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ABSTRACT

Political decisions, adaptation planning, and impact assessments need reliable estimates of future climate change

and related uncertainties. To provide these estimates, different approaches to constrain, filter, or weight climate

model projections into probabilistic distributions have been proposed. However, an assessment of multiple such

methods to, for example, expose cases of agreement or disagreement, is often hindered by a lack of coordination,

with methods focusing on a variety of variables, time periods, regions, or model pools. Here, a consistent framework

is developed to allow a quantitative comparison of eight differentmethods; focus is given to summer temperature and

precipitation change in three spatial regimes in Europe in 2041–60 relative to 1995–2014. The analysis draws on

projections from several large ensembles, the CMIP5 multimodel ensemble, and perturbed physics ensembles, all

using the high-emission scenarioRCP8.5. Themethods’ key features are summarized, assumptions are discussed, and

resulting constrained distributions are presented. Method agreement is found to be dependent on the investigated

region but is generally higher formedian changes than for the uncertainty ranges. This study, therefore, highlights the

importance of providing clear context about how different methods affect the assessed uncertainty—in particular,

the upper and lower percentiles that are of interest to risk-averse stakeholders. The comparison also exposes cases in

which diverse lines of evidence lead to diverging constraints; additional work is needed to understand how the

underlying differences between methods lead to such disagreements and to provide clear guidance to users.
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1. Introduction

Human-induced climate change calls for rapid cuts in

anthropogenic greenhouse gas emissions to avoid in-

creasingly negative impacts. Even with such reductions,

however, climate will continue to change over the next

decades, requiring reliable information about regional

future changes for assessing impacts, identifying risks,

and making adaptation decisions. The typical way of

providing this information is by making estimates of the

most likely change and known uncertainties based on

an ensemble of climate models, often expressed as a

probability. The uncertainties are primarily driven by

three sources: uncertain future emissions, model un-

certainty, and internal variability. The development of

future emissions involves global political decisions such

as the Paris Agreement (UNFCCC 2015) and techno-

logical developments and is not discussed here—we fo-

cus on the response to a given concentration pathway.

The uncertainties associated with climate model re-

sponses to external forcings and internal variability, in

turn, have been widely explored using ensemble mod-

eling approaches.

Multimodel ensembles (MMEs) such as the Coupled

Model Intercomparison Projects CMIP5 (Taylor et al.

2012) and the ongoing CMIP6 (Eyring et al. 2016) allow

the exploration of a range of plausible future climate

outcomes that result from differences in the way that

climate models represent the physical world. The CMIP

datasets, hence, form the basis for assessments of model

uncertainty in many global climate change assessments

(notably the IPCC assessment reports) (IPCC 2013) and

regional or local studies, and drive downstream higher-

resolution modeling activities such as EURO-CORDEX

(Jacob et al. 2014). While MMEs capture structural dif-

ferences between models, such ‘‘ensembles of opportu-

nity’’ (Tebaldi and Knutti 2007) are not designed to

sample uncertainty comprehensively. Additional uncer-

tainty is associated with, among other things, the com-

plex interdependencies of models (Knutti et al. 2013)

and the possible range of parameter settings within a

given model, reflected in so-called perturbed param-

eter ensembles (PPEs) of a single model (Sanderson

et al. 2008).

Internal variability refers to natural variations of cli-

mate on all spatial and temporal scales beyond those of

individual weather events. The importance of internal

variability in total uncertainty is strongly dependent on

the lead time, time period, spatial scale, and variable. It

typically plays a larger role in the nearer term, at local

spatial scales, and in spatially and temporally hetero-

geneous variables such as precipitation (Hawkins and

Sutton 2009). Internal variability can be isolated from

model uncertainty using large ensembles, which provide

multiple realizations of the same model with slightly

different initialisations. CMIP5 models are provided

with anywhere between 1 and 10 realizations, but there

have also been efforts to explore internal variability

more fully with dedicated experiments such as the 40-

member CESM1-based NCARLarge Ensemble (NCAR-

LENS) (Kay et al. 2015) or the 100-member MPI Grand

Ensemble (MPI-GE) (Maher et al. 2019).

When combining members of an MME into a co-

herent projection of future change, and associated un-

certainty, often a ‘‘democratic’’ approach is taken: each

model is considered as independent (Pennell and

Reichler 2011; Knutti et al. 2013; Sanderson et al.

2015a) and equally plausible (Gleckler et al. 2008;

Eyring et al. 2019) and therefore contributes equally to

the MME distribution. While few climate scientists

would argue that such a ‘‘one model–one vote’’ de-

mocracy is the optimal way to represent uncertainty in

an MME, it often remains the default in absence of a

consensus on a more sophisticated approach. Notably,

model democracy has been used to summarize projec-

tion information in high-level assessments, including

the series of IPCC assessment reports in all but a few

isolated cases (e.g., for Arctic sea ice projections)

(Collins et al. 2013).

In recent years, more sophisticated methods have

been developed to address the challenge of combining

MMEprojections in order to better quantify uncertainty

and improve reliability. Efforts have been made to

identify the aspects of historical climate that are relevant

to projection confidence and to use them to exclude,

down-weight, or rescale future projections based on

model performance. Such performance-based methods

often include the assumptions that 1) poor agreement

between a certain model and observations in a given

variable and region is an indication that the model

should be trusted less (e.g., Giorgi and Mearns 2003;

Sanderson et al. 2015b; Knutti et al. 2017b) or that 2)

there are emergent relationships linking present-day

behavior (e.g., realistic simulations of the observed

mean climate, or a trend) to future changes (e.g., Hall

and Qu 2006; DeAngelis et al. 2015; Knutti et al. 2017a;

Caldwell et al. 2018; Selten et al. 2020; Tokarska

et al. 2020).

The European Climate Prediction system (EUCP)

project aims to produce such improved projections of

future European climate on a time horizon from the

present to the middle of the century (Hewitt and Lowe

2018). This work builds toward the EUCP goal by

developing a common framework to compare different

methods, by investigating underlying method properties,

and by highlighting cases of high and low agreement
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across methods in terms of their output distributions. We

analyze eight methods from groups involved in EUCP

that are used to represent the diverse set of existing

approaches to constrain regional climate projections,

including 1) methods that weight models based on their

performance in reproducing observed mean, variability,

or trend fields in one or more variables (e.g., Giorgi

and Mearns 2003; Bishop and Abramowitz 2013; Knutti

et al. 2017b; Sanderson et al. 2017; Merrifield et al. 2019;

Amos et al. 2020); 2) detection and attribution-based

methods, which scale models based on their represen-

tation of past forced changes from one or more sources

such as anthropogenic CO2 emissions (e.g., Allen et al.

2000; Stott and Kettleborough 2002; Kettleborough

et al. 2007; Shiogama et al. 2016; Li et al. 2017;

Tokarska et al. 2019); 3) Bayesian methods that

update a prior distribution in light of new information

provided by observations (Cressie 1991; Rougier et al.

2013; Renoult et al. 2020; Ribes et al. 2020, manuscript

submitted to Sci. Adv.); and 4) single-model methods that

focus on investigating internal variability not accounting

for model uncertainty (Deser et al. 2012a,b, 2014; Martel

et al. 2018; O’Reilly et al. 2020, manuscript submitted to

Earth Sys. Dyn.).

Beyond that, there are other probabilistic methods

available, which have been used both in academic

studies and to produce climate projection data, that are

not explored in this work—for example, more process-

based emergent constraints that are often tailored to a

specific application (e.g., Vogel et al. 2018; Hall et al.

