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a b s t r a c t 

Two recursive least-squares (RLS) adaptive filtering algorithms are most often used in practice, the ex- 

ponential and sliding (rectangular) window RLS algorithms. This popularity is mainly due to existence of 

low-complexity versions of these algorithms. However, these two windows are not always the best choice 

for identification of fast time-varying systems, when the identification performance is most important. In 

this paper, we show how RLS algorithms with arbitrary finite-length windows can be implemented at a 

complexity comparable to that of exponential and sliding window RLS algorithms. Then, as an example, 

we show an improvement in the performance when using the proposed finite-window RLS algorithm 

with the Hanning window for identification of fast time-varying systems. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

In the adaptive filtering, recursive least-squares (RLS) algo- 

ithms are very popular. They possess fast convergence, while the 

omplexity and numerical stability of their implementation can be 

omparable to that of slower convergent algorithms, such as the 

east-mean squares algorithms. An RLS algorithm, at every time in- 

tant n minimises the cost function 

 w 

(h ) = 

∞ ∑ 

i = −∞ 

w (i − n ) | e (i ) | 2 → min 

h 
(1) 

here e (i ) = z(i ) − h 

H x (i ) is the error signal, z(i ) is the desired

ignal, x (i ) = [ x (i ) , x (i − 1) , . . . , x (i − L + 1)] T is the L × 1 regressor

ector, and x (i ) is the adaptive filter input. 

Two RLS algorithms are most often used in practice, the expo- 

ential window (ERLS) and sliding window (SRLS) algorithms. The 

RLS exploits the (infinite in length) window w (i ) : w ERLS (i ) = λ−i 

or i ∈ (−∞ , 0] and w ERLS (i ) = 0 otherwise, where 0 < λ < 1 is the

orgetting factor, a parameter defining the efficient length of the 

indow. The SRLS uses the finite window w (i ) : w SRLS (i ) = 1 for

 ∈ [ −M + 1 , 0] and w (i ) = 0 otherwise, where M is the length
SRLS 
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f the (rectangular) sliding window. Using the matrix inversion for- 

ula for a low-rank matrix update, these two windows allow the 

LS algorithm implementation with a complexity of O(L 2 ) arith- 

etic operations per time instant [1,2] . The complexity can be 

urther reduced to O(L ) arithmetic operations [2–4] . However, as 

ndicated in Nied ́zwiecki and Ciołek [5] , identification of time- 

arying systems can benefit from using symmetric bell-shaped 

indows, like the Hamming, Hanning, Parzen, Bartlett, and other 

indows [6,7] . The main problem of implementing the RLS algo- 

ithms with these windows is the high complexity, which in gen- 

ral is O(L 3 ) or higher. The main contribution of this paper is to 

how how RLS algorithms with arbitrary finite window w (i ) of 

ength M can be implemented with a complexity dominated by 

he term O((M + L ) log 2 (M + L )) . This is achieved by using the fast

ourier transform (FFT) and dichotomous coordinate descent (DCD) 

terations [4,8] , the later are widely used in adaptive filtering appli- 

ations such as the active noise control [9] , underwater communi- 

ations [10] , power convertion [11] , etc. We then demonstrate that 

ther windows, as an example – the Hanning window, can pro- 

ide a significant improvement in performance when identifying 

ime-varying systems, compared to the exponential and rectangu- 

ar windows. 

When identifying time-varying systems, the excellent perfor- 

ance is achieved by adaptive filters based on the local basis func- 

ion (LBF) principle [12] . However, such filters are too complicated 

or practice, with a complexity of at least O(P 3 L 3 ) , where P is

he number of basis functions. A similar performance with much 

ower complexity can be achieved by fast LBF (fLBF) adaptive filters 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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xploiting two stages, pre-estimation and post-filtering [13] . The 

re-estimation stage provides estimates which are almost unbiased 

ut with a large variability; this is obtained by ‘inverse filtering’ of 

he estimates yield by the ERLS algorithm [2] . At the post-filtering 

tage, denoising is carried out to reduce the variability [13] . How- 

ver, the pre-estimation still introduces some bias, which limits the 

verall performance of fLBF algorithms when identifying fast time- 

arying systems. Meanwhile, the fLBF complexity is dominated by 

he complexity of the ERLS algorithm. In this paper, we show that 

he finite-window RL S (FRL S) adaptive filter as the pre-estimator 

an significantly improve the fLBF performance. 

