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Abstract

Introduction: Sample size “rules-of-thumb” for external validation of clinical prediction models suggest at least 100 events and
100 non-events. Such blanket guidance is imprecise, and not specific to the model or validation setting. We investigate factors affecting
precision of model performance estimates upon external validation, and propose a more tailored sample size approach.

Methods: Simulation of logistic regression prediction models to investigate factors associated with precision of performance estimates.
Then, explanation and illustration of a simulation-based approach to calculate the minimum sample size required to precisely estimate
a model’s calibration, discrimination and clinical utility.

Results: Precision is affected by the model’s linear predictor (LP) distribution, in addition to number of events and total sample
size. Sample sizes of 100 (or even 200) events and non-events can give imprecise estimates, especially for calibration. The simulation-
based calculation accounts for the LP distribution and (mis)calibration in the validation sample. Application identifies 2430 required
participants (531 events) for external validation of a deep vein thrombosis diagnostic model.

Conclusion: Where researchers can anticipate the distribution of the model’s LP (eg, based on development sample, or a pilot
study), a simulation-based approach for calculating sample size for external validation offers more flexibility and reliability than
rules-of-thumb.
© 2021 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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What is new?

Key findings
• Existing rules-of-thumb, such as having 100 events

and 100 non-events, for the sample size required
for external validation studies for prediction models
of binary outcomes may not ensure precise perfor-
mance estimates, particularly for calibration mea-
sures.

• Precision of performance estimates is affected by
the model’s linear predictor distribution, in addition
to the number of events and total sample size.

What this adds to what is known
• Our simulation study shows that more than 200

events and non-events are often needed to achieve
precise estimates of calibration, and the actual sam-
ple size calculation should be tailored to the setting
and model of interest.

• Our new proposal uses a simulation-based sample
size calculation, which accounts for the linear pre-
dictor distribution and (mis)calibration in the vali-
dation sample, and calculates the sample size (and
events) required conditional on these factors.

What is the implication, what should change now
• Precise performance estimates should be targeted

when externally validating prediction models for bi-
nary outcomes and this can be done through sim-
ulation. The approach requires the researcher to
specify the desired precision for each performance
measure of interest (calibration, discrimination, net
benefit, etc), the model’s anticipated linear predic-

tor distribution in the validation population, and
whether or not the model is expected to be well
calibrated.

1. Introduction

Clinical prediction models utilise multiple variables
(predictors) in combination to predict an individual pa-
tient’s risk of a clinical outcome [1-3]. An important part
of prediction model research is assessing the predictive per-
formance of a model, in terms of whether the model’s pre-
dicted risks: (i) discriminate between individuals that have
the outcome and those that do not, and (ii) calibrate closely
with observed risks (ie, predicted risks are accurate). This
can be done by internal validation (such as bootstrap-
ping) using the development data, and by external valida-
tion using independent data (ie, data different to that used
for model development). Examining clinical utility (eg, a
model’s net benefit) is also important if the model is to be

used to change (eg, treatment) strategies in clinical practice
when predicted risks are above a particular threshold [4-6].

In contrast to model development studies [7-10], rela-
tively little research has been published on the sample size
needed to externally validate a prediction model. For a
binary outcome, often the number of events is used as the
effective sample size [2], and therefore larger sample sizes
are needed in settings where the outcome is rare. Steyer-
berg suggests having at least 100 events and 100 non-
events for statistical tests to have ‘reasonable power’ in
an external sample, but preferably >250 events and >250
non-events to have power to detect small but still important
invalidity [11]. Other simulation and resampling studies
conducted by Vergouwe et al. [12], Collins et al. [13],
and van Calster et al. [14], also suggest having at least
100 events and 100 non-events to ensure accurate and
precise estimates of performance measures, and even
larger sample sizes (a minimum of 200 events and 200
non-events) to derive flexible calibration curves [13,14].