2019; Eyring et al. 2019; Selten et al. 2020) and therefore

harder to apply across a range of different settings. Still,

with this study EUCP brings together a number of

methods, provided by partners within the project, that

represent a large and diverse ad hoc ensemble of op-

portunity to assess consistency of climate projection

information.

Rigorously comparing different methods based on

their results published in the literature alone is often

very challenging or even impossible. Studies applying

individual methods are typically not performed in a

coordinated framework (as it exists for the model ex-

periments themselves within CMIP, for example) and

are not focused on enabling easy method intercompar-

ison. Therefore, even when two methods investigate

the same general target variable (such as temperature

change) and region (such as Europe), a consistent

comparison may be hindered by subtle differences in

their setup such as domain and grid resolution, season

and time period, models and ensemble members in-

cluded, or reported results (such as mean versus median

or standard deviation versus percentile range). In such

cases the results may diverge not only due to assumptions

and characteristics inherent to the methods but also due

to these differing setups.

Here we therefore develop a common experiment

setup, including a defined set of European subregions at

different spatial scales, a common time period, and set of

variables to provide a level testing ground for different

methods as far as possible. We then use this common

setting to provide an evaluation of agreement (or a lack

thereof) across the eight methods included. Exposing

cases where the different lines of evidence, used by the

methods, lead to diverging results is crucial as it high-

lights instances where any single method (or even the

raw ensemble spread) is potentially overconfident. For

cases with high agreement across multiple methods, in

turn, we can have increased confidence in the robustness

of the constrained distributions.

Ultimately, a framework to select or interpret distri-

butions resulting from different lines of evidence is

needed to provide clear guidance to users. However,

developing such a framework is beyond the scope of this

first intercomparison and we here limit ourselves to

detailing the methods’ fundamental differences in terms

of underpinning assumptions, uncertainty sources cap-

tured, and applications of observational constraints to

shed light on the reasons for method agreement or dis-

agreement. In summary, we develop a common frame-

work for consistently comparing a diverse ‘‘method

ensemble of opportunity’’ to constrain European cli-

mate projections and to investigate method agreement

(or a lack thereof) for temperature and precipitation

change in several European regions in terms of median

and uncertainty range. We summarize the underlying

assumptions in the methods that can lead to differences

in their constrained distributions and discuss possible

ways forward.

2. Approaches to uncertainty quantification

In this section we describe the main properties of the

eight methods to be compared. We will refer to the

methods using their acronyms throughout the paper, a

summary of these acronyms, full names, institutions, and

reference publications can be found in Table 1. The

methods’ key features and assumptions are summarized

in Table 2. There are a number of ways in which they

might be categorized (e.g., Lopez et al. 2015); for the

purpose of this study, we broadly divide them as follows:

1) weighting schemes:ClimWIP(ClimateModelWeighting

by Independence and Performance) and REA (reliabil-

ity ensemble averaging),

2) detection and attribution-based methods: ASK

(Allen–Stott–Kettleborough),
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3) Bayesian methods: HistC (historically constrained

probabilistic projections) and UKCP (U.K. Climate

Projections Bayesian probabilistic projections

method), and

4) single-model methods: BNV (bootstrapped from

natural variability), ENA (ensemble analysis of prob-

ability distributions), and CALL (calibrated large

ensemble projections).

a. Weighting schemes (ClimWIP and REA)

The ClimWIP and REA approaches arrive at a

probability distribution by applying a weighting scheme

based on model performance and independence, but

determine them by quite different metrics. For the

model performance component, REA applies weights

on a variable-by-variable basis (i.e., projections of pre-

cipitation are weighted according to local precipitation

performance) while ClimWIP uses a set of six diagnos-

tics based on a number of variables (temperature cli-

matology, precipitation climatology, shortwave downward

radiation climatology, shortwave upward radiation clima-

tology and variance, and longwave downward radiation

variance) (Brunner et al. 2019). The number and selection

of these diagnostics follow Lorenz et al. (2018), who

identify relevant diagnostics for projections of maximum

temperature.

The two schemes also utilize different treatments of

independence. ClimWIP determines model independence

weights based on quantified distances between models

(essentially downweighting models with high interdepen-

dence) (Knutti et al. 2017b). Recently Brunner et al. (2020,

manuscript submitted to Earth Syst. Dyn.) have looked

into the effect of this approach in more detail using en-

semble members as separate models with (known) high

interdependence. Conversely, REA treats model conver-

gence as an indication of projection confidence, effectively

downweighting outliers in projection space (Giorgi and

Mearns 2002; Tegegne et al. 2019).

b. Detection and attribution-based methods (ASK)

ASK methods are based on a framework derived by

Allen et al. (2000), Stott and Kettleborough (2002), and

Kettleborough et al. (2007) in which fingerprint tech-

niques used in detection and attribution (Allen and Stott

2003; Polson et al. 2013; Knutson 2017) are applied to

the problem of uncertainty quantification in future

projections. The space–time pattern of the response to a

given external forcing as simulated by an ensemble

mean is scaled to values consistent with observations.

The underpinning assumption is that, because the

magnitude of the response is uncertain due to uncertain

feedbacks, estimating that magnitude from observations

of change is important. The pattern of response, in turn,

is assumed to be governed by the physics of the forcing

response (i.e., the climate inertia) and further influence

by aerosol response—and therefore correctly reflected

in climate models. This method has, for example, been

used to provide constrained projections of near-term

TABLE 1. Participating institutions, methods, and reference publications. Methods marked with an asterisk focus only on internal

variability.

Institution name

Method

acronym Method name References

ETH Zurich (Switzerland) ClimWIP Climate Model Weighting by

Independence and Performance

Knutti et al. (2017b); Lorenz et al.

(2018); Brunner et al. (2019)a

International Centre for Theoretical

Physics (Italy)

REA Reliability ensemble averaging Giorgi and Mearns (2002, 2003)b

University of Edinburgh (United

Kingdom)

ASK Allen–Stott–Kettleborough Allen et al. (2000); Stott and

Kettleborough (2002); Kettleborough

et al. (2007)

Centre National de Recherches

Météorologiques (France)
HistC Historically constrained

probabilistic projections

Ribes et al. (2020, manuscript submitted

to Sci. Adv.)c

Met Office (United Kingdom) UKCP U.K. Climate Projections (UKCP)

Bayesian probabilistic

projections method

Sexton et al. (2012); Harris et al. (2013);

Sexton and Harris (2015); Murphy

et al. (2018)

University of Oxford (United Kingdom) CALL Calibrated large ensemble projections O’Reilly et al. (2020)

Royal Netherlands Meteorological

Institute (Netherlands)

BNV* Bootstrapped from natural variability See the online supplemental material

Fondazione Centro Euro-Mediterraneo

sui Cambiamenti Climatici (Italy)

ENA* Ensemble analysis of

probability distributions

See the online supplemental material

a Source code available online (https://github.com/lukasbrunner/ClimWIP).
b Source code available online (http://doi.org/10.5281/zenodo.3890966).
c Method tool available online (https://saidqasmi.shinyapps.io/bayesian).
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(up to 2035) global temperatures in the IPCC’s Fifth

Assessment Report (Kirtman et al. 2013). While com-

monly used to constrain global temperature projections,

the method has also been applied regionally (Stott et al.

2006). The ASK scaling factors are derived from the

time pattern of change over the three European subre-

gions and are thus not an overly strong constraint on

the spatial pattern of the fingerprint. For temperature,

fingerprints are optimized in line with the literature,

while nonoptimized data are used for precipitation

where nonnormality is a serious concern (see also

Polson et al. 2013; Schurer et al. 2020).

