
1. Introduction
Shallow cumuli play a number of important roles in trade wind regions, affecting both their local envi-
ronment, and the climate as a whole. Low cloud feedbacks are responsible for much of the uncertainty in 
estimates of climate sensitivity (Bony & Dufresne, 2005; Bony et al., 2004; Boucher et al., 2013; Medeiros 
et al., 2008, 2015; Vial et al., 2013). One intensely studied aspect of shallow cumuli is how they are affected 
by changes in atmospheric aerosol, which facilitate the formation of cloud droplets by acting as cloud con-
densation nuclei (CCN) (Köhler, 1936). While certain aerosol effects on clouds are well understood, many 
questions, on scales varying from microphysical to entire cloud fields, remain open.

Higher concentrations of CCN lead to a greater number of smaller droplets, for a given liquid water content 
(Twomey, 1977). The greater droplet surface area increases scattered shortwave radiation, and thus cloud 
albedo. Smaller droplets due to increased aerosol may inhibit precipitation (Albrecht, 1989), and lead to 
longer cloud lifetimes. However, mechanisms have also been proposed for aerosol causing shorter lifetimes 
due to evaporation and entrainment feedbacks (Small et al., 2009).

Stevens and Feingold (2009) discuss “buffering” effects in the response of clouds to aerosol perturbations, 
where systems respond to offset the effect of the perturbation. For example, increased aerosol may suppress 
precipitation, allowing more moisture to be lifted to the cloud top, enhancing evaporative cooling and dest-
abilising the cloud layer, causing clouds to deepen and produce more precipitation. Convective invigoration 
and deepening due to aerosol are supported by both observations and modelling (Albrecht, 1993; Dagan 
et al., 2016; Kaufman et al., 2005; Koren et al., 2014; Sheffield et al., 2015; Yuan et al., 2011), however some 
find suppression of convection (Jiang & Feingold,  2005; Xue et  al.,  2008). Van den Heever et  al.  (2011) 
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find that deeper cumulus modes, such as congestus, may be invigorated while the shallowest clouds are 
suppressed. Dagan et al. (2017) and Altaratz et al. (2014) suggest invigoration or suppression may depend 
on the magnitude of the aerosol perturbation, as well as local conditions. Seifert et al. (2015) discuss the 
deepening response of trade wind cumuli to aerosol perturbations as a transient effect, altering the thermo-
dynamic environment, and eventually leading to a similar quasi-equilibrium cloud field. This quasi-equi-
librium is considered as a regime of subsiding radiative-convective equilibrium (RCE), where prescribed 
large-scale forcings alter the state compared to traditional RCE. However, Dagan et  al.  (2018) find that 
typical cloud field lifetimes are much less than the time required to reach equilibrium, suggesting that such 
quasi-equilibrium behavior is unrealistic.

Much modelling work on shallow cumuli has used large eddy simulations (LES), typically with small do-
mains on the order of tens of km, periodic lateral boundaries, and constant prescribed tendencies of winds, 
moisture, and thermodynamics. An alternative approach may be employed, whereby a global driving model 
supplies the forcing for a nested high resolution domain (Klocke et al., 2017; Miltenberger et al., 2018; Spill 
et al., 2019). Spill et al. (2019) find a similar form of cloud response to aerosol perturbations, however the 
convective deepening does not impact the thermodynamic state of the domain significantly, and no equilib-
rium cloud field is produced, in contrast to findings such as those of Seifert et al. (2015).

Here we build on Spill et al. (2019) by directly comparing this approach with one that is more idealised, 
similar to LES, using different configurations of the Met Office Unified Model (UM) to account for model 
uncertainty. We investigate the approaches' representation of the cloud field, and their response to aerosol 
perturbations, on large scales.

2. Methods
Our simulations are based on the Rain in Cumulus over the Ocean (Rauber et al., 2007) (RICO) campaign. 
RICO has long been a popular choice for studying shallow convection due to the prevalence of trade wind 
cumuli in the region, and the availability of data for model initialization and evaluation. Our case is initial-
ised for 00:00UTC January 19, 2005, following Abel and Shipway (2007), with domains centred on 17.5°N, 
57°W. All simulations are run for 96 h, including a 12 h spin-up.