In this article, we evaluate whether the rule-of-thumb
of having at least 100 (or 200) events and non-events is
adequate for external validation of a prediction model with
a binary outcome. A simulation study is used to investi-
gate the relationship between various factors and precision
of performance measures. Based on this, we suggest that
sample size needs to be tailored to the setting of interest
and propose a more flexible simulation-based approach to
do this. Section 2 introduces predictive performance mea-
sures and describes the methods used for the simulation
study and our simulation-based sample size calculation.
Section 3 gives the results and the sample size approach
is illustrated for validation of a prediction model for deep
vein thrombosis (DVT). Finally, Section 4 provides some
discussion.

2. Methods

2.1. Predictive performance measures and a motivating

example

Consider a prediction model, developed using logistic
regression for a binary outcome, that is to be externally
validated. It will take the form,

log

(

pi

1 − pi

)

= α + β1X1i + β2X2i

+β3X3i + · · · + βkXki (1)

where pi is the predicted probability of the outcome for
individual i, α is the intercept, and the X and β terms
represent the observed predictor values and predictor
effects (log odds ratios) respectively. The right-hand
side of the equation is often referred to as the linear
predictor (LP). The predictive performance of a model is
usually evaluated by estimating measures of calibration,
discrimination and clinical utility, as defined in Box 1.
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Box 1. Summary of typical performance measures to be estimated in an external validation of a logistic regression prediction model

Calibration
• To estimate calibration performance of a prediction model, a calibration model can be fitted using the validation dataset. For a binary

outcome, the typical calibration model is

logit(pi) = γ + S(LPi) (2)

where LPi is the linear predictor value for participant i in the validation study as calculated from the existing prediction model (e.g. the

right-hand-side of Eq. 1).

• The calibration model can be used to obtain the calibration slope and the calibration-in-the-large:

◦ The S coefficient is the estimate of the calibration slope and ideally should be 1. Values <1 indicate predictions are too extreme,

for example low predicted probabilities are too low and high predicted probabilities are too high. Conversely, values >1 indicate

that predictions are too narrow, for example low predictions are not low enough and high predictions are not high enough. S is

typically below 1 for prediction models that are overfitted to the development data.

◦ The calibration-in-the-large is estimated as γ when S = 1 (obtained by fitting Eq. 2 with LP included as an offset). This is closely

related to the ratio of observed and expected outcomes (O/E), which is the average of the observed outcomes divided by the

average predicted probability across all individuals. Estimates for γ should be equal to 0 if the model yields predictions that are

perfectly calibrated at the population level.
• A calibration plot is also essential to visually demonstrate the range of predicted risks, and their calibration with observed risks, ideally

using a flexible (e.g. loess smoothed) calibration curve [14,15] The integrated calibration index (ICI) can be calculated to quantify the

difference between the smoothed calibration curve and the ideal 45 degree line [16]. A similar measure is the estimated calibration

index (ECI) [14].

Discrimination
• Discrimination is assessed through the C-statistic, which for a binary outcome is equivalent to the area under the receiver operating

characteristic curve. Values typically range from 0.5 for a model that discriminates no better than chance alone, through to 1 which

would represent perfect discrimination.

Net benefit
• The overall consequences of using a prediction model for clinical decisions can be measured using the net benefit, [4,6] which

expresses the relative value of benefits and harms associated with using the model to determine clinical decisions. Net benefit

(NBpt ) is

NBpt = (sensitivity × prevalence) −

(

(1 − specificity) × (1 − prevalence) ×
pt

1 − pt

)

where sensitivity and specificity of the model predictions depend on the chosen risk threshold value pt for which clinical decisions are

deemed necessary.

2.2. Simulation study to investigate factors that influence

the precision of performance estimates

We hypothesized that four factors relating to the
external validation sample could affect the precision of
performance estimates: (i) the outcome proportion, (ii) the
total sample size, (iii) the standard deviation of the LP

values, and (iv) the true (mis)calibration of the model. We
conducted a simulation study to investigate this, as now
described.