This paper is organized as follows. In Section 2 , the FRLS al- 

orithm is derived. Section 3 introduces the fLBF algorithm. The 

dentification performance of the FRLS algorithm and the fLBF al- 

orithm with the FRLS pre-estimator are demonstrated by numer- 

cal simulation in Section 4 . The paper is concluded in Section 5 . 

Notations : In this paper, we use capital and small bold fonts 

or matrices and vectors, e.g. R and h , respectively. We denote the 

omplex conjugate as (·) ∗, transpose of h as h 

T , and the Hermi-

ian transpose of h as h 

H . The first column of matrix R is denoted

s R 

(1) . The norm of a vector is denoted as ‖ · ‖ , the element-wise

roduct of two vectors u and v is denoted as u � v , and the Kro-

ecker product of two vectors u and v is denoted as u � v . 

. FRLS adaptive algorithm 

The minimization of the cost function in (1) , for a window w (i )

efined on a support �, results in the solution 

ˆ 
 (i ) = R 

−1 (i ) β(i ) , (2) 

here the L × L regression matrix R (i ) and the L × 1 cross-

orrelation vector β(i ) are given by 

 (i ) = 

∑ 

k ∈ � w (k ) x (i + k ) x 

H (i + k ) , (3) 

(i ) = 

∑ 

k ∈ � w (k ) x (i + k ) z ∗(i + k ) . (4) 

he support � for the ERLS algorithm (also known as the FFLS al- 

orithm [14] ) is � = (−∞ , 0] . The support for the SRLS algorithm

also known as the FDW-RLS algorithm [15] ) and FF-FDW-RLS al- 

orithm [16] is � = [ −M + 1 , 0] ; for the delayed SRL S (SRL Sd) al-

orithm [17] , which is a non-causal version of the SRLS algorithm, 

t is � = [ −M 0 , M 0 ] , where M = 2 M 0 + 1 ; etc. 

Thus, finding the solution in (2) , for every time instance i , re-

uires computation of elements of the matrix R (i ) and its inver- 

ion, which are most complicated steps of the algorithm. Since 

 (i ) is a Hermitian matrix, the direct computation in (3) re- 

uires about 2 ML 2 real-valued multiply and accumulate (MAC) 

perations, where it is also taken into account that a complex- 

alued multiplication requires 4 real-valued multiplications. For 

he transversal-structured regressor as in (1) , R (i ) can be updated 

s (see proof in Shen et al. [10] ): [ R (i )] m +1 ,n +1 = [ R (i − 1)] m,n ,

here R m,n denotes an element of the matrix R at the m th column

nd n th row, and m, n = 1 , . . . , L − 1 . Therefore, only the first col-

mn R 

(1) (i ) of R (i ) needs an update, which with the direct com-

utation requires 4 ML operations, this still can be high. However, 

he complexity of the update can be reduced if using the FFT as 

ollows. The first column of R (i ) is given by 

 

(1) (i ) = 

∑ 

k ∈ �
w (k ) x (i + k ) x 

∗(i + k ) = 

∑ 

k ∈ �
˜ w (i, k ) x 

∗(i + k ) , 

here ˜ w (i, k ) = w (k ) x (i + k ) , k ∈ �, are elements of an M-length

ector ˜ w (i ) . The L -length column R 

(1)(i ) can be considered as 

onvolution of the M-length sequence of elements in 

˜ w (i ) and 

he (M + L ) -length sequence of all elements in the vector ˜ x ∗(i ) =
 x ∗(i − M − L ) , . . . , x ∗(i + M )] T . The convolution can be efficiently
0 0 

2 
omputed in the frequency domain. Specifically, the sequence ˜ w (k ) 

s zero-padded to the length M + L . Then, the FFTs s w 

and s x of

˜ 
 (i ) and 

˜ x ∗(i ) of (M + L ) -length are computed. Finally, the inverse

FT (IFFT) of their element-wise product s w 

� s x are computed, 

hose last L elements represent the column R 

(1)(i ) . In such a case, 

he complexity is reduced from 4 ML operations to three FFTs of 

ize (M + L ) , which is O((M + L ) log 2 (M + L )) . Another important

roperty of this approach is that the computation of R (i ) is nu-

erically stable, since no recursion is required. 

