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ABSTRACT: The extratropical shortwave (SW) cloud feedback is primarily due to increases in extratropical liquid cloud

extent and optical depth. Here, we examine the response of extratropical (358–758) marine cloud liquid water path (LWP)

to a uniform 4-K increase in sea surface temperature (SST) in global climate models (GCMs) from phase 5 of the Coupled

Model Intercomparison Project (CMIP5) and variants of theHadGEM3-GC3.1GCM.Compositing is used to partition data

into periods inside and out of cyclones. The response of extratropical LWP to a uniform SST increase and associated

atmospheric response varies substantially among GCMs, but the sensitivity of LWP to cloud controlling factors (CCFs) is

qualitatively similar. When all other predictors are held constant, increasing moisture flux drives an increase in LWP.

Increasing SST, holding all other predictors fixed, leads to a decrease in LWP. The combinations of these changes lead to

LWP, and by extension reflected SW, increasing with warming in both hemispheres. Observations predict an increase in

reflected SW over oceans of 0.8–1.6Wm22 per kelvin SST increase (358–758N) and 1.2–1.9Wm22 per kelvin SST increase

(358–758S). This increase in reflected SW is mainly due to increased moisture convergence into cyclones because of in-

creasing available moisture. The efficiency at which converging moisture is converted into precipitation determines the

amount of liquid cloud. Thus, cyclone precipitation processes are critical to constraining extratropical cloud feedbacks.

KEYWORDS: Climate sensitivity; Cloud cover; Cloud microphysics; Cloud radiative effects; Clouds

1. Introduction

Our lack of ability to predict the change in shortwave (SW)

radiation reflected to space by clouds in response to warming

hobbles our predictions of future climate. Caldwell et al. (2016)

demonstrated that uncertainty in this SW radiative cloud

feedback on warming represented the largest contribution to

uncertainty in climate sensitivity in phase 5 of the Coupled

Model Intercomparison Project (CMIP5) generation of global

climate models (GCMs) (Taylor et al. 2012). Model uncer-

tainty in the SW cloud feedback is driven by differences in the

representation of clouds in the planetary boundary layer, which

strongly affect SW, but not longwave, radiation (Hartmann and

Short 1980). The time and length scales of these clouds aremuch

shorter than even the highest resolution simulation and must

be parameterized. This leads to substantial disagreement in

feedback from one model to another due to differences in

parameterization.

The SW cloud feedback, while uncertain, does have features

that manifest across GCMs. The most salient of these is posi-

tive feedback in the subtropics and negative feedback in the

extratropics (Zelinka et al. 2012a,b, 2016, 2013). The mani-

festation of this dipole in cloud feedback in CMIP5 was found

to be due to decreasing cloud coverage across the subtropics

and extending into the extratropics (a positive feedback) and

increasing cloud optical depth in the extratropics (a negative

feedback) in response to warming (Zelinka et al. 2016).

Analysis of observations (Clement et al. 2009; Klein et al. 1995;

D. T. McCoy et al. 2017; Myers and Norris 2015, 2016; Norris

et al. 2016; Qu et al. 2015) and large-eddy simulations (Blossey

et al. 2013; Bretherton 2015; Bretherton and Blossey 2014;

Bretherton et al. 2013; Rieck et al. 2012) support the positive

subtropical SW cloud feedback predicted by GCMs (Klein

et al. 2017). Support for a negative extratropical SW cloud

feedback is less robust and it remains unclear what cloud

processes are critical for driving it (Terai et al. 2019). Analysis

of microwave observations of liquid water path (LWP; the

vertically integrated mass of cloud liquid averaged across

cloudy and clear skies) and cloud-top pressure (CTP) optical

depth histograms by Ceppi et al. (2016b) in the context of

GCM experiments supported a negative extratropical cloud

feedback. Examination of long-term trends inmicrowave LWP

and GCM LWP over the Southern Ocean shows enhanced

LWP, consistent with a negative feedback in this region

(Manaster et al. 2017). Regime-oriented analysis of microwave

LWP and GCM LWP in extratropical cyclones shows en-

hancement in LWPwith warming linked to enhanced moisture
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convergence (McCoy et al. 2019). However, observations of

cloud optical depth for boundary layer, liquid-topped clouds

from spaceborne and surface remote sensing instruments show

decreasing cloud optical depth with warming (Gordon and

Klein 2014; Terai et al. 2016, 2019). This is consistent with Tan

et al. (2019), which showed increased optical depth in cold

clouds due to phase shifts and decreased optical depth in warm,

liquid clouds in response to warming.

Weakened negative extratropical SW cloud feedback plays

an important role in driving the higher climate sensitivity

of GCMs participating in phase 6 of the Coupled Model

Intercomparison Project (CMIP6) (Eyring et al. 2016) relative

to CMIP5 (Taylor et al. 2012; Zelinka et al. 2020). Because of

this, resolving the different conclusions from these lines of

evidence is important. Here, we extend the regime-oriented

analysis presented in McCoy et al. (2019) to include both cy-

clone and out-of-cyclone regimes and further consider an array

of cloud controlling factors (CCFs) (Stevens and Brenguier

2009) utilized in previous studies (Myers andNorris 2015, 2016;

Terai et al. 2016; Wall et al. 2017) that are empirically con-

nected to LWP. As in Kelleher and Grise (2019) daily time-

scale data are used to allow evaluation of CCFs within the

context of midlatitude weather systems. The analysis carried

out in the present study is directed at elucidating the processes

that set the extratropical SW cloud feedback.

In section 2, we present the observations and GCM output

used in this study, and the empirical analysis techniques uti-

lized. In section 3, we show that present-day covariability be-

tween LWP and CCFs can predict the response of LWP to

warming in a suite of GCMs. In section 3a, cyclone behavior is

analyzed, and in section 3b all data outside of cyclones are

analyzed. In section 3c, the response of extratropical LWP is

linked to changes in reflected SW. In section 4, we summarize

these results and provide suggestions for narrowing the feasible

range of extratropical SW cloud feedbacks.

2. Methods

We examine extratropical variability for the period 1995–

2005. The 1995–2005 period has been selected for study to

overlap with both the period when reliable microwave ob-

servations exist (Elsaesser et al. 2017) and the AMIP period

simulated in CMIP5. Only data over oceans are examined

because microwave observations are not available over land.

The latitude range defined as extratropical in this work is

358–758. This latitude band corresponds to the region of

strong negative SW cloud feedback in GCMs (Zelinka

et al. 2016).

In sections 2a and 2b, we detail the observations and the

GCM output examined in this work. In section 2c, we describe

the regime discrimination methodology. In section 2d, we give

an overview of the analysis applied to in-cyclone and out-of-

cyclone data in the remainder of this paper to constrain ex-

tratropical LWP changes.

a. Observations

LWP is aggregated from multiple satellite microwave sen-

sors following the methodology of the multisensor advanced

climatology of LWP (MAC-LWP; Elsaesser et al. 2017). LWP

is defined as an area mean and is thus a product of cloud extent

and the amount of liquid in clouds. The definition of LWP is

consistent with the output from GCMs. Retrieved LWP is

largely insensitive to overlying ice cloud due to use of low-

frequency microwave radiation in the retrievals (Elsaesser

et al. 2017). The MAC-LWP algorithm partitions between

precipitating and nonprecipitating liquid (Elsaesser et al.