2.2.1. Scenarios for the simulation study

We assumed the prediction model (which is to be
external validated) has a LP that is normally distributed;
LPi ˜ Normal(µ, σ2). Scenarios for the simulations were
defined using different values of σ (standard deviation of
LP) and µ (mean of LP), as given in Table 1. The value
of µ was selected to correspond to a particular “base
probability” (p = inverse logit(µ) = 1/(1+exp(-µ)). This
is the outcome event probability for an individual who
has the mean LP value; alternatively, it can be considered

the expected probability of an event in a population where
σ = 0 and so LP is µ for all participants. When σ = 0,
the base probability would be equal to the incidence
(for prognostic studies) or prevalence (for diagnostic
studies).

We selected base probabilities to cover a wide range,
from rare outcomes (˜0.05) to common outcomes (0.5).
Values for σ were chosen to provide a narrow through to
a wide range of predicted probabilities from the model
(depending on the outcome event proportion), as shown
in Fig. 1. This also reflects low through to high values
of the C-statistic, as the C-statistic will increase with
wider distributions of LP. C-statistic values covered by
the scenarios ranged from 0.56 when σ=0.2 to 0.75 when
σ=1.0 and base probability=0.05.

2.2.2. Main simulation process

The steps for the main simulation were as follows:

1) Define the simulation scenario by specifying σ and µ,
with the latter corresponding to the “base probability”
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Fig. 1. Distribution of the predicted probabilities for each of the different simulation scenarios based on the combination of base probability and

σ values shown in Table 1.

of the outcome (p = 1/(1+exp(-µ)). Also specify the
desired expected number of events (E) in a population
where all individuals have the base probability.

2) Set the validation dataset’s sample size (N) using E

divided by the base probability.
3) Generate LP values for each patient in the dataset

using LPi ˜ Normal(µ, σ2).
4) Generate binary outcomes (Yi = 0 or 1) for patient’s

by Yi ˜ Bernoulli( 1/(1+exp(-LPi))).
5) Estimate with 95% confidence intervals (CIs) the

model’s calibration and discrimination performance
using the external validation dataset.

6) Repeat steps 2 - 4 a total of 500 times for each
simulation scenario. 500 repetitions was used to ensure
a small Monte Carlo error whilst ensuring computation
time was acceptable.

7) For each performance measure, calculate the average
estimate and the average precision (based on the
average 95% CI width) the 500 results.

For step 5, we estimated the calibration slope,
calibration-in-the-large, the C-statistic and E/O statis-
tic. Standard 95% CIs were calculated on the original
scale (ie, estimate ± 1.96 x standard error) for all mea-
sures except the E/O statistic, which was derived on
the log scale and then back transformed [17]. Using the

simulation results for the various scenarios, we examined
what factors were associated with increased precision of
performance estimates. We also examined whether the
precision was adequate when the sample size met the
rule-of-thumb of 100 (or 200) events.

2.2.3. Extensions to miscalibration

Step 4 assumes that the prediction model’s LP is cor-
rect, such that the true calibration model is perfect (ie,
intercept and slope are 0 and 1, respectively, in Eq. 2).
Therefore, the scenarios were also extended to assess the
effect of miscalibration. To do so, steps 1-3 remained the
same but then we also created, LPmiscal in which the origi-
nal LP was multiplied by a ‘miscalibration factor’ (values
of 0.80, 0.85, 0.90, 0.95, 1.05, 1.10, 1.15, and 1.20 were
considered). The true outcome values in step 4 were then
based on LPmiscal rather than the original LP. Hence, in step
5 model performance estimates reflected a miscalibrated
model; in particular, true calibration slopes were not 1.