Here, ASK-ANT and ASK-GHG demonstrate the

method when constraining the response to different

external forcings, that is, the combined anthropogenic

forcing (ANT) or that from greenhouse gases only

TABLE 2. Summary of data used by methods as well as most important features and limitations.

Acronym

Model

data Observational constraints Treatment of model dependencies Key assumptions

ClimWIP CMIP5 Weighted based on historical

performance of six diagnostics

Weighted based on historical

independence from other models

Future model performance can be

inferred from historical

performance; interdependence of

models can be inferred from

model outputs

REA CMIP5 Weighted based on historical

performance of the target

variable

Weighted based on the distance to

the MME mean

Future model performance can be

inferred from historical

performance on a variable-by-

variable basis; ensemble is truth

centered

ASK CMIP5 Scaled based on observed time–

space change over the historical

period.

— Space–time pattern of climate re-

sponse to forcing is governed by

known physics and is correctly

represented in models (which

may not be true, e.g., for aero-

sols), whereas the amplitude is

governed by uncertain feedbacks

and is, hence, estimated from

observations

HistC CMIP5 Constrained based on historical

warming trend

— Real-world response to forcings is

statistically indistinguishable

from model responses; response

to anthropogenic forcing is

smooth over time

UKCP CMIP5 and

PPEs

Constrained based on the

climatology of 12 variables and

historical trends in surface

temperature, upper ocean heat

content, and CO2 concentration

Uncertainties systematically

sampled in a PPE framework

Future model performance can be

inferred from historical

performance; true climate lies

within range of the sampled prior

outcomes; patterns of equilibrium

response are representative of the

fully coupled response patterns;

transient responses scale linearly

with global temperature response

BNV Single

model

— — The spread obtained from single-

model large ensembles is a mea-

sure of uncertainty due to internal

variability

ENA Single

model

— — The spread obtained from single-

model large ensembles is a mea-

sure of uncertainty due to internal

variability

CALL Single

model

Ensemble projection distribution is

scaled to optimize fit to

observations

— The relationship between the past

evolution of the ensemble dataset

and the observations contains

meaningful information for the

future evolution
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(GHG) as derived from single-forcing model experi-

ments. Using the response to anthropogenic forcing to

derive the scaling factor range does not account for

variations of aerosol/GHG ratios in time (van Vuuren

et al. 2011; Gidden et al. 2019), which limits themethod’s

constraining power (Shiogama et al. 2016). However,

using the response toGHG forcing only neglects the fact

that future projections also include aerosols and other

anthropogenic forcings. In addition to the uncertainty

included in the results presented, there are potential

sensitivities associated with the choices made in the

application of the method such as the historical time

period used or the noise sampling process (e.g., Allen

and Tett 1999), the latter of which may be addressed by

inflating the variance (Schurer et al. 2018).

The ASK methods give constraints on the estimated

spread in the forced component of the future projec-

tions, to which uncertainty from internal variability is

added to be consistent with the other methods. This is

done by applying a Monte Carlo sampling approach

to the scaling factor uncertainty and samples of

temperature/precipitation change over two periods of

same length and time distance as the baseline and future

period used for this study from preindustrial control

simulations. The ASK approach relies on a forced signal

being detectable in observations, and is, therefore, ap-

plicable only where the forced signal has emerged. This

is practically limited by theMME size, the availability of

observations, and a large enough target region given

internal variability. This requirement is unlikely to be

met for the local scale; in order to be able to include this

approach to the test case of local scales also investigated

in this study, scaling factors are derived using larger-

scale information and applied to the smaller scales.

c. Bayesian methods (HistC, UKCP)

The HistC approach proposed in Ribes et al (2020,

manuscript submitted to Sci. Adv.) combines some of

the principles of detection and attribution-based con-

straints (Ribes et al. 2017) and Bayesian probability

theory. In HistC, 1) the forced response of each CMIP5

model is estimated in the historical period using a gen-

eralized additive model where the response to natural

forcings is calculated using an energy balance model,

and anthropogenic influence is assumed to be smooth in

time; then 2) a multimodel distribution that character-

izes the model uncertainty in this forced response is

constructed (the ‘‘prior’’); and finally 3) a historical

constraint is applied, to subselect those trajectories that

are consistent with available observations, given inter-

nal variability (the ‘‘posterior’’). This approach accounts

explicitly for the climate model uncertainty, which is

challenging to account for in a regression-based

detection and attribution approach (ASK), while as-

suming that models are statistically indistinguishable

from the truth. In cases where there is no detectable

signal in the observations, the posterior will be equal to

the prior, such that little or no constraint is applied.

UKCP also applies a Bayesian approach to produce

probabilistic projections. In contrast to other methods

that use the empirical spread of CMIP5 projections to

represent prior model uncertainty, UKCP uses a statis-

tical emulator trained on a single-model perturbed

physics ensemble. This provides a more systematic and

comprehensive sampling of climate responses by allowing a

larger sample size in the emulated ensemble and structured

sampling of uncertainties. Further, by basing the simulations

on the emission-driven representative concentration path-

way 8.5 (RCP8.5) scenario simulations (as opposed to

the concentration-driven used in the other methods) and

drawing from a second perturbed physic ensemble of Earth

system model variants, this method samples additional un-

certainties associated with the carbon cycle. This inclusion

of additional uncertainties differentiates UKCP from the

other methods described here. To further sample the

structural error component associated with using a single

perturbed physics model, CMIP5 Earth system model sim-

ulations are used to define an additional ‘‘discrepancy’’ term

(Sexton et al. 2012). This methodology means that uncon-

strained distributions are wider than for the other methods.

Observational constraints are applied by weighting

sampled outcomes by likelihood weights calculated

from multivariate distances to observations. The ob-

servations comprise 12 climate variables reduced in di-

mensionality to 6 leading eigenvectors. In addition,

historical trends for several climate indicators are also

considered in the set of observational constraints, in-

cluding the Braganza indices based on global mean

surface temperature (Braganza et al. 2003), heat content

change in the top 700m of the oceans, and change in

atmospheric CO2 concentration over a recent 45-yr pe-

riod (Booth et al. 2017). The separate components of the

method are validated and the additional statistical un-

certainties that arise are included at each stage. These

include equilibrium response emulation error, error in

converting from equilibrium to transient response, time-

scaling error (including inherent model internal vari-

ability), and structural error estimates.

d. Single-model methods (BNV, CALL, and ENA)

The single-model methods make use of large ensem-

bles, originally designed to explore the internal vari-

ability in the climate system. BNV and ENA are both

intended to quantify and characterize the role of inter-

nal variability. They use different base models which

have different estimates of the size of the forced response
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and/or internal variability. BNV and ENA both repre-

sent the internal variability around a single-model en-

semble mean without accounting for climate model

uncertainty. ENA is a simple interpretation of the range

of projections based on the NCAR-LENS (40 ensemble

members) and the MPI-GE (100 ensemble members).

BNV, based on a 16-member ensemble of EC-Earth

(Aalbers et al. 2018), estimates internal variability using

a bootstrapping approach, which consists of sampling a

large number (104) of possible time series (bootstrap

members) by drawing randomly from the entire ensemble

(sampling with replacement). The internal variability is

estimated from this bootstrap ensemble, rather than

from the range of the raw ensemble projections. As a

result, BNV gives more accurate results than simply

using each member once, especially when the ensemble

size is small.