Several configurations of the Met Office Unified Model are applied, with large domains of ∼500  km × 
∼500 km, a horizontal resolution of ∼500m × ∼500m, and a stretched vertical coordinate system with 70 
levels below 40 km, and 30 levels below 3 km. The UM uses a 3D Smagorinsky-type turbulence scheme 
(Boutle et al., 2014), and no convection scheme is enabled. The “realistic” setup uses a nested domain with 
open lateral boundaries, with boundary conditions supplied hourly by an external global driving configura-
tion of the UM (vn11.1, GA6.1), run from ERA Interim (Dee et al., 2011) initial conditions. The “idealised” 
setup has periodic lateral boundaries, and constant large-scale tendencies of temperature and moisture are 
applied, as in most LES studies. Domain mean profiles of temperature, moisture, and winds from the real-
istic simulations are used to initialise the idealised simulations. Constant surface sensible and latent heat 
fluxes of 10.58 W m−2 and 93.17 W m−2 are prescribed, based on mean values of the time-varying fluxes in 
the realistic simulations. Horizontal advection of moisture, and large-scale subsidence are applied below 
10 km following Abel and Shipway (2007), along with a cooling rate, a significant component of which is 
to account for radiative cooling (van Zanten et al., 2011). Idealised simulations are therefore performed 
both with and without a radiation scheme, to provide an extra point of comparison between idealised and 
realistic configurations. However, the scheme does not have a diurnal cycle, differing from the realistic 
simulations. Following Seifert et al. (2015), an advective cooling rate is applied in simulations including 
a radiation scheme. Profiles of idealised initial conditions and applied tendencies are shown in Figure 1.

Small domain idealised simulations are also performed, to more closely relate this comparison to existing 
LES studies. These have a domain of ∼50 km × ∼50 km, a horizontal resolution of ∼100m × ∼100m, and 
include the radiation scheme.

We use the double-moment microphysics scheme CASIM (Grosvenor et al., 2017; Miltenberger et al., 2018; 
Shipway & Hill, 2012), with a droplet activation scheme from Shipway (2015). The configuration of CASIM 
has a one-way coupling between cloud and aerosol, in which aerosol fields affect droplet activation and may 
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be advected, but are not affected by cloud microphysical processes. Aerosol profiles based on measurements 
during RICO, as described in Spill et al. (2019) and shown in Figure 1, are used for initial and lateral bound-
ary conditions. Simulations are run with baseline aerosol profiles, and profiles perturbed by a factor of 10. 
The simulation names, along with key aspects of their configurations, are summarised in Table 1.
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Figure 1. Profiles of prescribed aerosol and idealised initial conditions and tendencies (a),(b) baseline accumulation and Aitken mode aerosol concentrations 
(c, d, e) initial specific humidity, temperature, and winds (f), (g) tendencies of specific humidity and temperature (for idealised simulations with and without 
radiation schemes), (h) applied large-scale subsidence.

Simulation

Domain size Horizontal resolution Lateral boundaries

Radiation 
scheme

Aerosol

∼500m × 
∼500 km

∼50m × 
∼50 km

∼500m × 
∼500m

∼100m × 
 ∼100m Open Periodic Baseline

Perturbed 
(×10)

nested Y Y Y Y Y

nested_x10 Y Y Y Y Y

id_500 km_norad Y Y Y Y

id_500 km_norad_x10 Y Y Y Y

id_500 km_rad Y Y Y Y Y

id_500 km_rad_x10 Y Y Y Y Y

id_50 km_rad Y Y Y Y Y

id_50 km_rad_x10 Y Y Y Y Y

Table 1 
Summary of Simulation Names and Configurations
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3. Results
Satellite snapshots from the days of the simulations (Figure 2) show a great deal of structure and variabil-
ity in the cloud field on large scales, including large features, even in this region that typifies trade wind 
cumuli. Comparing these with snapshots of the cloud fields from the realistic and idealised simulations in 
Figure 3, the large domain idealised simulations (Figures 3c–3f) produce a much more uniform cloud field 
than the realistic case (Figures 3a and 3b)) and the satellite snapshots. While a relatively uniform cloud 
field may be expected over scales of tens of km, such uniformity over hundreds of km as seen in the large 
idealised domain is unlikely to be representative of the real atmosphere. The small domain simulations 
(Figures 3g and 3h)) exhibit uniformity in some scenes, and more varied cloud fields in others. However, 
their smaller size makes this a more limited representation of the varied cloud fields. The idealised cloud 
fields appear to develop more structure later in the simulations, also shown by Seifert et al. (2015), though 
still to a lesser extent than the realistic simulations.