2.3. Proposal for simulation-based sample size

calculations

Rather than using a rule-of-thumb, we propose a
simulation-based approach to identify the sample size
required to achieve precise performance estimates. The
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Box 2. Steps of a simulation-based approach to calculate the sample size required for external validation of a particular prediction model for a

binary outcome

1) Specify the anticipated distribution of the prediction model’s linear predictor (LP) in the validation study (eg, LPi ˜ Normal(µ, σ
2))

This might be based on the distribution reported for the development sample if the validation population is similar, or based on a pilot

study if differences in case-mix are expected between the development and validation settings.

2) Specify values for the parameters γ and S of the calibration model (Eq. 2).∗

If development and validation populations are similar, a sensible starting point is to assume the model is well calibrated on average, ie,

γ = 0 and S = 1.

3) Specify the target precision for each performance measure.

For example, a 95% confidence interval (CI) width for the C-statistic < 0.1, 95% CI width for the calibration slope < 0.2, etc.

4) Specify a starting sample size of the validation study.

For example, starting with N=100.

5) Generate LP and true outcomes values for each participant.

Randomly generate the LP value for each participant using the distribution in step 1. Then, calculate the logit(pi) value for each

participant using the calibration model specified in step 2. Then, randomly generate the true binary outcome Yi ˜

Bernoulli(1/(1+exp(-pi))).

6) Calculate performance measures of interest for the prediction model in the external validation dataset and store estimates and 95% CIs.

For example, by comparing the model’s predicted outcome risk outcome risk and the true outcome value for all participants in the

dataset, estimate the C-statistic, calibration slope, calibration-in-the-large, E/O statistic, and net benefit (at particular risk thresholds).

7) Repeat steps 5 and 6 for a specified number of repetitions.

For example, 500 repetitions.

8) Using the stored estimates to calculate estimates of precision for each performance measure.

For example, the mean 95% CI width across the repetitions can be stored as the estimate of precision.

9) Adjust the sample size and repeat steps 5-8 until the minimum sample size is identified that achieves the target precision for all performance

measures.

∗The process can also be repeated assuming different levels of miscalibration by altering the values of γ and S in Step 2, to see how this

would affect sample size and the precision of estimates. For example, if the outcome event proportion is expected to be different in the

validation sample than the development dataset, it is possible to adjust γ to achieve this new event proportion. Also, S < 1 might be

assumed if the original model was overfitted and not corrected for optimism. See examples in 3.2.

proposal follows similar steps to that described previously
for our simulation study, except now the process is
iterative and converges when the minimum sample size
is achieved. It is summarized in Box 2, and requires the
researcher to specify the desired precision for each per-
formance measure of interest (calibration, discrimination,
net benefit, etc), the model’s anticipated LP distribution in
the validation population, and whether or not the model
is well calibrated (ie, the values of parameters γ and S of
the calibration model in Eq. 2).

A sensible starting point is to assume the model is
well calibrated (ie, γ = 0 and S = 1) and that the
LP distribution is the same as that for the development
study, especially if the validation population is similar to

the development population. The LP distribution may be
obtained directly from the development study’s publication
or authors; if unavailable, it can be calculated indirectly
using other information, such as the reported C-statistic or
the distribution for each outcome group (eg, displayed at
the bottom of a calibration plot) [17-19]. If the validation
population is considered different from the development
population (eg, due to a change in expected outcome pro-
portion and/or case-mix), a pilot study may be necessary
to gauge the distribution better. Further advice is given in
the Supplementary Material.

The required precision is subjective and may be dif-
ferent for each measure. It helps to consider what width
of a 95% CI is desirable for making strong inferences,
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Table 1. Factors varied in the simulation study to define scenarios

Factor Values

Standard deviation of the LPi (σ) 0.2, 0.4, 0.6, 0.8, 1.0

Base probability (inverse logit(µ)) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5

Expected number of events (E) 50, 100, 150, 200, …, 800

and this may be context specific, especially for measures
such as O/E and calibration-in-the-large (Supplementary
Material). Our examples make some suggestions.