2017). This partitioning approach has been shown to be con-

sistent with convection-permitting simulations of cyclones

where precipitation is frequent and heavy (McCoy et al. 2019).

Outside of cyclones, McCoy et al. (2020) estimated that 7% of

total liquid path is rain in the NH midlatitudes from GCM

output. This small relative fraction of precipitation limits in-

accuracy in the LWP partitioning by the MAC-LWP algo-

rithm. In this study we only examine nonprecipitating liquid.

The meteorological state of the atmosphere is characterized

using reanalysis from MERRA2 (Molod et al. 2015) and mi-

crowave observations of water vapor path (WVP) and 10-m

wind speed (U10m) from MAC-LWP. Observations of top-of-

atmosphere shortwave fluxes from the CERES synoptic 18

(SYN1deg) dataset, edition 4 (Doelling et al. 2016, 2013;

Wielicki et al. 1996), were used to characterize albedo. Mean

solar insolation was calculated using the CERES EBAF-TOA

edition 4 dataset (Loeb et al. 2009). As described in McCoy

et al. (2018b), biases related to near horizon solar zenith angle

(SZA) substantially affect albedo. As in McCoy et al. (2018b),

albedo from CERES SYN1deg is calculated every three hours,

and observations where SZA . 458 are removed in the calcu-

lation of daily mean albedo.

b. Global climate models

1) CFMIP2 MODELS

Phase 2 of the Cloud Feedback Model Intercomparison

Project (CFMIP2) (Bony et al. 2011) models with available

daily mean output suitable for performing this analysis were

examined. These models are listed in Table 1. Atmosphere-

only (AMIP) simulations using observed SST as a boundary

condition are available for the period 1979–2008. These sim-

ulations were repeated with SST uniformly increased by 4K

and are referred to as AMIP 1 4K.

2) HADGEM3 DEVELOPMENT MODELS

In addition to examining the differentGCMs participating in

CFMIP2, we examine changes in cloud microphysical param-

eterizations between the Global Atmosphere 6 (GA6) and

GA7.1 versions of the Met Office Unified Model (UM). UM

GA7.1 is the version of the atmosphere model underpinning

HadGEM3-GC3.1, which is the Hadley Center’s contribution

to CMIP6 (Walters et al. 2019). Bodas-Salcedo et al. (2019)

performed simulations in the UM updating one piece of the

model physics at a time to examine sensitivity to different

structural changes in the UM. This suite of simulations gives

us insight into the impact of changes in cloud microphysics.

We examine the following models: GA6, GA6_MicOn,

GA6AerMicErf_On, and GA7.1 (Table 1). GA6_MicOn cor-

responds to implementing the GA7.0 (not 7.1) changes to

cloud microphysics and large-scale precipitation, in particular
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implementation of a turbulence-based supercooled liquid wa-

ter parameterization (Furtado et al. 2016). GA6AerMicErf_On

corresponds to implementing changes to cloud microphysics,

large-scale precipitation, aerosols, and the tuning to mixed-

phase cloud mixing length scale factor as described in

Mulcahy et al. (2018), bringing it fully into line with GA7.1.

The changes to aerosol were found to have a minimal effect

on cloud LWP (Bodas-Salcedo et al. 2019). Based on these

experiments, we can examine the implementation of a new

turbulence-based parameterization of supercooled liquid that

substantially increases liquid cloud fraction (Furtado and

Field 2017; Furtado et al. 2016) and the tuning of this pa-

rameterization for GA7.1.

c. Cyclone compositing

This work utilizes the Field and Wood (2007) cyclone

compositing algorithm, which uses sea level pressure (SLP) to

identify cyclone centers. Here we utilize the same compositing

approach as applied in Bodas-Salcedo et al. (2014) to partition

data into times when a cyclone center is within 2000km (in cy-

clone) andwhen a cyclone center is 2000kmaway (out of cyclone).

An example partitioning is shown in Fig. 1. Data are regridded to a

common 18 3 18 spatial resolution before compositing.

The relative frequency of occurrence (RFO) of being inside or

outside of a cyclone is calculated at each latitude andmonth of the

year by calculating the ratio of 18 3 18 grid cells inside and outside

of cyclones. ObservedRFO is used in all calculations in this work.

(Cyclone RFO is shown in Fig. S1 in the online supplemental

material.) Between AMIP and AMIP 1 4K simulations storm

tracks shift poleward (Fig. S1), but with substantial intermodel

differences in the pattern of RFO changes.We assume a constant

RFO for cyclones with warming. Changes in RFO between the

AMIP and AMIP 1 4 K simulations were not found to

meaningfully alter the results of this study. Comparison of

AMIP 1 4 K and AMIPFuture simulations find that the

response in circulation is fairly similar (Watt-Meyer et al.

2019). Based on this, it appears that the pattern of warming

does not strongly affect the modeled circulation response.

d. Regression analysis

In this article we characterize the relationship between at-

mospheric state, so-called CCFs, and LWP in the present day

using multiple linear regression. The ability of present-day

variability to predict the response of clouds to warming is

tested within the GCMs by examining how well the regression

models trained in the present-day climate can predict the

change in LWP betweenAMIP, andAMIP1 4K experiments.

The selection of predictor variables is based on previous

work identifying CCFs (Myers and Norris 2016). The following

CCFs are considered: SST (Myers and Norris 2016; Qu et al.

2015; Terai et al. 2016, 2019), estimated inversion strength

(EIS) (Terai et al. 2016, 2019; Wood and Bretherton 2006),

vertical pressure velocity at 500 hPa v500 (Myers and Norris

2013), WVP, and wind speed at 10m U10m. The last two terms

are combined to calculate a moisture advection term. This is

discussed further below. Briefly, the mechanisms that are

theorized to link clouds to each CCF are as follows: increased

SST increases the efficiency of entrainment at cloud top (Bretherton

and Blossey 2014), increased EIS reduces mixing across the inver-

sion resulting in a moister boundary layer (Bretherton et al. 2013),

TABLE 1. GCM simulations examined.