The third method, CALL, uses a calibration approach

to observed climate to extract an estimate of constrained

climate change in the future (O’Reilly et al. 2020,

manuscript submitted to Earth Sys. Dyn.). If the struc-

tural model error relative to observations is large this

method can scale the future responses outside their

original range; hence, it captures uncertainties in the

future climate change response, as well as internal var-

iability. In this sense, the output from this approach can

be seen as more directly comparable with the results

from the earlier multimodel methods. CALL alsomakes

use of the NCAR-LENS model ensemble, rescaling the

ensemble mean and spread to observations over a ref-

erence period in order to maximize the reliability over

the observed period and provide a more reliable future

projection range. The ensemble data are first decom-

posed into dynamical and residual components [fol-

lowing the method of Deser et al. (2016)] in order to

avoid conflating forced response with variability and

each component is then calibrated using homogeneous

Gaussian regression before being combined to give the

total projection [see O’Reilly et al. 2020, manuscript

submitted to Earth Sys. Dyn., section 2c(4) therein].

3. Introducing a consistent testing framework

A common set of variables, seasons, regions, and pe-

riods as well as a default processing order is introduced

to allow for a quantitative and consistent comparison of

results from the different methods. These settings are

selected to 1) maximize the possible contributions by

each method (not every method is able to deal with all

variables, regions, etc.), 2) compare the methods at

different spatial scales and for different variables, and 3)

produce relevant results for the scientific community

and policy-makers. Our aim is to maximize consistency

in the comparison from the raw data to the uncon-

strained distributions, and further to the constrained

distributions of change. This necessarily means striking

compromises between the preferred setup for a given

method and the preferred setup for method intercom-

parison. Full adherence to a single standard is some-

times even impossible due to specific method

requirements. Deviations stem, for example, from the

need for single-forcing runs by the ASK approach,

which restrict the model pool usable by this method.

Indeed, the use of different subsets of the CMIP5 MME

has been identified as a main source of deviations be-

tween the (unconstrained) distributions and we specifi-

cally address this in section 4d.

For the main comparison the methods use slightly

differing model pools, with most of the results being

based on multiple CMIP5 generation models using

RCP8.5 forcing. ASK-ANT and REA use the same 10

models (29 runs), ASK-GHG uses one model less (9

models; 28 runs), and ClimWIP andHistC use 37models

(79 runs). In addition, ClimWIP and HistC both also

use a subset of the same 10 models (29 runs) as ASK-

ANT and REA, which allows a better comparison of

results but potentially also limits optimal method per-

formance. UKCP additionally uses perturbed physics

ensembles as described in detail in section 2c. The re-

maining methods are based on large ensembles: 16 runs

from EC-Earth (BNV), 100 runs from the MPI-GE

(ENA MPI-GE), and 40 runs from NCAR-LENS (CALL

and ENA CESM). A full list of models used by each

method canbe found inTable S1 in the online supplemental

material. Note that while we refer to multimodel methods

(ASK, ClimWIP, HistC, REA, and UKCP) and single-

model methods (BNV, ENA, CALL), this only reflects the

setup in this study. For example, the multimodel methods

might also be applied to large ensembles like in Merrifield

et al. (2019) where ClimWIP is applied to several large

ensembles to explore model independence and the influ-

ence of internal variability.

Performance in the historical period is measured

against a range of observational datasets in different

methods. These include ‘‘direct’’ observations such as

E-OBS, HadCRUT4, and CRU-TS3, as well as the re-

analysis datasets ERA-Interim and MERRA2. For a

detailed list of observations used by each method and

their reference publications see Table 3.

All data are regridded to a regular 2.58 3 2.58 latitude–
longitude grid using bilinear remapping. Then an ocean

mask based on gridcell centers is applied and the regions

are selected. We compare results for eight regions

throughout Europe, representing three distinctively

different spatial aggregation scales (Fig. 1). As bases we

use the three European ‘‘SREX’’ regions (Field et al.
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2012), which constitute well-established climatic regions

and are defined here as medium-sized regions:

‘‘Northern Europe (NEU),’’ ‘‘Central Europe (CEU),’’

and the ‘‘Mediterranean (MED).’’ The combined

European region (EUR: NEU1 CEU1MED) is used

as a large, continental-scale region. Last, the methods

are applied to four ‘‘local’’ regions at the scale of a single

grid cell, chosen to reflect different responses in summer

temperature and precipitation throughout Europe:

Falun, Sweden (FAL; in NEU); Dusseldorf, Germany

(DUS; in the northwest of CEU); Sibiu, Romania (SIB; in

the southeast of CEU); and Madrid, Spain (MAD; in

MED).Ourmotivation in this is to test if themethods are

able to produce robust results at such scales, driven by

user needs which are often focused on more local scales.

We then apply the methods using the common setup

and compare their results. From this analysis we draw

initial information about the robustness of the results,

which we infer from agreement on the median change

and related uncertainties across methods. Our consis-

tent framework allows tracing back cases in which the

methods disagree to underlying differences in themethods

(isolated from other sources such as differing regions, etc.)

and we discuss these differences in the second part of

the paper.

To compare the methods we show probability distri-

butions of change in area-averaged summer (July–

August) temperature and relative precipitation between

reference (1995–2014) and future (2041–60) mean

states. The distributions are based on the 10th, 25th,

50th, 75th, and 90th percentiles, which are calculated

empirically (ClimWIP, ENA, REA), using bootstrap

samples (BNV, CALL, HistC, UKCP), or using scaling

factors applied to the multimodel mean (ASK). The

CMIP5 distributions represent a combination of model

uncertainty and internal variability; HistC and ASK

isolate the forced response during processing but in or-

der to allow a better comparison internal variability is

added again at the end. UKCP includes additional

parameter and carbon cycle uncertainty while the single-

model methods only sample internal variability.

To provide context for the projected changes, we also

show an estimate of the 20-yr internal variability based

on observations. The CMIP5 multimodel mean is cal-

culated (based on the HistC model pool) and subtracted

from the HadCRUT4 and GPCC time series for tem-

perature and precipitation, respectively. The residuals

are smoothed using a 20-yr running average, then the

10th, 25th, 50th, 75th, and 90th percentiles over the

1914–2013 period are calculated as decadal-scale inter-

nal variability estimates. We are aware that there are

many different ways of providing such estimates for the

internal variability, based on large ensembles, MMEs,

and observations. However, since a discussion of inter-

nal variability is not the main focus of this study, the

choice of the selected estimate is mainly based on its

simplicity here.

4. Results

a. Temperature projections

From the multimodel methods in the SREX and

combined European regions (Fig. 2), we see a reduction

in the 25th–75th and the 10th–90th percentile ranges

(jointly referred to as ‘‘spread’’ hereafter) by 20%–30%

on average over all methods. This reduction can exceed

50% in individual regions and methods (e.g., ASK in

NEU or REA in CEU) but in most cases the change is

considerably smaller, and occasionally even an increase

TABLE 3. Observational datasets and reference publications

used by the different methods. Note that UKCP uses a large range

of observations beyond this list that is detailed in Table B.1 of

Murphy et al. (2018).

