adopt S-IBMP with σ2
1 = 100, σ2

n = Pr/10 at low

SNRs and L-IBMP with the same σ2
1 and σ2

n at high SNR. In

this case, S-IBMP achieves nearly 4 dB improvement at low

SNRs compared with OMP, and L-IBMP achieves nearly 7

dB improvement at high SNRs. However, both S-IBMP and

L-IBMP have error floors at high SNRs as discussed in Section

III, and it is difficult to choose the virtual sparsity without the

knowledge of the sparsity and SNRs.
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n = Pr/10

L-IBMP, σ2
n known

Fig. 6. NMSE [dB] comparison of IBMP at different SNRs [dB] with σ2

1
=

100 and different σ2
n.

Fig. 7 investigates the impact of the off-grid error. The

performance of OMP, S-IBMP and L-IBMP with and without

the off-grid error are presented. We assume that σ2
n is known

and σ2
1 = 100. For performances without off-grid error, we

only generate the AoDs/AoAs at the predetermined grid. And

for with off-grid error, we generate the AoDs/AoAs randomly

from 0 to π. Clearly, S-IBMP and L-IBMP without off-grid

error are able to continuously improve the NMSE performance

with the increase of SNR. As proved by the theoretical analysis

that mitigating off-grid errors is the way to remove the error

floor of the IBMP at high SNRs especially when small virtual

sparsity is used.
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Fig. 7. NMSE [dB] comparison of IBMP at different SNRs [dB] with and
without off-grid error.

In Fig. 8, we assume that σ2
1 = 100, σ2

n = Pr/10 and

apply the proposed off-grid mitigation methods for S-IBMP

and L-IBMP, namely OG-S-IBMP and OG-L-IBMP. OMP

[7], BCS [10], S-FBMP [8] and IP-OMP [18] are included

for comparison as the representatives of non-Bayesian based

method, Bayesian based method and non-Bayesian method

with off-grid mitigation. Note that Bayesian learning based

method with off-grid mitigation such as improved SBL [23]

are not included for comparison considering the several orders

of magnitude higher computational complexity compared with

other algorithms. Fig. 8 shows that IP-OMP, OG-S-IBMP and

OG-L-IBMP all have a better performance because of the

integrated off-grid error mitigation, and S-FBMP has almost

the same performance as S-IBMP. The improvement of OG-S-

IBMP compared to S-IBMP is much bigger than OG-L-IBMP

compared to L-IBMP. It is because that the S-IBMP is affected

more seriously by the off-grid error due to the smaller number

of non-zero elements and hence the off-grid mitigation is more

effective. Specifically, OG-L-IBMP is 1-2 dB worse than OG-

S-IBMP when SNR is less than 12 dB. When the noise is

very small (SNR>12 dB) and off-grid error dominates, OG-

L-IBMP can achieve almost the same performance as OG-

S-IBMP. We can then conclude that small virtual sparsity

should be chosen in any scenarios without the need of a prior

information of the noise and sparsity. Compared with the state

of art algorithm such as BCS, OG-S-IBMP achieves more than

5 dB improvement performance at all SNRs.

The complexity comparisons are listed in Table II. Specif-
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Fig. 8. NMSE [dB] comparison of OG-IBMP at different SNRs [dB] with
σ2

1
= 100 and σ2

n = Pr/10.

ically, the computational complexity of OMP, S-IBMP, L-

IBMP, and S-FBMP are O(LNM), O(K2NM), O(K1NM)
and O(NMK1D) [8], respectively, where K1 and K2 are

calculated based on L1 and L2. In the mmWave CE, L <
K2 < K1. Considering BCS is a learning based method and

IP-OMP, OG-S-IBMP, OG-L-IBMP are optimization based

methods, it is difficult to evaluate the complexity. Fortunately,

due to the constrains of the optimization, we find that only a

few iterations are required for the optimization based methods.

As a result, the computational complexity is mainly deter-

mined by the complexity of the original algorithms (i.e. OMP,

S-IBMP, L-IBMP) and approximately several times higher

[18]. According to [10], BCS algorithm is about an order

of magnitude slower than OMP, even when the Adaptive

Compressive Sensing option is turned off (i.e. not to include

the learning procedure for noise estimation). Therefore, we

can anticipate that the learning based algorithms with off-grid

mitigation methods are not practical due to the unacceptable

computational complexity.

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON OF DIFFERENT

ALGORITHMS.

Method Computational complexity

OMP O(LNM)
IP-OMP several times higher than O(LNM)
S-IBMP O(K2NM)

OG-S-IBMP several times higher than O(K2NM)
L-IBMP O(K1NM)

OG-L-IBMP several times higher than O(K1NM)
BCS an order higher than OMP

S-FBMP O(K2NMD)
∗ λ1 = L1/N , λ2 = L2/N , K1 = ⌈erfc−1(2K0)

√

2Nλ1(1 − λ1)+Nλ1⌉,

K2 = ⌈erfc−1(2K0)
√

2Nλ2(1 − λ2) + Nλ2⌉, K0 = 0.01, D = 5.

As shown in Fig. 9, we use average runtime of the al-

gorithms to verify the above analysis on the computational
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Fig. 9. Runtime [s] of proposed algorithms at different SNRs (dB) with
σ2

1
= 100 and σ2

n = Pr/10.

complexity. Note that, S-FBMP chooses D = 5 candidate SPs

and uses the same virtual sparsity as S-IBMP. It is assumed

that the noise power is known in BCS so that the complexity

can be decreased to a comparable level with other algorithms.

Fig. 9 validates our analysis. Specifically, S-IBMP is the

fastest Bayesian based algorithm and it is multiple times faster

than S-FBMP. OG-S-IBMP is significantly faster than OG-

L-IBMP and S-FBMP. OMP is the fastest among all these

algorithms. OG-S-IBMP, BCS, L-IBMP, S-IBMP and IP-OMP

have comparable runtimes.

In summary, the proposed OG-S-IBMP algorithm can over-

come the disadvantages of the S-IBMP algorithm including

the error floor at high SNRs and the requirement of a prior

information of the sparsity and noise power. OG-S-IBMP

algorithm achieves the best performance among the existing

algorithms with acceptable complexity.

VI. CONCLUSION

In this paper, we proposed a fast MAP based method

named IBMP for the channel estimation of the mmWave

massive MIMO system. We then proposed the OG-S-IBMP

to overcome the disadvantages of the IBMP by integrating

off-grid mitigation. Specifically, the proposed OG-S-IBMP al-

gorithm starts from the proposed on-grid algorithm IBMP, and

iteratively modifies the grid using the SQP method to mitigate

the impact of the off-grid angles. Simulation results confirmed

that our proposed OG-S-IBMP algorithm outperforms the

state-of-the-art mmWave CE methods with low computational

complexity. In future works, the proposed schemes can be ex-

tended to more complex emerging systems, i.e. reconfigurable

intelligent surfaces (RIS) aided system [30], and considering

the frequency-selectivity of the mmWave channels.
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