The rest of the algorithm complexity is dominated by compu- 

ation in (2) . For the numerical stability of this computation, it is 

referable to avoid the matrix inversion, which is also a computa- 

ionally demanding operation. Therefore, instead of the matrix in- 

ersion and matrix-vector multiplication in (2) , we solve the nor- 

al equation R (i ) h (i ) = β(i ) and obtain a (possibly approximate)

olution 

ˆ h (i ) ; a direct (precise) solution of the normal equation, 

.g., using the Cholesky decomposition, would require O(L 3 ) MACs. 

his can be reduced as follows. Instead of solving the system of 

quations, we can solve: 

 (i )�h (i ) = r (i ) , (5) 

here r (i ) = β(i ) − R (i ) ̂  h (i − 1) is a residual vector for instance i

hen using the solution 

ˆ h (i − 1) obtained at the previous instance 

 − 1 . The solution for instance i is then found as ˆ h (i ) = 

ˆ h (i − 1) +
ˆ h (i ) , where � ˆ h (i ) is an approximate solution to (5) . The benefit

f this approach is that a solution to (5) can be found with a few

imple iterations, e.g., such as the DCD iterations [4] . 

With this approach, the most computationally demanding step 

f computing r (i ) can be simplified if we take into account that, as

ollows from (3) and (4) , 

 (i ) = 

∑ 

k ∈ �
w (k ) e ∗(i, k ) x (i + k ) , (6) 

here e (i, k ) = z(i + k ) − y (i, k ) is an error signal, and y (i, k ) =
ˆ 
 

H (i − 1) x (i + k ) . We denote y (i ) a vector with elements y (i, k ) ,

 ∈ �. These elements represent an M-length sequence, which is 

 convolution of the L -length sequence of elements in 

ˆ h (i − 1) and 

he (M + L ) -length sequence of all elements in 

˜ x (i ) . Since the FFT

 x of ˜ x ∗(i ) is already available, the computation of y (i ) requires one

FT and one IFFT of length (M + L ) . The error vector e (i ) with el-

ments e (i, k ) , k ∈ �, is then given by e (i ) = z (i ) − y (i ) , where z (i )

s a vector with elements z(i + k ) , k ∈ �. After computing the vec-

or e (i ) , the residual vector r (i ) in (6) can be computed similarly

o (5), but, with the available FFT s x , using only one FFT and one

FFT. 

The system of equations in (5) can be solved using the lead- 

ng DCD algorithm (see details in [4] ). At every iteration, the DCD 

lgorithm updates one element of the vector � ˆ h (i ) corresponding 

o the element of r (i ) with the maximum magnitude. Four direc- 

ions of update, [ −1 , 1 , − j, j] , j = 

√ −1 , are analysed, and if the cost

unction can be minimized, the direction providing the minimum 

s chosen; such an iteration is called successful. If the cost function 

annot be reduced after searching over all four directions, the step 

ize is reduced by two. The initial step size H is chosen as a power 

f two for efficient hardware implementation. The maximum num- 

er of times M b the step size can be reduced is equivalent to the 

umber of bits representing the solution vector. The DCD algorithm 

equires no multiplication or division and its complexity depends 

n the number of successful DCD iterations N u . When identifying 

 system with time-invariant or slowly time-varying parameters, a 

mall number of updates ( N u = 1 , 2 ) can be used. For idenfication

f fast time-varying systems, a higher number of updates can be 

equired; in our examples below, we set N u = 8 . 