Dataset Used by Reference

CERES ClimWIP; UKCP Kato et al. (2013)

CRU TS 3 CALL; REA Harris et al. (2014)

E-OBS v17e ClimWIP Cornes et al. (2018)

E-OBS v19e ASK Cornes et al. (2018)

ERA-Interim ClimWIP Dee et al. (2011)

GPCC HistC Schneider et al. (2017)

HadCRUT4 HistC; UKCP Morice et al. (2012)

MERRA2 ClimWIP Gelaro et al. (2017)

FIG. 1. Common grid and regions: Northern Europe (NEU; red

dots), Central Europe (CEU; green dots), and the Mediterranean

(MED; blue dots). The single grid cells are indicated by yellow dots

and refer to (from the left): MAD, DUS, FAL, and SIB.
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in spread is found (e.g., ClimWIP and ASK-ANT in

CEU). For the absolute values of the 10th and 90th

percentiles (see percentile summary in Fig. 2) agree-

ment between methods is low and the full range of

values can exceed 18C. This partly reflects the different

components of uncertainty included in differentmethods,

notably the additional treatment of carbon cycle uncer-

tainty in UKCP, which contributes to a wider uncertainty

estimate than any other method. Further differences in

the underlying assumptions of the methods are discussed

in section 5 and are summarized in Table 4, which is

discussed in more detail in that section.

The median estimates agree better, in particular in

CEU andMEDwhere a range of 2.28–2.48C and of 2.48–
2.88C is found, respectively. These results give additional

confidence in the ‘‘best estimate’’ of change based on the

different lines of evidence used by the methods. Similar

considerations are true for the combinedEuropean domain,

where again most methods agree with only REA showing

slightly strongerwarmingwidening the full rangeofmedians

to 2.28–2.78C. The largest disagreement in the median esti-

mates is found for NEU with a full range of 1.68–2.38C.
For all four regions, the change in temperature by the

middle of the century clearly emerges from thedecadal-scale

FIG. 2. Summer (July–August) temperature change 2041–60 relative to 1995–2014 for (a) the combined European region as well as

(b)–(d) the three European SREX regions. The lighter boxes give the unconstrained distributions; the darker boxes give the constrained

distributions. The colors indicate methods based on similar model pools: single-model ensembles (green: EC-Earth, magenta: MPI-GE,

and blue: NCAR-LENS), CMIP5 (orange), and CMIP5 and PPE (red). The gray box and lines centered around zero show percentiles of

20-yr internal variability based on observations. A synthesis of all constrainedmultimodel distributions (excluding single-model methods)

is shown on the rightmost side. The bars represent the 10th, 50th, and 90th percentiles of the methods, and the shading indicates the full

spread.
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internal variability estimated from HadCRUT4. In ad-

dition, the unconstrained distributions of the single-

model methods also provide an estimate of remaining

internal variability based on three large ensembles (EC-

Earth, MPI-GE, NCAR-LENS). The unconstrained

projections by the single-model methods are not dis-

cussed in further detail here and are mainly shown to

provide context. BNV and ENA present unconstrained

temperature differences based on three different large

ensembles. CALL, in addition, presents a calibration

approach, leading to the largest shifts of the distribu-

tions by about 218C in combination with a doubling to

tripling of the unconstrained spread (see also O’Reilly

et al. 2020, manuscript submitted to Earth Sys. Dyn.,

their Fig. 9). As a result the CALL calibration brings

both median and spread closer to the respective mean

values over the multimodel methods. Note that the two

NCAR-LENS based unconstrained distributions (ENA

CESM and CALL) differ slightly since ENA calculates

percentiles directly, while CALL uses a bootstrapping

approach.

b. Precipitation projections

The constrained precipitation distributions shown in

Fig. 3 differ considerably throughout Europe, particu-

larly in the tails. In NEU most methods lead to a con-

siderably reduced spread and agree on a slight increase

in themedian precipitation estimate by themiddle of the

century, which lies within the range expected from in-

ternal variability. ClimWIP andUKCP, in contrast, revise

the projected median precipitation change downward

and also constrain only the upper percentiles, notably

retaining projections of reduced rainfall. For CEU and

MED, all methods agree on a median projection that

points to a reduction in rainfall mostly exceeding present-

day variability. In CEU, the magnitude of the median

change is from approximately 25% to 210% except for

HistC, which points toward no change. REA, in addition,

strongly constrains the spread to less than half of the

unconstrained one, while the reduction in spread for

UKCP is below 10%. InMED there is little consensus on

either the strength of the projected median change

(ranging from 210% to 225%) or the uncertainty ranges,

indicating considerable uncertainty across methods. Notably,

theASK-GHGconstrained range exceeds the unconstrained

one and both the UKCP and ASK-GHG methods indicate

that drying signals in MED are stronger than those captured

in the empirical CMIP5 range.

These wide range of results (in terms of median

change as well as uncertainty) are challenging to inter-

pret and clearly need additional research to disentangle.

Some discussion of underlying method differences can

be found in section 5. Here, we briefly mention two

characteristics that apply across all regions. First, the

methods using multiple constraining metrics (ClimWIP

and UKCP) exert considerably less impact on the pro-

jection range than those that depend on a single metric

of precipitation. Discussions of multiple versus single

metric approaches in existing literature suggest that

single metrics lead to stronger constraints but might

also offer overconfident projection ranges, in particular

when they are not carefully selected (Sanderson et al.

2017; Lorenz et al. 2018; Brunner et al. 2020, manuscript

submitted to Earth Syst. Dyn.). Second, these diverse

projections still mostly remain within the considerably

wider range of the UKCP projections, which as well as

being a multimetric method, explicitly includes quantified

estimates of more sources of uncertainty than other

methods. Any definitive communication of results in

such a scenario should ideally include some kind of

recommendation on how to select or interpret the re-

sults to reconcile these differences, for example, based

on ameasure of method skill. However, in this first study

we focus on identifying cases where the different lines of

evidence drawn on from the methods lead to diverging

results (having reduced the influence of other factors as

much as possible) and stress the importance of carefully

considering the choice of method based on the appli-

cation (e.g., whether median changes are important

versus a ‘‘worst-case’’ scenario).

c. Applying the methods to the gridcell scale

To test the applicability of the methods without any

spatial aggregation, we also apply them to single grid

cells (Figs. 4 and 5). Our aim is to check how the

methods behave at local scales, without necessarily as-

suming that the results are physically meaningful.

Unsurprisingly, we find that uncertainty is generally

higher and the methods agree less on the potential for

spread reduction and on the projected median change.

The methods provide reasonably robust median tem-

perature projections even on a gridcell scale. For pre-

cipitation, the methods mostly agree on the sign of the

change and to a certain degree even on themagnitude of

the projected change. Crucially, however, they do not

agree on the spread, with several methods leading to

hardly any reductions in spread, while, for example,

REA shows spread reductions of more than 50% inmany

regions. The question of whether this is a realistically

narrow uncertainty range or if there is little potential for

spread reduction clearly needs further investigation.

Here we do not test method performance in detail,

so a formal quantitative comparison of method performance

over different spatial regimes remains beyond the scope of

this study.However, establishing a performancemetric using,

for example, a perfectmodel test canestimate this, as doneby
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Brunner et al. (2019) for ClimWIP. By looking into changes

in the continuous ranked probability score (Hersbach 2000)

and using a perfect model approach, Brunner et al. (2019)

find that someskill canbegainedbyweightingor subselecting

based on the ClimWIP method even on a gridcell level.

However, they also highlight that there is a considerable risk

of being overconfident when constraining change over re-

gions that small.

d. The impact of working with different model subsets

Unconstrained temperature and relative precipitation

distributions show considerable differences among the

methods (light colored boxes in Figs. 2–5). Most of these

differences can simply be attributed to the processes

covered or to the fact that different subsets of CMIP5

are used (cf. Table S1). In fact, the unconstrained me-

dian change is remarkably consistent across all CMIP5

methods considering the different subsets. It has been

argued that the exact selection of models from an MME

might not have a huge influence on the projections,

given a large enough subset (Knutti 2010; Herger et al.