Model Reference Notes

CMIP5/CFMIP2

HadGEM2-A Collins et al. (2011); Martin et al. (2011)

IPSL-CM5A-LR Dufresne et al. (2013)

IPSL-CM5B-LR Hourdin et al. (2013)

MIROC5 Watanabe et al. (2010)

CNRM-CM5 Voldoire et al. (2013)

HadGEM3-GC3.1 development models

GA7.1 Bodas-Salcedo et al. (2019); Mulcahy

et al. (2018)

The atmospheric model in HadGEM3-GC3.1

GA6AerMicErf_On Bodas-Salcedo et al. (2019) GA6_MicOn with the length scale over which turbulence

mixes (mp_dz_scal) in the Furtado et al. (2016) mixed-

phase cloud sceme doubled to agree with GA7.1

GA6_MicOn Bodas-Salcedo et al. (2019) GA6 with the turbulent mixed-phase scheme described in

Furtado et al. (2016)

GA6 Bodas-Salcedo et al. (2019)

FIG. 1. An example of the cyclone compositing algorithm splitting

data into cyclone and out-of-cyclone states.
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subsidence shallows the boundary layer (Blossey et al. 2013),

and increased advection of moisture (here characterized as the

product of U10m and WVP) predicts increased precipitation

rate (Field and Wood 2007; Harrold 1973). The product of

WVP and U10m has been shown to serve as a useful proxy for

precipitation rate, the primary sink of cloud condensate in

extratopical cyclones (Field and Wood 2007; Field et al. 2011;

McCoy et al. 2018b; Pfahl and Sprenger 2016; Yettella and Kay

2017). Because cyclones dominate extratropical precipitation

(Catto et al. 2012) controls on precipitation outside of cyclones

have been less thoroughly studied. In the tropics WVP alone

has been found to be a good predictor of precipitation rate

(Bretherton et al. 2004; Gilmore 2015; Rushley et al. 2018). We

analyzed the efficacy of WVP 3 U10m and WVP alone in

predicting precipitation rate in the CFMIP2 GCMs. It was

found that, outside of cyclones, both WVP 3 U10m and WVP

predicted increased precipitation rate, but WVP3 U10m had a

more uniform, monotonic relationship with precipitation rate

and allows the use of a single predictor both inside and outside

of cyclones. Thus, we use WVP 3 U10m as a CCF both inside

and outside of cyclones. The relationship between WVP 3

U10m and precipitation rate is shown in Fig. S2. To maintain

consistency with existing literature regarding cyclone precipita-

tion WVP 3 U10m is scaled by a constant [cFW07 5 0.023mm

day21m2kg21 sm21] derived in Field andWood (2007) when it is

used as a CCF. Field and Wood (2007) calculated cFW07from

AMSR-E observations of cyclone-mean wind speed,WVP and

rain rate. In cyclones we refer to cFW073WVP3U10m as warm

conveyor belt moisture flux (WCB[ cFW073WVP3U10m) to

maintain consistency with previous literature. Outside of cy-

clones, cFW07 3 WVP 3 U10m is written in full. Results of this

study are qualitatively unchanged if WVP is used as the

precipitation-related CCF rather than cFW07 3 WVP 3 U10m

outside of cyclones (not shown).

As discussed below, increases inWCBmoisture flux and SST

predict the majority of the LWP increase in the extratropics

with warming. We will briefly discuss which components of

WCB moisture flux change the most with warming in GCMs.

Variation in U10m and WVP both contribute to variability in

cyclone WCB moisture flux in roughly equal proportion.

Extratropical warming results in an increase in the WVP

contribution to WCB moisture convergence, while U10m stays

approximately constant. The distribution ofU10m andWVP for

the mean-state and warmed climate is shown in Fig. S3.

Formulating CCFs combining U10m and WVP to calculate

WCB moisture flux means that the latent heat flux term is not

characterized inside of cyclones. This has been found to affect

the structure of extratropical cyclones (Hirata et al. 2016), but

because U10m is used in the calculation of WCB moisture

convergence it is not used as a separate CCF. The inability of

our analysis framework to separate contributions from latent

heating in cyclones does not strongly affect our results based on

tests of the time-scale invariance of the CCFs as shown in the

remainder of the paper. One aspect of the projected LWP

changes shown here is that the changes in some CCFs are more

constrained than others. In particular, WCB moisture flux is

the product of WVP and wind speed. The response of WVP to

warming is strongly constrained by Clausius–Clapeyron, but

changes in U10m are a function of changes in extratropical cir-

culation and are less well constrained in GCMs. It is possible

more advanced and higher-resolution models will project a dif-

ferent response in cyclone wind speed (Baker et al. 2019; Davini

et al. 2017;Gonzalez et al. 2019; Jiaxiang et al. 2020;Roberts et al.

2020;Wu et al. 2019). However, across theGCMs evaluated here

moisture changes dominate the change in WCB moisture flux.

We expect there to be a shift in LWP per degree increase in

cloud temperature due either to changes in the slope of the moist

adiabat (Betts and Harshvardhan 1987; Ceppi et al. 2017; Terai

et al. 2019) or to deglaciation of cold clouds leading to a so-called

mixed-phase cloud feedback onwarming (Ceppi et al. 2016a; Kay

et al. 2016; McCoy et al. 2015; Mitchell et al. 1989; Tan et al. 2016,

2019; Tsushima et al. 2006;Wall andHartmann 2015). Because of

this, we further partition our data inside and out of cyclones into

regimes of SST to examine the behavior of warm and cold clouds

separately. This is done by binning data into 2-K-wide SST re-

gimes. In each SST bin, a regression model with the form

LWP5m
1
SST1m

2
EIS1m

3
v

500
1m

4
c
FW07

WVP3U
10m

(1)

is trained. As noted above, to maintain consistency with the

literature we will refer to the cFW07 3 WVP 3 U10m term as

WCB when discussing cyclones. Outside of cyclones the entire

term cFW07 3 WVP 3 U10m is written.

The regression model shown in Eq. (1) is trained on the

present-day (AMIP) simulations and on observations, which

are then used to predict the AMIP 1 4K response in the

models using the change in CCFs between AMIP and the

AMIP 1 4K simulations. The data within cyclones are aver-

aged across individual cyclones (i.e., each daily mean cyclone

2000 km radius average becomes an individual data point in the

regression). The data outside of cyclones are examined at 18 3

18 resolution. All data are at daily mean resolution. Cyclone

data are averaged together to create means for individual cy-

clones. This is done to enable the use of cyclone-mean predictors

of precipitation rate in keeping with existing literature (Yettella

andKay 2017), as discussed above. Additional analysis of changes

in structure within the cyclone system is provided in section 3a(3).

Regression models are trained on LWP and CCF data from

each bin of SST in the AMIP simulations and observations. In

the case of cyclone means, this bin corresponds to mean SST in

the cyclone. Data from 358 to 758 in both hemispheres are used

to train the regression model. This produces regression coef-

ficients relating LWP to each CCF in each bin of SST.

3. Results

a. Inside of cyclones

1) CLOUD CONTROLLING FACTOR PREDICTION OF

CHANGES IN LIQUID WATER PATH

Training the regression model shown in Eq. (1) on data from

each GCM and on the observations reveals qualitatively con-

sistent regression slopes between CCFs and LWP for obser-

vations and GCMs. Regression slopes in 2-K-wide bins of SST

are shown in Fig. 2. LWP decreases with increasing SST
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(Fig. 2a) except in the SST , 280K regime. LWP increases

with increasing EIS except in GA7.1 and MIROC5 (Fig. 2b).

LWP decreases with increasing subsidence and increases with

increasing WCB moisture flux (Figs. 2c,d). The regression

slope relating CCFs to LWP exhibits dependence on the SST

regime that the multiple linear regression model is trained in.

This behavior can be seen in Fig. S4 where the regression slope

unscaled by standard deviation in each SST bin is shown. This

shows the absolute sensitivity to changes in a CCF and can be

used to compared between bins of SST and across GCMs that

have different standard deviations in CCFs—as opposed to the

standardized sensitivities shown in Fig. 2, which can be used to

compared between CCFs to see which contributes most strongly

to variability in LWP.