The FRLS algorithm is summarized in Table 1 . Its complexity is 

18 + 4 N u ) L + 16 M + M b MACs and 7 FFTs of size M + L . The mem-

ry requirement of the FRLS algorithm is comparable to that of 
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Table 1 

FRLS algorithm. 

Step Equation 

for i < 0 : x (i ) = 0 , ̂  h (i ) = 0 

R (i ) = 0 , z (i ) = 0 

for i = 0 , 1 , . . . , N

1 Computing the first column of R (i ) : 

s w = FFT { ̃  w (i ) } 
s x = FFT { ̃ x ∗(i ) } 
R (1) (i ) = IFFT { s w � s x } 

2 Computing the filter output y (i, k ) for k ∈ �: 

s h = FFT { h (i − 1) } 
y (i ) = IFFT { s x � s h } 

3 Computing the error signal: 

e (i ) = z (i ) − y (i ) 

4 Computing the residual vector: 

e w (i ) = e ∗(i ) � w 

s e = FFT { e w (i ) } 
r (i ) = [ IFFT { s e � s x } ] ∗

6 Solve (5) with DCD iterations 

7 ˆ h (i ) = ̂

 h (i − 1) + �ˆ h (i ) 

t
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Fig. 1. MSD performance of SRLS and FRLS algorithms when identifying time- 

varying systems; SNR = 25 dB. Note that FRLS (direct) is the version with the direct 

solution (2). 
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he SRLS algorithm. The majority of the memory is allocated to the 

atrix R (i ) , which contains L 2 complex-valued elements. 

. fLBF algorithm with FRLS pre-estimator 

The fLBF algorithm includes two stages [13] . At the first stage, 

re-estimation is carried out to provide unbiased estimates of 

he system taps. A popular pre-estimate ˜ h (i ) is the result of 

nverse filtering ˜ h (i ) = 

1 
1 −λ

[ ̂  h ERLS (i ) − λ ˆ h ERLS (i − 1)] of estimates 

ˆ 
 ERLS (i ) obtained by the ERLS adaptive filter; the inverse filter- 

ng is applied to reduce the bias of the pre-estimates [13] . At 

he second stage of the fLBF algorithm, the pre-estimates are 

ost-filtered to reduce the estimation variance, while keeping the 

ias small: ˆ h fLBF (i ) = F (0) ̂  αfLBF (i ) and 

ˆ αfLBF (i ) = 

∑ K 0 
k = −K 0 

F H (k ) ̃  h (i +
 ) , where F (k ) = I L � f (k ) , f (k ) = [ f 1 (k ) , . . . , f P (k )] T is the vec-

or of orthogonal basis functions f p (·) , defined on a time inter- 

al [ −K 0 , K 0 ] , and P is the number of basis functions. In this

aper, as an example, we adopt the complex exponential basis 

et of the form (see Tsatsanis and Giannakis [18] , Sayeed and 

azhang [19] , Zakharov and Kodanev [20] for a physical justifica- 

ion of such a choice in application to fast-varying communica- 

ion channels), { f 1 ( j) , . . . , f P ( j) } = 

{ 

1 √ 

K 
e i jω 1 , . . . , 1 √ 

K 
e i jω P 

} 

, where 

j ∈ [ −K 0 , K 0 ] , i = 

√ −1 , ω 1 = 0 , P = 2 m 0 + 1 , K = 2 K 0 + 1 , and ω 2 l =
2 π l 

K , ω 2 l+1 = 

2 π l 
K , l = 1 , . . . , m 0 . The complexity of the fLBF al-

orithm is dominated by the ERLS adaptive filtering. 

The fLBF algorithm shows high identification performance in 

ime-varying scenarios. However, the performance can be further 

mproved with a better pre-estimator. For this purpose, we pro- 

ose to use the FRLS algorithm, so that ˜ h (i ) = 

ˆ h FRLS (i ) . 