2018). Still, when producing a constrained distribution

of change using any given method, it is reasonable to

use as many models as possible to maximize method

performance (as has been done for all results shown so

far). In this section we control for the effect of different

subsets and consider a case in which each of the CMIP5

methods uses a common pool of models even though

this might not be the ideal setup of any given method.

Doing so, the unconstrained distributions are identical

by design except for HistC. The differences for the

HistC distribution arise because 1) it uses a Gaussian fit

to derive percentiles and not the MME itself and be-

cause 2) internal variability is estimated from prein-

dustrial control runs and added to the extracted forced

response for each model.

FIG. 3. As in Fig. 2, but for relative precipitation change.
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Figure 6 shows selected results for temperature based

on the same 29 simulations in the combined European

and the three SREX regions. Similar to the case with

differing model pools presented earlier, one common

feature of the methods included in this comparison is a

reduction in the spread from the unconstrained

distributions by up to 50% or more. In general, the

highest method agreement is found in CEU with the

warmer ends of the distributions being reduced by

about 20.38 and 20.68 on average for the 75th and 90th

percentiles, respectively. Based on this consensus, it can

be concluded that a warming of more than 38C by the

middle of the century is unlikely in CEU even under

RCP8.5. Similar results are found for MED with all

methods except ClimWIP strongly constraining the up-

per percentiles.

In NEU and the combined European region in turn,

HistC leads to a slight downward shift of the unconstrained

median while REA shifts it upward and for ASK-ANT

and ClimWIP hardly any change in the median is found.

From this setup we can now attribute the differences in

the constrained distributions solely to the application of

different methods. The changes in the location of the

median (between the unconstrained and constrained

distributions) are clearly inconsistent, ranging from reduced

warming (HistC), or no shift (ASK-ANT andClimWIP), to

enhanced warming (REA). Similarly for the estimate of

uncertainly, three methods point to a reduction (ASK-

ANT, HistC, and REA), while ClimWIP suggests little

change from the unconstrained distribution.

All four methods discussed here are arguably based

on observational constraints that can be physically jus-

tified and scientifically defended even if none of them

is completely without caveats (Giorgi and Mearns

2002; Shiogama et al. 2016; Brunner et al. 2019; Ribes

et al. 2020, manuscript submitted to Sci. Adv.). A

FIG. 4. As in Fig. 2, but for the four gridcell regions. Note that the y axis differs from that in Fig. 2.
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user could hence legitimately use any one of the

constrained distributions and expect an improve-

ment in skill over the raw model spread. Our results

show that doing so has a high likelihood of success in

two regions (CEU and MED), where all methods

agree but, crucially, does not in NEU or in the

combined European region. Despite not having a

framework to resolve this discrepancy here, this

finding nonetheless carries an important warning

about only applying a given single method in the

latter two regions.

e. The impact of model dependence in ClimWIP
and REA

Here we use the examples of ClimWIP and REA to

explore how the treatment of model dependence affects

the resulting distributions. The convergence criterion

applied by REA is, more generally, often referred to as

‘‘truth centered’’—that is, based on the assumption that

model projections represent random samples from a

distribution of plausible outcomes centered around the

true climate. This is approach is often contrasted with

the concept of ‘‘exchangeability,’’ where the true cli-

mate is assumed to be drawn from the same distribution

as the ensemble members, and therefore all members

are exchangeable with the truth. These alternative in-

terpretations are of direct relevance to the quantifica-

tion of uncertainties in climate projections (Sanderson

and Knutti 2012; Abramowitz et al. 2019). Under a truth-

centered paradigm, estimated uncertainty decreases strongly

as ensemble size increases because the uncertainty in the

ensemble mean is estimated more precisely with more

members (Lopez et al. 2006; Tebaldi and Sansó 2009;

Annan and Hargreaves 2010; Knutti 2010). In contrast,

FIG. 5. As in Fig. 3, but for the four gridcell regions. Note that the y axis differs from that in Fig. 3.
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in the exchangeability interpretation the uncertainty is

characterized by the ensemble spread and is largely

independent of the sample size (Annan and Hargreaves

2010). Annan and Hargreaves (2010) and Sanderson and

Knutti (2012) suggest that the CMIPMMEs demonstrate

some characteristics of both paradigms, and argue that

these two seemingly contradictory viewpoints are actu-

ally complementary. This issue is, thus, far from resolved

but we might expect differences in the estimates of un-

certainty between methods that differ in these, and the

two-stage weighting schemes in both REA and ClimWIP

provide the opportunity to explore the respective impact

of the dependence and convergence weighting indepen-

dently of the performance weighting here.

Figure 7 shows such a decomposition of the ClimWIP

and REA weighting into their performance and

independence/convergence components. Generally, the

convergence part of the REA weighting leads to a re-

duction of spread without significantly shifting the dis-

tribution as expected. TheREAperformance weighting,

in turn, can lead to both, spread reduction and a shift in

the distribution. The combination of both components

to the full REA weight is multiplicative (Giorgi and

Mearns 2002) so that the total constraint applied can be

considerably stronger than a mere linear combination.

The independence weighting of ClimWIP does not

have a strong effect on the unconstrained distributions

and the total weight therefore mostly follows the per-

formance weighting with small adjustments by the in-

dependence weighting. As shown in detail by Merrifield

et al. (2019), the performance weighting is the domi-

nating contribution for the CMIP5 MME (with only a

few ensemble members per model). Adding three large

ensembles with up to 100 members changes this behavior

FIG. 6. Similar to Fig. 2, but only for methods based on CMIP5. The distributions are based on a common subset of CMIP5 models to

control for differences in the unconstrained distributions. Note that the y axis differs from that in Fig. 2.
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and can lead to a considerably stronger contribution from

the independence weighting.

These results clearly show that the truth centered and

exchangeability assumptions underlying the indepen-

dence and convergence components of ClimWIP and

REA alone cannot explain the differences between the

two methods. In section 5 below we will continue to

explore the methods and their properties in more detail

in order to identify further reasons for the differences in

their constrained projections.

5. Discussion

We have shown that the different methods investi-

gated generate some diversity in estimates of the me-

dian and considerable diversity in the range of projected

changes depending on variable and region. The different

characteristics of the methods, such as their underlying

assumptions, and the characteristics of the outputsmight

be used to support decisions on which method might be

more appropriate in cases where results disagree. We

summarize some of these key differences in Table 4, and

in the following discussion we explore the implications

of these differences in the context of the results above.

Finally, we also look into possible ways forward by ex-

ploring avenues to providing clear recommendations

for users.

a. Why do methods produce different projection
ranges?

1) DIFFERENCES IN UNDERPINNING ASSUMPTIONS

Methods that assume that ensembles are ‘‘truth cen-

tered’’ have been demonstrated to result in narrower

FIG. 7. Similar to Fig. 2, but only for REA and ClimWIP. The distributions are based on a common subset of CMIP5 models to control

for differences in the unconstrained distributions, and the respective two components of the weighting are shown (model performance and

dependence). Note that the y axis differs from that in Fig. 2.
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ranges of uncertainty than those that assume ex-

changeability (e.g., Annan and Hargreaves 2010). One

method included explicitly assumes the underlying dis-

tribution to be truth centered (REA); however, this does

not appear to lead to substantially narrower uncertainty

ranges than for other methods here. Further, when the

impact of the convergenceweighting inREA is separated

from the performance component, the convergence part

(the truth-centered element) does not consistently have a

large impact on the estimated uncertainty. This suggests

that the impact of this assumption does not substantially

affect the projection range in this case.