2.3.1. Applied example: Diagnostic model for deep vein

thrombosis

Debray et al. developed a diagnostic model for deep
vein thrombosis (DVT) using data from 1295 individuals
with about 22% truly having the outcome [20]. The
model contained eight predictors, and overfitting was
not a major concern given a large number of events
per predictor. The model’s linear predictor distribution
was reported for their development cohort and also other
settings, and we use this to illustrate our simulation-based
approach for calculating the sample size for an external
validation study of the DVT model. Example code is
given in the supplementary material for Stata and is avail-
able on github for R (https://github.com/gscollins1973/
External-validation-sample-size).

3. Results

3.1. Factors associated with the precision of model

performance estimates: results from simulation study

3.1.1. Precision of the estimated C-statistic

The simulation scenarios (Table 1, Fig. 1) represented
models with C-statistics from 0.56 (when σ=0.2) through
to 0.75 (when σ=1.0). Fig. 2 (Panels A & B) show that es-
timates of the C-statistic were more precise (based on the
average 95% CI width) when the outcome was rare com-
pared to a more common outcome, for a particular average
number of events. This is likely because the total sample
size needs to be much larger for a rare outcome to achieve
the same number of expected events compared to a more
common outcome. The standard deviation (σ) of the LP

also affected the precision of the C-statistic (Fig. 2, Panels
C & D). The estimates were more precise when σ was
larger, although the difference in the width of the 95% CI
for the C-statistic when σ=1 compared to when σ=0.2 was
only between 0.02 and 0.06 (depending on base probabil-
ity) even for studies with 50 expected events. As precision
increased with increasing SD(LP) for the scenarios con-
sidered, we would therefore expect even larger C-statistics
(eg, >0.8) than considered here to be even more precise.

If an outcome was common (base probability=0.5) and
σ=1.0, the average 95% CI widths were 0.14 and 0.09
with 100 and 200 expected outcome events and non-events,
respectively (N=200 and N=400, respectively), (as seen

in Fig. 2, Panel B or D). Therefore, with 200 events, a
typical 95% CI would range from about 0.69 to 0.78. If we
wanted a more precise estimate, say with a 95% CI width
of 0.05, we would need at least 700 events (N=1400).

3.1.2. Precision of the estimated calibration slope

Estimates of the calibration slope can be very imprecise
when the number of events is low. For example, in Fig. 3,
across all scenarios the average 95% CI width is greater
than 0.5 when there are around 50 outcome events, but
can still be wide for studies with 100 or even 200 events
when the outcome event proportion is high or σ is small.
As seen in Fig. 3 (panels C & D) when σ=0.2, the
average width of the 95% CI for the calibration slope is
> 1 even for large studies with approximately 500 events
on average. Although not as dramatic, estimates also
become less precise as the base probability (and therefore
the outcome event proportion) moves towards 0.5 (Fig. 3,
panels A & B). Again, this is likely to be related to the
difference in total sample size required to achieve the
same number of events when the base probability differs.

If we wanted the average 95% CI width to be very
precise, say a width of 0.2, we would need at least
400 outcome events if the outcome was rare (base
probability=0.05) and the spread of the LP was large
(σ=1.0). If we aimed for a 95% CI width of 0.4 (eg,
95% CI: 0.8 to 1.2), this would be achievable with
100 outcome events when the outcome was rare (base
probability=0.05) and σ=1.0, but would require more than
300 outcome events if the outcome was more common
(base probability>0.4 | σ=1.0) or if the distribution of
LP was narrower (σ<1.0 | base probability=0.05).

3.1.3. Precision of the estimated calibration-in-the-large

and O/E statistic

The 95% CIs for calibration-in-the-large were wide
for low numbers of events, which indicates that in many
circumstances 100 events is unlikely to be enough to
obtain precise estimates (eg, a 95% CI width > 0.4). The
standard deviation of the LP did not affect the precision
much (Fig. 4, panels C & D). However, differences
were seen for different base probabilities (Fig. 4, panels
A & B). Findings for the ratio between observed and
expected outcomes (O/E) were similar to those observed
for calibration-in-the-large (Supplementary Figure S1).