GCMs and observations generally have a similar sensitivity

of LWP to CCFs as a function of SST. The sensitivity of LWP

to SST shifts from positive to negative as a function of in-

creasing SST (Fig. S4a). The sensitivity of LWP to EIS peaks

around 280K (Fig. S4b), with the exception of MIROC5 and

GA7.1. The sensitivity of LWP to v500 becomes more negative

as a function of SST (Fig. S4c), with the exception of the

HadGEM3 model variants. The sensitivity of LWP to WCB

moisture flux shows a slight decrease with increasing SST.

The observed relationship between LWP and CCFs falls

roughly in the middle of the models and is consistent with

previous studies (Klein et al. 2017; McCoy et al. 2019; Myers

and Norris 2013). Because most previous studies focus on

either changes in cloud extent or optical depth it is difficult to

cleanly compare to the analysis of area-mean LWP (i.e., in-

cloud LWP averaged over cloud and clear regions, see

section 2a) presented here, as increased cloud extent or optical

depth may increase area-mean LWP. Increased SST has been

found to decrease cloud cover across the subtropics in obser-

vations and in large-eddy simulations (Klein et al. 2017). The

occurrence of positive covariability between LWP and SST at

low SST is consistent with the analysis presented in Terai et al.

(2019), Tan et al. (2019), Ceppi et al. (2016b), and Tselioudis

et al. (1992) that showed increased cloud optical depth in re-

sponse to warming in cold clouds. Increased subsidence at a

fixed EIS has been shown to decrease cloud cover, while EIS

increases cloud cover at a fixed subsidence (Myers and Norris

2013). Increased WCB moisture flux has been shown to drive

increased LWP in cyclones (McCoy et al. 2018b, 2019).

The response of LWP to a standard deviation in WCB

moisture flux is large relative to other predictors (Fig. 2d). The

mechanism underlying this relationship is driven by precipi-

tation processes (McCoy et al. 2018b). WCB moisture flux is

the primary source of moisture converging in cyclones and is

matched by the precipitation sink in quasi-steady state (Field

and Wood 2007; Field et al. 2008; McCoy et al. 2019) (Fig. S2).

Cloud condensate acts as an intermediary state between

moisture and precipitation. Therefore the efficiency withwhich

cyclones can convert converged moisture to precipitation de-

termines the slope relating WCB moisture flux to LWP. A

schematic of this is shown in Fig. 3. Because WCB moisture

flux is the product of WVP and U10m this means that all else

being held equal, WCBmoisture flux will increase in a warmed

climate following Clausius–Clapeyron. If a given GCM creates

FIG. 2. Standardized multiple linear regression coefficients relating

LWP to CCFs trained in 2-K-wide bins of SST for observations and

GCMs using data from cyclones. The 95% confidence interval on ob-

served regression coefficients is shown using black error bars but is

generally too small to be visible. Dashed gray lines are shown at zero.

Axis scales differ between subplots. Regression coefficients are nor-

malized by the standard deviation of the CCF in each bin of SST. The

same figure without normalizing the coefficients is shown in Fig. S4.
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cyclones that are inefficient at converting converged moisture

into precipitation, then it will have a strong relationship be-

tween LWP andWCBmoisture flux, and by extension a more

negative SW cloud feedback as discussed in section 3c. This

mechanism is similar to the convective precipitation effi-

ciency mechanism put forward in Zhao (2014). This was

found to be a good predictor of GCM climate sensitivity

across variants of the GFDL model by predicting changes

in total condensate as a function convective precipitation

efficiency (Zhao et al. 2016). The mechanism proposed

here examines LWP, as opposed to total condensate.

Measurements of ice water path are very uncertain (Jiang

et al. 2012), but it appears that in convection permitting

simulations cyclone ice water path does not vary with WCB

moisture flux (McCoy et al. 2018b). Further examination of

this weak dependence of ice amount on moisture conver-

gence is needed in other high-resolution models that can

accurately resolve frontal structures.

We have empirically related atmospheric state to LWP using

multiple linear regression models (Fig. 2). Do these regression

models have any utility in predicting the cloud response to a

warming of the extratropics? To answer this question, we

evaluate if the variability in the AMIP simulations can predict

the change in LWP between AMIP and AMIP 1 4K. First,

cyclone-mean quantities of each CCF are averaged to monthly

means and 48 3 48 latitude–longitude bins for the AMIP and

AMIP1 4K simulations. The sensitivity of LWP to each CCF

is calculated from the regression model sensitivities (Fig. 2).

Because the sensitivity of LWP to each CCF depends on SST

regime, as the climate warms the sensitivity of clouds to CCFs

will be the average over the SST regimes in the mean state and

warmed climates. That is to say, the sensitivity of LWP to CCFs

in the SST bin corresponding to AMIP will not be represen-

tative to the sensitivity averaged over the SST regime between

AMIP and AMIP 1 4K. To account for this, the sensitivity of

LWP to CCFs is computed using the average of the sensitivity

in the SST bin corresponding toAMIP and the sensitivity in the

4K warmer SST bin for each latitude–longitude and month

bin. To be clear, the sensitivities of LWP to CCFs are only

computed from AMIP data. For each latitude–longitude bin,

and monthly mean the sensitivity of LWP to CCF is multiplied

by the change in each CCF betweenAMIP andAMIP1 4K to

yield a difference in LWP due to each CCF. The resulting

predicted change in extratropical LWP in cyclones versus the

change in LWP simulated by the GCM between AMIP and

AMIP 1 4K simulations is shown in Fig. 4 for each GCM.

The change in LWP between AMIP and AMIP 1 4K pre-

dicted by the regression models trained in the present agrees

with the LWP change simulated by the GCMs. Examination

of the contribution of each CCF in the regression model

reveals that almost all the change in LWP between AMIP

and AMIP 1 4 K simulations is due to increasing SST

(which tends to increase LWP at higher latitudes and de-

crease LWP at lower latitudes) and WCB moisture flux

(which increases LWP at all latitudes) (Fig. 4). In turn, in-

creased WCB moisture flux is almost entirely due to in-

creased WVP (Fig. S3).

The predicted change in cyclone LWP between AMIP and

AMIP1 4K from observations is shown in Fig. 5 compared to

the GCM prediction. The change in LWP is shown averaged

across the 358–758S and 358–758N oceanic latitude bands and

scaled by observed cyclone RFO as a function of latitude and

month (Fig. S1). The observed mean-state RFO is used for all

calculations due to it being interchangeable with the RFOs in

the GCMs. By utilizing the regression model trained on ob-

servations (Fig. 2) and the change in CCFs between the AMIP

and AMIP1 4K simulations, we may predict an observational

constraint on the response in LWP to uniformly increased SST.

The observational constraints for the NH and SH fall in the

middle of the responses predicted byGCMs, with the change in

LWP scaled by the observed RFO of cyclones predicted to be

2.7–4.0 gm22K21 (SH) and 2.6–4.1 gm22K21 (NH) (Fig. 5).

The prediction is calculated using the sensitivity of LWP to

CCFs derived from the observations, the change in CCFs in

response to warming, and the skill of the regression model [Eq.