The simulations differ in their domain mean properties, and in these properties' response to the aerosol 
perturbations (Figure 4). Liquid water path increases with aerosol in all of the large domain simulations, 
particularly id_500 km_norad_x10, while id_50 km_rad_x10 shows an increase beginning in the second 
day. Precipitation is reduced with increased aerosol in the large domain idealised simulations, and through 
much of the first half of id_50 km_rad_x10. This effect is smaller in the realistic simulations.

Notably, the cloud fraction in the realistic simulations is completely agnostic to the aerosol perturbation, 
while each idealised setup shows an increase in cloud fraction with increased aerosol (Figure 4c).

Vertical profiles of cloud fraction, domain mean and in-cloud liquid water, and updraught speeds show 
clearly the simulations' differing structure and response to aerosol (Figure 5). The in-cloud profiles are, at 
their highest and lowest altitudes, dominated by relatively few instances in the simulations, but nonethe-
less provide insight into the in-cloud response. In the realistic simulations, these are a result of a number 
of large-scale, deeper, features. Applying a rolling filter, with a cloud-fraction threshold of 0.2, allows us to 
consider only a subset of smaller clouds, comparable to the idealised cloud fields. An alternative filter is ap-
plied to exclude clouds in the realistic simulations whose top heights exceed the maximum in the idealised 
simulations.

The idealised setups have larger mean in-cloud liquid water content (LWC) and updraught speeds, and 
display significant convective deepening and invigoration in response to increased aerosol, apparent in both 
domain mean and in-cloud profiles of LWC. While this effect is present in the realistic setup, it is muted in 
comparison. Applying the cloud-fraction threshold to the realistic simulations produces in-cloud profiles 
with a form similar to those in the idealised simulations, with more significant deepening than the unfil-
tered profile, though still less than the idealised simulations in the domain-mean. The cloud top height 
filter does little to affect the form of the profile, though produces slightly larger updraught speeds than the 
unfiltered profile.

Histograms of cloud top height (Figures 5e–5h) further highlight the differences in the cloud populations 
produced, and the response to increased aerosol. The occurrence of lower cloud top heights is suppressed in 
all perturbed simulations, though to a greater extent in nested_x10. All simulations also show an increase 
in the number of higher cloud top heights.
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Figure 2. Satellite snapshots (Terra, MODIS, Corrected Reflectance, True Color, Bands 1-4-3) for the simulation days, 
showing the same domain as the nested simulations, from NASA Worldview Snapshots (https://worldview.earthdata.
nasa.gov/).
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Figure 3. Snapshots of liquid water path at several times during each simulation (a), (b) nested simulations (c), (d) 
idealised simulations with no radiation scheme (e), (f) with radiation, and (g), (h) small domain idealised simulations. 
Note that (g), (h) use a different spatial scale due to the smaller domain size of ∼50 km × ∼50 km, outlined in the first 
panel of (f).
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Figure 6 shows the evolution of temperature and humidity profiles in each simulation. The stark contrast 
between the realistic and idealised setups, and their responses to the aerosol perturbation, is evident. The 
perturbed idealised simulations have increased cooling towards the top of and above the cloud layer, and in-
creases in moisture at the top of the cloud layer. This is what one might expect to see from buffering effects; 
with greater cooling allowing the deepening of the cloud layer, and more moisture being lofted higher in 
the atmosphere (Albrecht, 1993; Dagan et al., 2016; Seifert et al., 2015). The realistic simulations, however, 
show almost no thermodynamic response to the aerosol perturbation, consistent with the muted deepening 
and invigoration response.
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Figure 4. Timeseries of 6-hourly domain mean (a) liquid water path, (b) rain rate, (c) cloud fraction, for each 
simulation, starting after an initial 12 h spin-up.