3.1.4. Extensions to scenarios with miscalibration

For the scenarios with miscalibration, each model
was evaluated in different datasets (in which the model
would be miscalibrated by varying degrees, as specified
in Section 2.2.3). The precision in performance estimates
was not greatly affected by miscalibration when the av-
erage number of observed events was still similar to that
expected upon validation. However, performance estimates
were less precise when miscalibration resulted in fewer



K.I.E. Snell et al. / Journal of Clinical Epidemiology 135 (2021) 79–89 85

Fig. 2. Average 95% confidence interval width for the C-statistic at different effective sample sizes (based on average number of events in the

simulation scenario) comparing by base probabilities at fixed SD(LP) (panels A and B), or comparing by SD(LP) at fixed base probabilities (panels

C and D).

events observed than expected. Supplementary Table S2
gives an example.

3.2. Application of simulation-based sample size

calculation to go beyond current rules-of-thumb

The simulation study confirms that the precision in
estimates of a model’s predictive performance are affected
by the standard deviation of the LP (σ), the outcome
proportion (overall outcome risk), the number of events,
and the total sample size. In contrast, adhering to blanket
rules-of-thumb (eg, using 100 events) ignores these intri-
cacies and fails to give precise performance estimates in
some settings.

In contrast, our simulation-based approach to sample
size calculation can be tailored to the model and popu-
lation at hand (Section 2.3). That is, if researchers can
specify the likely distribution of the model’s LP and the
outcome proportion in the target population, they can then
use the simulation-based approach to identify a suitable
sample size to ensure predictive performance estimates are
precise.

To illustrate this, consider external validation of Debray
et al’s diagnostic prediction model for DVT (introduced
in Section 2.3.1) [20], and the required sample size if:

a. the model is validated in the same population as the
development cohort, and the model is expected to be
well calibrated (γ = 0 and S = 1 in Eq. 2).

b. the model is validated in same population as the
development cohort, but the model is expected to
be miscalibrated (eg, due to overfitting) (γ = 0 and
S = 0.9 in Eq. 2).

c. The outcome event proportion differs from the de-
velopment data, either due to different case-mix or
miscalibration of the model.

We consider these in turn, and compare to the rule-of-
thumb of 100 or 200 events.

3.2.1. Validation in the same population with good

calibration

Debray et al. reported that in the development cohort
the model’s LP followed an approximate Normal(-1.75,
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Fig. 3. Average 95% confidence interval width for the calibration slope at different effective sample sizes (based on number of events) comparing

by base probabilities at fixed SD(LP) (panels A and B), or comparing by SD(LP) at fixed base probabilities (panels C and D).

Table 2. Mean estimates and average 95% CI widths of performance estimates from 1,000 external validation studies with an average of 100 or

200 events, for validating the performance of a diagnostic model for DVT with an assumed linear predictor that follows a Normal(-1.75, 1.472)

distribution that is well-calibrated (γ = 0 and S = 1 in Eq. 2)

Performance Measure N = 461 (˜100 events on average in each

validation dataset)

N = 922 (˜ 200 events on average in each

validation dataset)

Mean of the 1,000

estimates

Average width of

1,000 95% CIs

Mean of the 1,000

estimates

Average width of the

1,000 95% CIs

C-statistic 0.817 0.09 0.816 0.06

Calibration slope 1.016 0.46 1.008 0.33

Observed/expected 1.000 0.35 1.002 0.25

Integrated calibration index 0.020 0.04 0.014 0.03

Net benefit at a risk threshold of 0.1 0.153 0.08 0.154 0.06

1.472) distribution [20]. Assuming the external validation
study has the same distribution, and that the model is well
calibrated (γ = 0 and S = 1 in Eq. 2), we conducted sim-
ulations of external validation studies that have an average
of 100 or 200 events. Table 2 shows the mean of the
95% CI widths for a range of calibration, discrimination
and clinical utility measures. The 95% CI is fairly narrow
for the C-statistic even when there are 100 events (mean
width 0.09); it is also narrow for the integrated calibration
index and net benefit (at an arbitrary clinical risk threshold

of 0.1 for illustration). However, calibration-in-the-large
and calibration slope estimates are imprecise with 100
events (eg, mean CI width 0.46 for slope), and even with
200 events (eg, mean CI width 0.33 for slope).