(1)] in predicting the actual change in eachGCM in response to

warming. This corresponds to the intersection of the observa-

tionally inferred LWP change (vertical red and blue bars for

the SH and NH, respectively) and the 95% confidence on the

best fit line between the predictions of the multiple linear re-

gression model for each GCM and the true response of each

GCM (gray shading). The uncertainty range in the change in

LWP predicted by the regression model trained on observa-

tions is from uncertainty in the change in CCFs as predicted by

the GCMs. Uncertainties in the regression coefficients relating

CCFs to LWP do not contribute significantly. The minimum

and maximum uncertainty in change in LWP is shown as red

FIG. 3. A schematic illustration of the relationship between

moisture convergence into cyclones, LWP, and shortwave feed-

back. Red and blue lines show hypothetical models with weak and

strong negative extratropical cloud feedback due to high- and low-

efficiency precipitation processes. The black line shows an inter-

mediate precipitation efficiency case roughly consistent with ob-

servations.ApproximatevaluesofLWPandWCBmoisture convergence

are noted on the axis. The dashed line shows the direction of the

shift in WCBmoisture flux following a Clausius–Clapeyron-driven

increase in WVP.

9972 JOURNAL OF CL IMATE VOLUME 33

Unauthenticated | Downloaded 04/25/22 11:32 AM UTC



and blue shading in Fig. 5 where distance on the x axis gives

uncertainty.

2) EXPLORING PHYSICAL MECHANISMS IN HADGEM3
MODEL VARIANTS

In section 3a(1), we presented an empirical constraint on

the change in extratropical cyclone LWP in a warming cli-

mate. This was done based on the sensitivity of LWP in cy-

clones to various CCFs. We will now examine what

processes control this sensitivity. In particular, what factors

might control the sensitivity of LWP to WCB moisture flux

and SST, which we have found to dominate the LWP re-

sponse to warming. One explanation of the extratropical

enhancement in LWP with warming shown in models

(McCoy et al. 2018a) and observations (Manaster et al.

2017) is deglaciation of mixed-phase clouds. Potential

pathways include a simple repartitioning of ice and liquid,

or a more complex reduction in precipitation efficiency

following deglaciation (Ceppi et al. 2016a; Wall and

Hartmann 2015). However, repartitioning of existing con-

densate understimates the response of most models (Ceppi

et al. 2016a; McCoy et al. 2015). This does not mean that

model representation of cold clouds is unimportant to the

extratropical LWP response. Ice hydrometeors act as an

efficient sink of cloud liquid (Field and Heymsfield 2015).

If a given model creates ice at higher temperatures it is

reasonable to expect that it will be more efficient at con-

verting converged moisture into precipitation in cyclones

and will have a lower sensitivity of LWP to WCB moisture

flux (e.g., the red curve in Fig. 3). Structural differences

between GCMs examined here makes it difficult to tie in-

creasing sensitivity of LWP to WCB moisture flux to mixed-

phase cloud representation. To analyze how mixed-phase

clouds affect the sensitivity of LWP to WCB moisture flux

and SST we turn to the HadGEM3-GA7.1 development

models where different code packages were enabled one at a

time. This allows us to definitively understand if changes in

LWP are originating from changes to mixed-phase clouds

and follows the causally aware techniques in Ceppi et

al. (2016a).

Between GA6 and GA6_MicOn a new turbulent mixed-

phase scheme that enhanced supercooled liquid water amount

was added (Bodas-Salcedo et al. 2019; Furtado et al. 2016).

This did not change ›LWP/›SST or ›LWP/›WCB appreciably

(Figs. S4a,d). Between GA6_MicOn and GA6AerMicErf_On

the scale factor in the mixing length of the new mixed-phase

cloud scheme was doubled, further enhancing supercooled

liquid (Furtado and Field 2017). The ›LWP/›SST and ›LWP/

›WCB again remained relatively unchanged. Between GA6

and GA7.1 the aggregate of all model changes including

FIG. 4. The difference in cyclone LWP between AMIP and AMIP 1 4K simulations for each model considered in this study (dashed

black line) and the prediction of the multiple linear regression model trained on the AMIP simulation (solid black line). Each hemisphere

is shown separately. Individual predictor contributions to the change in LWP are shown for eachmodel as noted in the legend. The change

in LWP is not weighted by the relatively frequency of occurrence of cyclones.
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changes to factors besides mixed-phase cloud was applied. This

resulted in a slight increase in ›LWP/›WCB. This lack of

sensitivity to substantial changes in parameterization in the

UM suggests that mixed-phase parameterization is not central

in setting the efficiency at which cyclones convert converging

moisture into precipitation across GCMs. Due to the com-

plexity of implementing this experiment, our analysis is limited

to one GCM and similar sensitivity studies in other GCMs are

needed to confirm that this is not just a function of the two

mixed-phase cloudparameterizations implemented inHadGEM3

that are studied here.

3) CHANGES IN CYCLONE LWP WITHIN CYCLONES

In sections 3a(1) and 3a(2), we examined changes in extra-

tropical cyclones in the context of cyclone-mean behavior. This

is advantageous because it allows us to leverage the synoptic-

scale organization of these systems. Extending this analysis

into evaluating changes in cyclone structure is not the goal of

this paper, and this has been carefully examined elsewhere

(Bodas-Salcedo 2018). The response of cloud structure within

cyclones to perturbations in the CCFs that we find to be central

in setting the cyclone LWP response to warming is exam-

ined below.

For each GCM examined here we calculate the change in

LWP relative to the cyclone center between AMIP and

AMIP 1 4K simulations. LWP increases are generally on the

poleward side of the cyclones and in the regions of large-scale

ascent (an example from a GCM with an intermediate LWP

response to warming is shown in Fig. 6, and remaining models

are shown in Fig. S5). One exception is GA6 where increased

LWP is centered in the post–cold frontal region. The shift in

LWP increase location across GA6 variants (Fig. S5) suggests

that while cyclone-mean ›LWP/›WCB may not be a strong

function of mixed-phase processes in GCMs, the location of

LWP response to warming may be. This supports the utility of

performing similar tests of the mixed-phase parameterization

in other GCMs.

How does the change in LWP shown in Fig. 6 and Fig. S5

relate to changes in the CCFs? To examine this, we use

multiple linear regression to characterize the covariability

between SST and WCB moisture flux and the LWP in cy-

clones. These predictors have been chosen because they

were identified as the primary drivers of LWP change in the

cyclone mean (Fig. 4). Example regression coefficients for

the same model shown in Fig. 6 are shown in Fig. 7, and the

regression coefficients for the remaining GCMs examined

here are shown in Fig. S6. It is found that increased WCB

moisture flux covaries with increasing LWP in regions

of ascent. This is consistent with the precipitation effi-

ciency argument put forward in Fig. 3. GCMs tend toward

a higher ›LWP/›WCB than the observations (Fig. 2d). The

FIG. 5. GCM-predicted vs regression-model-predicted change in

cyclone LWP between AMIP and AMIP 1 4K simulations over

oceans in the 358–758 latitude bands. Change in LWP is weighted by

the observedRFOof cyclones. The best fit line and 95%confidence

in the fit are shown in gray. The one-to-one line is shown with a

dashed line. The change in LWP is normalized by 4K. The ob-

served sensitivity of LWP to CCFs is combined with the GCM-

predicted change in CCFs to yield observational constraints for the

NH and SH (shaded vertical bars). The minimum and maximum

uncertainty in the change in CCFs across GCMs gives the width of

the shaded areas.