A further fundamental difference between methods is

whether the constrained projection range can extend

beyond the raw or unconstrained range. In ASK and

CALL the systematic under- or overestimation of re-

sponse to forcing is scaled, resulting in a range that, in

some cases, extends beyond the envelope of raw pro-

jections indicating that a larger or smaller range than

simulated would be consistent with the observed change

to date. The other methods considered cannot result in a

constrained distribution outside of the original spread

and might thus under- or overestimate changes, while

still drawing the projections closer to the ‘‘truth.’’

2) DIFFERENCES IN UNCERTAINTIES

ACCOUNTED FOR

The size of the uncertainty range is, naturally, strongly

affected by how comprehensively different sources of

uncertainty are captured. The prime example for this is

the UKCP method, which explicitly represents a larger

number of sources of uncertainty than other methods,

unsurprisingly leading to a substantially wider pro-

jection range. UKCP captures much of this additional

uncertainty by drawing on perturbed physics ensemble

projections which can be designed to sample uncer-

tainties more strategically than CMIP multimodel ‘‘en-

sembles of opportunity.’’ The UKCP method also

explicitly accounts for carbon cycle uncertainty, which

has been shown to be of comparable importance for the

magnitude of the global temperature response as cli-

mate sensitivity (Booth et al. 2012). This feature of the

UKCP method could be considered to address a short-

coming in the purely CMIP5-based methods.

Internal variability is treated with varying degrees of

explicitness across the different methods. It is captured

by the raw CMIP5 ensemble since the ensemble mem-

bers capture different phases of variability. The sample

size from each model can be improved by using multiple

realizations from amodel, thus increasing the number of

internal variability realizations included in the ensem-

ble. Some methods remove internal variability in the

processing (ASK, HistC, UKCP) but to allow a consis-

tent comparison the forced component is reinflated by

adding an estimate of internal variability for the shown

projection ranges.

Several methods use cross-validation frameworks,

such as perfect model tests, to estimate the uncertainty

of the methods themselves. In the cases of UKCP and

ClimWIP, these estimates of method uncertainty are

included in the constrained uncertainty range, while in

others they are calculated as an external evaluation of

the method and not included in the total uncertainty

(CALL, HistC).

3) DIFFERENCES IN THE APPLICATION OF

CONSTRAINTS

The methods draw on quite different characteristics

of climate to measure performance and weight or con-

strain projections. Importantly, the methods use different

TABLE 4. Key characteristics of the different methods.

UKCP ClimWIP ASK REA HistC CALL

Assumes truth centered ✔

Constrained range can lie beyond

unconstrained range

✔ ✔

Multiple estimates of observations are

used in weights/constraint

✔ ✔

Spatial scale at which constraint or

performance weighting is calculated

Global 1 large scale Same as target Europe Local Global 1 local Same as target

Multiple variables used to weight each

target variables

✔ ✔

Observation uncertainty ✔ ✔

Includes estimate of internal variability ✔ ✔ ✔ ✔

Carbon cycle ✔

Model uncertainty (parameter) ✔

Model uncertainty (structural) ✔ ✔ ✔ ✔ ✔

Method error ✔ ✔

Outputs are spatially coherent ✔ ✔ ✔

Outputs are physically coherent ✔ ✔
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variables to constrain a given target variable—in REA,

weighting is based on the local performance of the target

variable (i.e., precipitation performance constrains

precipitation) while other approaches use variables with

known relationships to the target variable, or a basket of

constraining variables (ClimWIP, UKCP). Further,

different characteristics of those variables might be the

basis of the constraint: while ASK, CALL, and HistC, in

this application, mostly use characteristics of the time

evolution of climate change, REA and ClimWIP here

use spatial patterns. Combining several constraining

metrics has been demonstrated to result in more con-

servative constraints, relative to the impacts of individ-

ual variables. Finally, different observational datasets,

also based on certain assumptions and on different de-

grees of postprocessing (including reanalyses), are used

by the methods.

There are also a number of more subtle differences

that can be expected to affect the constraints calculated.

These include whether the model constraints are based

on more than one observational dataset, how methods

treat multiple initial conditions members per model (are

multiple realizations used—and if so, are members

weighted individually, or the same weights applied to

each realization of a model?), and whether constraints

are calculated locally (i.e., over the same region as the

target variable) or from a global or larger-scale region.

4) PHYSICAL AND SPATIAL CONSISTENCY

CHARACTERISTICS OF THE OUTPUTS

Methods that calculate weights or constraints locally

may not result in uncertainty estimates that are spatially

coherent. These projections can be applied for each re-

gion independently, but estimates calculated separately

for subregions may not sum to the same value as when

calculated directly for a combined region, and calcula-

tions for neighboring regions may not have the appro-

priate relationship to each other. In practice, some

methods use a combination so that the spatial coherency

is partial.

Similarly, thosemethods where weights are calculated

for more than one target variable using a common set of

weights can be considered more physically consistent

than those in which different target variables are

weighted by different criteria. Again, in practice, this

might be partial; for example, for ClimWIP the diag-

nostic variables are common for each target variable but

the weights are not because of varying confidence esti-

mates derived from a perfect model test based on the

target variable. Physical consistency between variables

offers the potential to provide joint probability esti-

mates, which may be important where multivariate

characteristics of projections are important.

b. How should the information be handled by users?

Our results raise a number of questions about how

information from multiple methods can be communi-

cated, combined, or applied, in particular for cases

where constrained distributions disagree. A complex

interplay between user needs, method properties, and

output consistency needs to be considered in order to

select the best possible information. Here we discuss

several considerations, which provide a general per-

spective and might even serve as concrete guidelines for

users, depending on their situation.

1) CONSIDERING THE DECISION CONTEXT

We have shown that in several cases the choice of

method (across the multimodel methods, at least) has

limited influence on the constrained median, but sig-

nificant impact on the upper and lower percentiles. This

provides the basis for some useful guidance based on the

level of risk aversion the user has in a given context.

Users with a relatively low level of risk aversion who

wish to prepare for the most likely climate outcome

could use results from any of these methods in such

cases. However, those users with a higher level of risk

aversion (i.e., those who are interested primarily in the

lower and upper percentiles), may wish to consider care-

fully whichmethod to draw on. Indeed, this intersection of

communicating uncertainty in climate change projections

and the needs of users will need increased future attention

(Sutton 2019). Other method properties, such as spatial

consistency or the inclusion of additional uncertainty,

might provide additional arguments for or against certain

methods (cf. section 5a).

2) USING AGREEING METHODS

To summarize our results we used a conservative

‘‘envelope approach’’ showing the full range spanned by

the 10th, 50th, and 90th percentiles of the various

methods (Figs. 2 and 3). In doing so we cannot claim any

clear progress (e.g., a shift in the median, or a narrowing

of uncertainty) over the conventional model democracy

approach (which was used to derive unconstrained

ranges) in most cases. However, for some cases, such as

the temperature change from the CMIP5 methods in

CEU and MED (Figs. 2 and 6), the majority of methods

agree on the shift in median as well as the narrowing of

the uncertainty range. This robustness in the results not

only gives additional confidence in each of the individual

estimates, but also indicates that, for such cases, each of

the agreeing methods might be appropriate to use.