Using the simulation-based process described in Box 2,
we calculated the minimum sample sizes need to obtain
average 95% CI widths of 0.1, 0.2, and 0.2 for the
C-statistic, calibration slope, and ln(O/E), respectively
(Table 3). This corresponds to an expected 95% CI of
about 0.77 to 0.87 for the C-statistic, 0.9 to 1.1 for
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Fig. 4. Average 95% confidence interval width for the calibration-in-the-large at different effective sample sizes (based on number of events)

comparing by base probabilities at fixed SD(LP) (panels A and B), or comparing by SD(LP) at fixed base probabilities (panels C and D).

Table 3. Sample size and number of events required to target precise

performance measures in an external validation study of a DVT predic-

tion model, with an assumed linear predictor that follows a Normal(-

1.75, 1.472) distribution and assuming the model is well calibrated

(γ = 0 and S = 1 in Eq. 2).

Performance Measure Targeted 95%

CI width

Sample size (events)

required to achieve CI width

C-statistic 0.1 385 (85)

Calibration slope 0.2 2430 (531)

Ln(observed/expected) 0.2 1379 (302)

the calibration slope, and 0.9 to 1.1 for O/E, which we
deemed precise for making strong inferences. We focus on
the precision of O/E rather than calibration-in-the-large as
it is easier to interpret. The results suggest that a sample
size of 2430 participants (531 outcome events) is required,
which is driven by the sample size required to estimate
the calibration slope precisely. Clearly, if calibration is
considered less relevant to, say, net benefit then a lower
number may be sufficient for this particular model, given
the narrow 95% CI width for net benefit even with
100 events (Table 2). However, calibration is an under-
appreciated measure, and indeed linked to net-benefit

[5], so we recommend it is nearly always important to
assess.

3.2.2. Validation in the same population but assuming

miscalibration

Now we assume that in the validation population the
model has the same LP distribution as in the development
sample (Normal(-1.75, 1.472)), but that the true calibration
slope (S in Eq. 2) is 0.9 (eg, due to slight overfitting that
was unaccounted for during model development) and γ

is a non-zero value that ensures the outcome proportion
is still 0.22 in the population. Aiming for the same CI
widths as in the previous example, our simulation-based
calculation now identifies the sample size required is
2141 participants (471 outcome events), again driven by
the calibration slope. When the true calibration slope is
assumed 0.8, the required sample size is lower still (1900
participants, 416 outcome events). Hence, the required
sample size is lower the larger the miscalibration assumed.

3.2.3. Validation in a different population with a different

case-mix or event proportion

Lastly, consider a very different population from the
development dataset, as shown by Debray et al. [20],
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where the outcome proportion is lower at 0.13 and the
prediction model’s LP distribution has changed (Normal(-
2.67, 1.562)), due to a different case-mix. Assuming the
model is well calibrated in terms of the slope (S = 1 in
Eq. 2), but setting the γ parameter value to a non-zero
value so that the outcome event proportion of 0.13 is
achieved in the population, our simulation-based approach
identifies that 3156 participants (and 400 outcome events)
are required, again driven by ensuring precise estimation
of the calibration slope. This is substantially more than
the 100 or 200 outcome events rule-of-thumb.