FIG. 6. Difference in LWP between AMIP and AMIP 1 4 K

simulations for IPSL-CM5A-LR. The equivalent figures for other

GCMs are shown in Fig. S5. The difference in LWP is shown

relative to cyclone centers. The y axis shows distance poleward

from the low pressure center (SH cyclones are flipped in latitude

to align with NH cyclones in the average). Contours of v500hPa are

shown in gray. Dashed lines correspond to ascent and solid lines

correspond to descent. Contours are equally spaced in intervals of

0.025 Pa s21.
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localization of this response to warming and relatively

strong sensitivity of LWP to WCB moisture flux in several

of the GCMs examined in this study is consistent with the

analysis presented in Kelleher and Grise (2019), which

showed too strong a sensitivity of shortwave cloud radia-

tive effect to vertical velocity. Increased SST covaries with

increased LWP on the poleward side of the cyclone and

decreased LWP on the equatorward side. This may be

consistent with ice to liquid transitions (Tan et al. 2016)

and buoyancy-driven thinning of boundary layer cloud

(Bretherton and Blossey 2014), respectively. The spatial

pattern of the covariances between LWP, SST, and WCB

moisture convergence are found to be qualitatively similar

between the observations and GCMs (Fig. S6) and sum to

be consistent with the change in LWP between AMIP and

AMIP 1 4 K (Fig. S5). Observations do not infer a sub-

stantial increase in LWP in response to increased SST on

the poleward flank of cyclones compared to GCMs

(Fig. S6). If this behavior in GCMs is tied to mixed-phase

clouds, then this is also consistent with observations of a

weak response in cloud-top phase to warming in this region

of cyclones (McCoy et al. 2019). Targetted analysis of

frontal behavior using estimates of phase and precipitation

from active remote sensing could provide an avenue toward

constraining the effects of precipitation efficiency and phase

(Naud et al. 2012).

b. Outside of cyclones

1) CLOUD CONTROLLING FACTOR PREDICTION OF

CHANGES IN LIQUID WATER PATH

Following the analysis of cyclone properties shown in

section 3a, we train the multiple linear regression model shown

in Eq. (1) on GCM output and observations outside of cy-

clones. The coefficients relating meteorological predictors to

LWP in 2-K-wide bins of SST are shown in Fig. 8. The coeffi-

cients relating SST and v500hPa to LWP (Figs. 8a,c) are quali-

tatively consistent with the regression model trained inside of

cyclones, and with previous literature (Klein et al. 2017). The

cFW07 3 WVP 3 U10m is found to positively covary with LWP

(Fig. 8d)—consistent with Fig. 2d. Broadly, this term acts as a

diagnostic of water vapor advection and precipitation (Fig. S2)

and a positive correlation with LWP is consistent with the

mechanism shown in Fig. 3.

FIG. 7. Regression coefficients relating cyclone SST andWCBmoisture convergence to LWP within the cyclone

for IPSL-CM5A-LR and the observational record. Gray contours show subsidence as in Fig. 6. Equivalent figures

for the remaining GCMs are shown in Fig. S6. Regression coefficients are scaled by the approximate change in

WCBmoisture convergence (1mmday21) and SST (4K) betweenAMIP andAMIP1 4K simulations to facilitate

comparison to Fig. 6.
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The relationship between boundary layer stability (EIS) and

LWP is not consistent in sign between GCMs (Fig. 8b). The

sign of the relationship between EIS and LWP in a givenmodel

is consistent with the behavior in cyclone clouds (Fig. 2b). The

relationship diagnosed from observations transitions from

positive at low SST to negative at high SST. A positive rela-

tionship between EIS and LWP is consistent with intuition

based on previous analysis of subtropical cloud fraction (D. T.

McCoy et al. 2017; Qu et al. 2015; Wood and Bretherton 2006)

and the optical depth of extratropical stratus clouds (Terai

et al. 2016; Terai et al. 2019). The SST dependence of ›LWP/

›EIS is also consistent with the sensitivity of extratropical low

cloud cover to EIS when temperature advection is held con-

stant (Zelinka et al. 2018). However, direct comparison be-

tween these studies and the present study is not possible. The

aforementioned analyses focused on different cloud regimes,

consider fewer CCFs, and examined in-cloud LWP, optical

depth, and cloud fraction instead of area-mean LWP (i.e.,

cloud liquid water path averaged over cloudy and clear; see

section 2a). One possibility is that EIS increasing affects the

cloud field by either decreasing LWP inside of cumulus clouds,

or results in a shift in cloud regime. For example, it is possible

that increased stability results in a shift toward from open

cellular convection and cumuliform cloud toward closed cells

and stratus clouds, which may have an overall lower LWP (I. L.

McCoy et al. 2017). Due to difficulties in retrieving cloud op-

tical depth in open cellular convection or cumulus this sort of

transition would not necessarily appear in an analysis of the

cloud optical depth and in-cloud LWP that can be observed in

overcast stratus clouds (Terai et al. 2016, 2019). Decreased

LWP in response to increased EIS is consistent with a positive

correlation between EIS and shortwave cloud radiative effect

on the equatorward side of the midlatitudes found in Kelleher

and Grise (2019), which is also consistent with the in-cyclone

behavior shown in Fig. S6. The increase in the strength of the

positive relationship observed between LWP and EIS out of

cyclones over lower SST (Fig. S7), and in cyclones on their

poleward flank (Fig. S6) is also consistent with the negative

correlation between EIS and shortwave cloud radiative effect

found byKelleher andGrise (2019) in the poleward portions of

the midlatitudes.

Following the same technique as in section 3a(1), we predict

the change in LWP based on the regression models trained on

present-day variability to predict the difference in LWP be-

tween the AMIP and AMIP 1 4K simulations. The only dif-

ference in methodology from section 3a(1) is that CCFs from

the AMIP and AMIP 1 4K simulations are averaged to

monthly means at 18 3 18 before multiplying by the sensitivity

of LWP to each CCF. This finer averaging grid is due to the

much larger data volume of 18 3 18 data outside of cyclones as

opposed to 2000-km-radius cyclone means. The change in

LWP outside of cyclones between AMIP and AMIP 1 4K

predicted by the regression model agrees with the actual GCM

response to increased SST (Fig. 9). In keeping with cyclones,

almost all the model response in LWP outside of cyclones

is due to increases in cFW073WVP3U10m and SST. Increased

cFW07 3 WVP 3 U10m predicts increased LWP at all latitudes,

while increased SST predicts decreased LWP toward the

FIG. 8. As in Fig. 2, but for out-of-cyclone clouds. The same

figure without normalizing the coefficients by standard deviation in

CCF for each bin of SST is shown in Fig. S7.
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equator with slight increases in LWP toward the poles in

some models.