Figure 5. Vertical profiles of (a) cloud fraction, (b) domain mean cloud liquid water mixing ratio, (c) in-cloud mean liquid water mixing ratio, (d) updraught 
speed, and (e)–(h) histograms of cloud top height. A liquid water mixing ratio threshold of 0.01 g kg−1 is used to define a cloudy grid box. A rolling cloud 
fraction filter of 0.2, and a filter excluding clouds with top heights greater than maximum in the idealised simulations, are applied to the nested simulations, to 
produce additional profiles in (b)–(d), labelled with the suffixes “- cf. filter” and “- top height filter”.
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4. Discussion
We have presented simulations of trade wind cumuli using different configurations of the Unified Model, 
highlighting the differences between idealised simulations, with fixed forcing and periodic boundaries, and 
more realistic simulations with open boundaries and varying large sale forcing. These configurations are 
chosen to eliminate as much model uncertainty as possible, and focus on examining the difference in aer-
osol-cloud interactions between the periodic domains with fixed forcing, and nested domains with varying 
forcing.

Snapshots of liquid water path show that the idealised and realistic simulations produce dramatically differ-
ent cloud fields over large scales. The realistic simulations produce cloud fields with more evident structure, 
while the idealised simulations produce notably more uniform cloud fields. Domain mean liquid water 
path, precipitation, and cloud fraction further highlight the differences between the response to aerosol 
perturbations. The realistic simulations show no change in cloud fraction in response to increased aerosol, 
in contrast to the increase in the idealised simulations.

Vertical profiles of cloud liquid water indicate that the idealised simulations experience significantly more 
convective deepening with increased aerosol. While realistic and idealised may produce clouds with similar 
structures, the response to the aerosol perturbation of those in the realistic simulations is much weaker.

The thermodynamic evolution of the domain is driven by the applied large-scale forcing, and processes 
including interactions between the clouds and their environment, which are closely coupled to the cloud 
vertical structure. In the idealised simulations, increased aerosol leads to marked changes in the thermo-
dynamic evolution, as would be expected from the buffering mechanism discussed by (Stevens & Fein-
gold, 2009). No significant changes are seen in the thermodynamic evolution of the realistic simulations. 
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Figure 6. Hovmöller plots showing the temporal evolution of profiles of domain mean temperature and specific humidity. These show the difference between 
the mean temperature or specific humidity at each time in the simulation and the first time point after the 12 h spin-up. The nested and nested_x10 simulations 
are in the top left quadrant, id_500 km_norad and id_500 km_norad_x10 in the top right, id_500 km_rad and id_500 km_rad_x10 in the bottom left, and 
id_50 km_rad and id_50 km_rad_x10 in the bottom right.
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This suggests that the thermodynamic environment is determined predominately by the varying large-scale 
forcing, which, along with the open boundaries, does not allow the cloud field to exert such a strong effect. 
However, it should be noted that the large-scale forcing and boundary conditions supplied by the driving 
model are not affected by the aerosol perturbation. Aerosol effects are thus only realised inside the nested 
domain, while in the real atmosphere this may not be the case. Nonetheless, observational studies have 
reached similar conclusions regarding the significance of transient large-scale forcing in determining the 
state of the cloud field. Dagan et al. (2018) show that cloud field properties and environmental conditions 
vary significantly over periods shorter than those required to reach an idealised equilibrium state.

Limited area idealised models are undoubtedly useful in studying atmospheric processes. However, our 
findings suggest that their ability to represent the transient behavior of the real atmosphere may be limited 
in comparison to more realistic approaches.

Aerosol perturbations may have a number of effects on cumulus cloud fields, including minor convective 
deepening and invigoration, and increases in liquid water path. However, due to the importance of the 
large-scale forcing, these are limited, perhaps explaining the unchanged cloud fraction.

Understanding the role of shallow clouds in the atmosphere is of critical importance, and with ever im-
proving capabilities and methods, so too is understanding the differences, shortcomings, and advantages of 
modelling approaches.

Data Availability Statement
The simulation data used in this study was produced using the Met Office Unified Model, vn11.1. ERA 
Interim reanalysis was used to initialise the model, produced by the European Centre for Medium-range 
Weather Forecast (ECMWF) (2011): The ERA-Interim reanalysis data set, Copernicus Climate Change Ser-
vice (C3S) (accessed 24/03/2017), available from https://www.ecmwf.int/en/forecasts/datasets/archive-da-
tasets/reanalysis-datasets/era-interim. Simulation data used for the presented results are available at https://
doi.org/10.5281/zenodo.4805474. The MODIS data used are available at https://worldview.earthdata.nasa.
gov/. The aerosol data used are as shown in Spill et al. (2019).
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