Naturally, this approach does not help for variables

or regions where the methods disagree. However, our

results still provide important information for these
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cases as they highlight this disagreement based on the

underlying method properties (given that we use a

common setup to eliminate most other differences in

processing). In this sense we here caution against using

disagreeing methods without careful consideration and

testing.

3) COMBINING METHOD OUTPUTS

Another way forward may be to average the method

outputs into a combined probability distribution. This

could be done by using a ‘‘method democracy’’ ap-

proach with equal weights for each method, or by

weighting methods using some skill measure. For ex-

ample, how well does the method predict an out-of-

sample model projection? However, even if given a

measure of skill, a number of other factors remain highly

relevant for combiningmethods/distributions for a given

application. For example, are the results physically/

spatially coherent? To what degree are the different

sources of uncertainty captured? How comfortable are

we with the validity of underpinning assumptions?

How truly independent are the methods from each

other (given that some, e.g., use the same models or

observational datasets)? This means that such an ap-

proach also needs to be carefully considered and is

definitely not applicable for all cases and methods. It is,

therefore, not well suited as a general recommendation

for users.

4) COMBINING METHODS BEFORE

APPLYING THEM

The key information used to build the various con-

straints across methods (e.g., historical trend, regional

model performance, or model independence) is not the

same, and it is not entirely unexpected that these dif-

ferent lines of evidence can lead to different or even

contradictory results in some cases. This highlights a way

forward where future statistical methods could try to

combine the various pieces of information together,

rather than trying to combine the output. This seems to

be a promising line of research: as several methods

considered in this study report a clear added value

(based on individual perfect model evaluation) while

being based on different pieces of information as inputs,

combining all these lines of evidence could lead to im-

proved probabilistic projections.

It is obvious that it is not a priori clear that

such a combination would be practically possible for all

constraints and the question of the relative importance

of different (and potentially contradictory) lines of evi-

dence remains. In addition, such an approach effectively

means the development of an entirely new method so

that it can be seen as more of a long-term vision.

5) SELECTING METHODS BASED ON A CONSISTENT

SKILL MEASURE

Probably the most promising way forward is the cal-

culation of a skill measure to select between methods in

cases where they disagree. One regularly used way of

providing such an estimate of skill is a perfect model

test. Such a test uses each of the models from the CMIP5

MME (or from an additional MME such as CMIP6) as

‘‘pseudo observations’’ in the historical period. The

constrained distribution is then evaluated against the

‘‘truth’’ in the future, which is given by the same model

from which the so-called pseudo observations were

taken. The evaluation could be based on a selected skill

metric such as the root-mean-square error or the con-

tinuous ranked probability score (Hersbach 2000).

Indeed, some form of perfect model test has already

been applied to several methods included in this study in

the past (Schurer et al. 2018; Brunner et al. 2019;

O’Reilly et al. 2020, manuscript submitted to Earth Sys.

Dyn.; Ribes et al. 2020, manuscript submitted to Sci.

Adv.). However, such individual skill estimates are not

necessarily comparable and should most probably not

be used to decide between methods in the specific cases

presented here. Combining the common settings intro-

duced in section 3 with a testing framework stand-

ardising the ‘‘perfect models’’ used as well as the skill

score and other settings therefore seems to be a prom-

ising approach for future work that can lead to clearer

decision guidelines for users.

6. Summary, conclusions, and outlook

Wehave introduced a common framework to compare a

diverse set of multimodel methods for quantifying uncer-

tainties in projections of futureEuropean climate provided

by groups within EUCP. The constrained median projec-

tions of temperature in 2041–60 are between 28 and 38C
warmer than the 1995–2014 average, which is well beyond

the range of natural variability in present-day climate.

While the median estimate is mostly robust across all

methods, the spread is highly dependent on the method

used. This partly reflects the fact that the constrained

projections are based on differentmodel pools and include

different sources of uncertainty. Therefore, the choice of

method has significant implications for users who are in-

terested in the upper or lower ends of the distribution (i.e.,

those with a high level of risk aversion).

Constrained projections of median precipitation change

show less consensus across methods, particularly in CEU

andMED. All methods agree on a general drying in these

two regions, but the median estimate of change varies

from hardly any change to 225%. In NEU, the median
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consistently stays within internal variability for all

methods, with only a slight indication of a possible pre-

cipitation increase. The upper percentiles are constrained

by most methods and in most regions so that future drying

becomes increasingly likely relative to the unconstrained

case. In general, the differences between the uncon-

strained and constrained projections can become consid-

erably larger for precipitation and are less understood, so

future work on their interpretation is required, along with

careful consideration of method properties and applica-

tions, if constrained distributions are to be used.

In addition to four larger regions, we also tested the

methods on four single grid cells to investigate the

agreement at different spatial scales. The constrained

median projections in these small regions mostly follow

the behavior of the larger regions in which they are lo-

cated and the higher internal variability reflected in the

methods. Notably, most of the included methods have

never been applied without spatial aggregation so that

applying them to single grid cells was very much an ex-

perimental setup to check if physically meaningful results

can be obtained. Clearly additional work, beyond these

first encouraging results, will be required to further test

and understand the methods’ performance at such scales.

Three methods based on large ensembles of single

models have also been included in this study to investigate

estimates of internal variability and to provide context.

Unsurprisingly, internal variability is found to consistently

increase with decreasing region size also for these methods.

Understanding the role of internal variability for weighting

or constraining projections of future change is still very

much an open topic, particularly for smaller regions and

more heterogeneous variables such as precipitation. In ad-

dition, while this study has only looked at changes of the

mean climate state, the role of internal variability becomes

even more crucial when considering extremes.

A main part of this study is our discussion of the

methods’ properties, which can provide avenues to explain

the differences in the constrained projections. These in-

clude fundamental underpinning assumptions (such as

truth centered vs exchangeable), uncertainties considered

(in models as well as observations), the treatment of model

interdependencies (independence vs convergence), and the

data used to constrain the projections (e.g., the variables

considered or spatial vs time information). Ultimately all

methods, including the unconstrained model democracy,

are based on implicit and explicit assumptions that can

be challenged. We, therefore, do not provide a single rec-

ommendation for selecting or combining methods in this

study, but rather discuss several possible approaches.

One promising way to resolve this, which we discuss

and that we currently pursue, is that of a coordinated

perfect model test. Several of the methods investigated

in this study have already been evaluated using such a

test individually (Schurer et al. 2018; Brunner et al. 2019;

O’Reilly et al. 2020, manuscript submitted to Earth Sys.

Dyn.; Ribes et al. 2020, manuscript submitted to Sci.

Adv.). Providing a consistent comparison across multi-

ple methods could draw on the common settings de-

veloped in this study but needs to carefully consider

additional questions such as the following: What models

should be used as pseudo observations? How can over-

fitting be avoided (e.g., by providing anonymisedmodels

as pseudo observations)? What skill measure should we

use? Do we focus on mean skill or on a ‘‘worst-case’’

scenario (or on a combination of both)? [See, e.g.,

Brunner et al. (2020, manuscript submitted to Earth

Syst. Dyn.) for a discussion of this.] Are some methods

systematically performing better for particular variables

and/or predictions of extreme anomalies (e.g., very hot

summers)? Future work in EUCPwill, hence, 1) address

whether such a verification framework could be used to

provide a measure of method skill, 2) continue efforts to

combine methods in more sophisticated ways to draw on

their strengths, and 3) connect with decision makers to

consider how the information inmultimethod projections

might be used and interpreted in relevant case studies.
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