Figure 10 shows the change in LWP between AMIP and

AMIP 1 4K simulations averaged over the 358–758S and 358–

758N oceanic latitude bands and weighted by the RFO of out-

of-cyclone states. Observational constraints are created by

combining the regression model trained in the observational

record with themodeled change in CCFs for all theGCMs. The

change in out-of-cyclone LWP is around a third of the response

of in-cyclone LWP (Fig. 5) and is between 0.6 and 2.1 gm2K21

(NH) and 1.8 and 3.7 gm2K21 (SH) (Fig. 10). As in section 3a(1),

the range in the observational constraint combines uncertainty

in the change in CCFs between AMIP and AMIP 1 4K (red

and blue shading in Fig. 10) and uncertainty in the prediction of

the true change in LWP in models by the multiple linear re-

gressionmodel (gray shading around the best fit line in Fig. 10).

2) EXPLORING PHYSICAL MECHANISMS IN HADGEM3
MODEL VARIANTS

As discussed in section 3a, one hypothesized explanation of

extratropical changes in LWP with warming has been degla-

ciation in cold clouds.We find that moisture advection and SST

changes appear to dominate the extratropical changes in LWP

outside of cyclones. As in section 3a(b), we turn to examining

the HadGEM3-GA7.1 development models where different

packages are switched on one at a time. As discussed in

section 3a(2), the progression of changes from GA6, to GA6_

MicOn, to GA6AerMicErf_On increases the amount of su-

percooled liquid water in the extratropics (Furtado and Field

2017). It seems likely that enhancing supercooled liquid should

suppress deglaciation with warming because there will be less

glaciated cloud to affect. ›LWP/›(cFW07 3 WVP 3 U10m)

and ›LWP/›SST only change modestly as the mixed-phase

cloud scheme is altered (Figs. S7a,d). The lack of sensitivity in

either term to changes in mixed-phase parameterization sug-

gests that feedbacks due to deglaciation in mixed-phase clouds

do not play a dominant role in changes in LWP outside of cy-

clones, but as noted in section 3a(2), similar sensitivity studies

in other GCMs are needed.

c. Change in extratropical albedo

1) OBSERVED RELATIONSHIP BETWEEN AREA-MEAN

LWP AND ALBEDO

Sections 3a and 3b examined the change in area-mean LWP

between AMIP and AMIP1 4K simulations inside and out of

extratropical cyclones. Analyzing LWP has several advan-

tages. First, it adds diversity to the literature on constraining

cloud feedbacks. Low-frequency microwave remote sensing

algorithms are largely insensitive to ice overlaying liquid cloud

and are equally influenced by the entire columnar profile of

liquid, with little sensitivity to the altitude at which the liquid

cloud is occurring in contrast to spectroradiometer retrievals of

liquid clouds made at other frequencies that have been used by

FIG. 9. As in Fig. 4, but showing results for out-of-cyclone clouds.
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several previous constraint studies (Gordon and Klein 2014;

Terai et al. 2019; Tselioudis et al. 1992). This provides a useful

contrast to these studies and extends analysis in Ceppi et al.

(2016b). Second, we argue that microwave retrievals are

somewhat better suited for studying clouds in the mid–high

latitudes relative to visible and near-infrared retreivals.

Microwave LWP retrievals are insensitive to near-horizon

SZA, multiple cloud layers, and broken cloud cover—all of

which are frequent in the midlatitude storm tracks (Haynes

et al. 2011). Finally, microwave LWP is analogous to the LWP

output by GCMs. While useful for the reasons outlined above,

microwave LWP cannot be directly linked to changes in top-of-

atmosphere SW radiation in the same way as cloud optical

depth. This link is critical to making statements about the SW

cloud feedback because LWP changes will not always affect

shortwave radiation in the sameway (if the sun is not overhead,

for example).

We now present an estimate of the extent to which changes

in LWP will affect outgoing SW in the extratropics using the

empirical relationship between albedo and LWP in the present

climate to predict how changes in LWP in the future will

translate to changes in SW.

Albedo data are obtained from the CERES SYN1deg, edi-

tion 4 (Doelling et al. 2016, 2013), dataset. The regression of

albedo on LWP is calculated to quantify the sensitivity of

albedo to variations in LWP. As noted in section 2a, all data

collected where SZA . 458 are disregarded. This reduces, but

does not entirely remove, albedo dependence on SZA (see

Fig. 2 of McCoy et al. 2018b). To further moderate the de-

pendence of albedo on SZA we examine the regression of al-

bedo on LWP independently in each month of the year and in

ten bins of latitude between 708S and 708N. As in section 3a,

daily mean cyclone-mean quantities are used to train the re-

gression for data identified as being within 2000 km of a cy-

clone center. As in section 3b, outside of cyclones 18 3 18 daily

mean data are used to train the regression. All analyses dis-

cussed in this section were performed as a function of latitude

and month of the year, as well as for inside- and outside-

cyclone regions as defined above.

The relationship between albedo a and LWP is found to

be nearly linear for regions within and outside of cyclone

boundaries. Assuming that in-cloud LWP is approximately

constant, this is consistent with the microwave LWP being

proportional to the product of cloud fraction and in-cloud

LWP, and the linear dependence of albedo on cloud fraction

(Bender et al. 2016). Regression coefficients (da/dLWP) are

shown in Fig. S8; da/dLWP tends to be larger in cyclones. Also,

da/dLWP for cyclones is near zero or negative only at low sun

angles around local winter (Fig. S8a). In local summer when

insolation is strongest da/dLWP tends to be larger inside and

outside of cyclones. In this study we use the medians of da/

dLWP inside and outside cyclones to relate changes in LWP to

changes in albedo.

Outside of cyclones, the relationship between boundary

layer liquid cloud cover and albedo is relatively straightfor-

ward since these regions do not have a complex vertical cloud

structure, whereas in cyclones, frontal structures lead to more

complexity in cloud shields. This complicates the relationship

between top-of-atmosphere radiation and LWP in cyclones.

One potential concern with this analysis is that albedo fluctu-

ations in cyclones are controlled by changes in cloud shields or

other ice clouds and a regression between LWP and albedo will

not be a useful way to understand future changes in albedo.

Below we present analysis to show that the relationship be-

tween meteorology and albedo is moderated by LWP.

As discussed in section 3a, most of the climate response in

extratropical cyclone LWP originates from changes in the

WCBmoisture flux. Thus, a simpler question might be whether

albedo changes with WCB moisture flux. To answer this

question, we regress cyclone-mean albedo on WCB moisture

flux (da/dWCB). This yields a relationship between the syn-

optic state and albedo. Does this relationship between albedo

and meteorology break down if we recalculate it using the

sensitivity of LWP to WCB moisture flux, and the sensitivity

of albedo to LWP? The regression of cyclone-mean LWP on

WCB moisture flux (dLWP/dWCB) is multiplied by da/

dLWP. This is done as a function of latitude and month, as in

Fig. S8a. This analysis shows that WCB moisture flux affects

albedo via perturbations in LWP (Fig. S9). The agreement

between these calculations is good, supporting the use of the

regression of albedo on LWP in cyclones to calculate changes

in albedo due to changes in LWP between AMIP and

AMIP 1 4K.