4. Discussion

Sample size for external validation studies should en-
sure precise estimates of performance measures of interest
(eg, calibration, discrimination, clinical utility). Our simu-
lation study shows that rules-of-thumb such as requiring a
minimum of 100 events and 100 non-events (or even 200)
do not give precise estimates in all scenarios, especially
where calibration is of interest. Further, the precision of
the C-statistic, calibration slope and calibration-in-the-
large depends not only on the number of expected events,
but also on the event proportion and therefore the overall
sample size, as well as the distribution of the LP. Our
proposed simulation-based approach accounts for these as-
pects, and is thus more flexible and reliable. Our examples
illustrate how it calculates the required sample size for the
particular model and validation setting of interest, and al-
lows situations assuming calibration or miscalibration to be
examined.

The sample sizes based on precision of performance
statistics generally result in larger sample sizes than the
rules-of-thumb, especially where calibration is of interest,
in particular to estimate calibration slope precisely as
demonstrated in our applied example (where 531 outcome
events were deemed necessary) and the simulation study
(eg, see Fig. 3 and Section 3.2.2). This contrasts work
by others which showed that fewer than 100 events
were required in some cases for validation of scoring
systems based on logistic regression [21]. However, their
calculations were based on achieving smooth calibration
plots rather than ensuring precise estimates of numerically
quantifying calibration. Applied examples also show
imprecise estimates even when there are more than 100
events. For example, external validation of a prediction
model for adverse outcomes in pre-eclampsia used a
dataset with 185 events, and yet the 95% CIs for the
C-statistic (0.64 to 0.86) and the calibration slope were
wide (0.48 to 1.32) [22].

Our proposal to base sample size on precision of
performance estimates is in line with Jinks et al., who
suggest precisely estimating Royston’s D statistic for sur-
vival prediction models. [23] Our simulation approach is
more generalizable, as it can assess multiple performance

measures simultaneously, and can be adapted for any
outcome data type (eg, continuous, binary or survival).
For survival data, simulations would also need to specify
the censoring mechanism and key time-points of interest.

We focused on precise estimates of calibration, discrim-
ination and clinical utility. Although the researcher should
define the measures of key interest, generally we recom-
mend that all are important to consider. Calibration and
clinical utility, in particular, are often under-appreciated
[24-26]. By ensuring precise estimates of calibration in
terms of O/E (or the calibration-in-the-large) and calibra-
tion slope, this will help construct a reliable calibration
plot. However, precise estimates across the entire range of
predictions (eg, within each tenth of predicted risk from
0 to 1), would likely require even larger sample sizes.
The simulation-based approach could also be extended to
determine the sample size required to directly compare
models, but again larger sample sizes are likely. If an
external dataset is already available (ie, sample size is
fixed), the approach can be used to ascertain the expected
precision for that particular sample size and observed
linear predictor distribution (to help justify its suitability).

We assumed that the linear predictor is normally dis-
tributed, which is supported by empirical evidence in some
areas [27,28]. However, the simulation-based sample size
approach (Box 2) can easily be adapted to use other distri-
butions for the LP, as appropriate. If the prediction model
contains only binary or categorical predictors, a discrete
distribution may be more appropriate, whereas for skewed
or more flexible shapes, a beta or gamma distribution may
be preferable. Advice for obtaining the LP distribution is
given in Section 2.3 and the supplementary material.

We recognize that what is “precise” is subjective. Our
examples in Section 3.2 gave suggestions for the O/E,
calibration slope and C-statistic based on particular 95%
CI widths. The simulation-based calculation identifies the
sample size that is expected to give (ie, on average) CIs of
the desired width. An alternative is to identify the sample
size that gives CIs that are no wider than the desired
width on, say, 95% of simulations. This would be even
more reassuring but requires even larger sample sizes.

In summary, we propose that precise performance esti-
mates should be targeted when planning external validation
studies, and a tailored sample size can be determined
through simulation by specifying the likely distribution of
the LP, the outcome event proportion and target precision
for each performance measure. The sample size that, on
average, gives the target precision for all performance mea-
sures should be selected for the external validation data.

Supplementary materials

Supplementary material associated with this article can
be found, in the online version, at doi:10.1016/j.jclinepi.
2021.02.011.
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