FIG. 10. As in Fig. 5, but for out-of-cyclone clouds. The change in

LWP is now weighted by the RFO for out-of-cyclone clouds.
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2) PROJECTION OF UPWELLING SHORTWAVE FROM

CHANGES IN LWP
Change in SW in response to change in LWP is calculated by

scaling the change in LWP between AMIP and AMIP 1 4K

simulations calculated in sections 3a and 3b by the median of

da/dLWP across months and latitude bins (Fig. S8). LWP

changes inside and outside cyclones are scaled by the median

da/dLWP observed inside and outside of cyclones, respec-

tively. The predicted change in albedo is then scaled by the

downwelling SW resolved in latitude and month to calculate

the change in reflected SW. This is shown in Fig. 11 averaged

over the 358–758S and 358–758N latitude bands. As in Figs. 5

and 10, changes in SW are shown weighted by the RFO of

cyclone and out-of-cyclone states. The change in SW is domi-

nated by changes in cyclones. The best estimate of the change

in SW in cyclones in the NH is 0.7–1.2 and 0.8–1.1Wm22K21

in the SH. Outside of cyclones it is 0.1–0.4Wm22K21 in the

NH and 0.4–0.8Wm22K21 in the SH. Combining inside- and

outside-cyclone states results in a best estimate of an increase

in outgoing SW in response to uniform surface warming. The

minimum change in SW from inside and outside of cyclones is

0.8Wm22K21 over NH oceans between 358N and 758N and

1.2Wm22K21 over SH oceans between 358S and 758S. The

maximum change in SW from inside and outside of cyclones is

1.6Wm22K21 in the NH and 1.9Wm22K21 in the SH. These

calculations are performed analogously to Figs. 5 and 10 but

summing Figs. 11a and 11b to get a total change in SW.

4. Summary

In this work we present a constraint on extratropical cloud

feedback that is designed within the framework of extratropical

weather regimes. We extend previous work contrasting ob-

served and modeled extratropical regimes (Bodas-Salcedo

et al. 2014) to examine what meteorological predictors play a

key role in the climate response of clouds in the extratropics.

This work also compliments the daily time scale analysis of

relationships between CCFs and SW cloud radiative forcing by

Kelleher and Grise (2019). The central dataset used in this

study is microwave area-mean (averaged across regions with

cloud and without cloud) LWP as observed byMAC-LWP.We

used multiple linear regression models trained in the present-

day (AMIP) simulations to predict GCM responses to in-

creased SST (AMIP 1 4K). This was combined with multiple

linear regression models trained on observations in the present

day to offer constraints on GCM behavior. It is found that al-

most all the change in LWP in the extratropics can be traced to

increasing SST and increased moisture (Fig. 4, Fig. S3, and

Fig. 9). The change in LWP was calculated from the observa-

tional constraints within each regime by adding their mini-

mums and maximums, respectively. This yields an increase in

LWP inside and outside of cyclones of 4.5–7.6 gm2K21 in the

SH (358–758S) and 3.2–6.2 gm2K21 in the NH (358–758N). This

agrees with the response of LWP to uniform warming pre-

sented in Ceppi et al. (2016b) of 0–8 gm22K21 for the 458–608S

region. The relative strength of observed trends in LWP over

oceans between 44.58 and 59.58S compared to CMIP5 models

diagnosed by Manaster et al. (2017) qualitatively agrees with

our results in finding that observations predicted an increase in

FIG. 11. As in Fig. 5, but showing the projected change in

shortwave consistent with the change in LWP between AMIP and

AMIP1 4K for (a) cyclones and (b) out of cyclones. The change in

shortwave is shown weighted by the relative frequency of occur-

rence of cyclones in (a) and out of cyclones in (b). The change in

shortwave is calculated based on the empirical relationship be-

tween albedo and LWP in observations (Fig. S8).
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LWP on the upper end of CMIP5 models, but a direct com-

parison is difficult due to a different selection of CMIP5

models.

Using an empirical relationship between observations of

albedo and LWP we estimate that over oceans between 358

and 758S increased LWP increases reflected SW by 1.2–

1.9Wm22K21, which agrees with the constraint calculated

using CTP optical depth histograms in Ceppi et al. (2016b) of

0–2Wm22K21. This result appears to conflict with the de-

creasing cloud optical depth between 408 and 708S predicted by

Terai et al. (2016). However, as pointed out in Terai et al.

(2016) this is because their analysis focused on changes in op-

tical depth for low, stratiform clouds, in contrast to the present

study and Ceppi et al. (2016b), which examine cloud variability

at all cloud-top pressures and considered changes in cloud

extent. These differing results imply that the cloud feedback

within the low, stratiform regime in the extratropics acts to

oppose changes in other regimes. The synthesis of these results

agrees with the analysis presented in Tan et al. (2019), which

showed decreasing optical depth in warm, liquid clouds and

increasing cloud optical depth in cold clouds. This is consistent

with the increased LWP in regions of ascent driven bymoisture

convergence diagnosed in this study (Fig. 6, Fig. S5, Fig. S6, and

Fig. 7). Overall, this study and past constraint studies agree in

excluding models with strongly negative SW cloud feedbacks

such as CNRM-CM5, or IPSL-CM5B-LR, while showing that

models with weaker SW cloud feedbacks such as IPSL-CM5A-

LR, andHadGEM2-A are consistent with observations. This is

inferred based on the results shown in Fig. 11 as well as com-

paring to the full SW cloud feedback decompositions for these

and other models (shown in Fig. S6 of Zelinka et al. 2020).

Further analysis to unify the analysis of low, liquid-topped

clouds in Terai et al. (2016), and the analysis presented here

and in Ceppi et al. (2016b) is needed.

The majority of the change in extratropical LWP was found

to be due to increased cyclone LWP driven by increased WCB

moisture flux, in turn driven by increased WVP following

Clausius–Clapeyron. The relationship between cyclone LWP

and WCB moisture flux can be characterized observationally.

This will allow modeling centers to evaluate the sensitivity of

LWP to meteorological state in their models, in turn con-

straining their extratropical SW cloud feedback. One intrigu-

ing possibility is that some of the diagnosed shift toward

higher climate sensitivity through decreased extratropical

cloud feedback between CMIP5 and CMIP6 (Zelinka et al.

2020) may be due to increased efficiency in converting con-

verging moisture to precipitation. The comparison between a

small selection of GCMs from CMIP5 and CMIP6 shown in

McCoy et al. (2019) suggests that this might be the case with

generally lower sensitivity of LWP to WCB moisture flux di-

agnosed in CMIP6 models. This is also consistent with too

strong a sensitivity of shortwave cloud radiative effect to vertical

velocity inCMIP5models and, by extension, fronts that brighten

too much in response to changes in dynamics (Kelleher and

Grise 2019). However, the small number of models with ap-

propriate daily resolution data needed to perform the analysis

presented here is too small to definitively conclude this about the

entirety of CMIP5 and CMIP6.

We believe that the analysis presented in this study supports a

robustly negative SW cloud feedback in the extratropics origi-

nating from enhanced moisture flux into cyclones driven by

Clausius–Clapeyron. This feature is a function of the efficacy

with which cyclones can convert converging moisture into pre-

cipitation, and thus we believe that refinement of precipitation

processes in cyclones is a promising avenue of investigation to

constrain extratropical cloud feedbacks.
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