. Numerical results 

In this section, we compare the identification performance and 

omplexity of the FRLS algorithm with the Hanning window on the 

upport � = [ −M 0 , M 0 ] with that of other algorithms. We consider

he following signal model: z(i ) = h 

H (i ) x (i ) + n (i ) , where h (i ) is a

ime-varying impulse response of an unknown system to be iden- 

ified, x (i ) is the regressor vector with zero-mean uncorrelated 

omplex-valued Gaussian numbers of unit variance and n (i ) is a 

ero-mean complex-valued white Gaussian noise. The L = 50 sys- 

em taps are modelled as independent zero-mean unit-variance 

andom processes with a uniform power spectral density within 

he frequency interval [ − f max , f max ] . Realizations of the random 

rocesses are generated using the FFT-method [21] . 
3 
The identification performance is evaluated by averaging the 

ean squared deviation (MSD) over 50 simulation trials. The 

SD in every simulation trial is computed as: MSD (i ) = ‖ h (i ) −
ˆ 
 (i ) ‖ 2 

2 
/E h , where E h = (1 /N) 

∑ N 
i =1 || h (i ) || 2 and N = 10 4 is a num-

er of samples after the algorithm convergence; the MSD is aver- 

ged over these N samples. 

In the simulations, assuming that the sampling rate is 10 0 0 Hz, 

e use f max = 1 Hz, which is typical for underwater acoustic chan- 

els [22] . The signal to noise ratio (SNR) is set to 25 dB. 

Fig. 1 compares the MSD performance of the FRLS and SRLS al- 

orithms against the window length M. The classical SRLS algo- 

ithm achieves an MSD performance of −15 . 2 dB when M = 71 . Its

on-causal version, the delayed SRL S (SRL Sd) algorithm, reduces 

he MSD to −20 . 1 dB; note that the SRLSd algorithm is equiva-

ent to the FRLS algorithm with a symmetrical rectangular win- 

ow. With the Hanning window in the FRLS (direct) algorithm 

ith the direct solution in (2) , the MSD is further reduced to 

22 . 1 dB, which is 2.0 dB improvement compared to the SRLSd 

lgorithm and 6.9 dB improvement compared to the classical SRLS 

lgorithm. Note that in this scenario the lowest MSD provided 

y the ERLS algorithm is −15 . 8 dB, achieved with the forgetting 

actor λ = 0 . 94 ; this is close to the minimum MSD of the SRLS

lgorithm. 

With N u = 8 updates, H = 1 and M b = 16 , the DCD-based ver-

ions of these algorithms show the MSD performance close to that 

f their original versions, except at low values of M. At low M, the

ystem of equations becomes ill-conditioned and the DCD solution 

ith its implicit regularization shows a better performance. The 

inimum MSD of the FRLS algorithm is −21 . 9 dB when M = 181 . 

In Fig. 2 , we show the MSD performance of the SRLS and FRLS 

lgorithms under SNR = 5 dB and SNR = 15 dB. The FRLS algorithm

utperforms the SRLS algorithm by 5.5 dB and 6.2 dB at SNR = 5 dB

nd SNR = 15 dB, respectively. 

The algorithm complexities at every time instant are sum- 

arized in Table 2 . They are shown against L in Fig. 3 , where

he FFT complexity is counted as 4(L + M) log 2 (L + M) MACs [23] .

he ERLS and SRLS algorithms implemented using DCD itera- 

ions [4] have the lowest complexity. Note that the SRL S (SRL S- 

CD) and SRL Sd (SRL Sd-DCD) algorithms have the same complex- 

ty. The FRLS complexity is higher than that of the ERLS-DCD and 

RLS-DCD algorithms, and this is the payment for the improved 

erformance. However, the FRLS algorithm has a comparable or 
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Fig. 2. MSD performance of SRLS and FRLS algorithms when identifying time-varying systems; (a) SNR = 5 dB; (b) SNR = 15 dB. 

Table 2 

Complexity of the adaptive algorithms. 

Adaptive algorithm MACs FFTs 

ERLS-DCD (20 + 4 N u ) L + N u + M b 

SRLS-DCD (24 + 4 N u ) L + N u + M b 

FRLS (18 + 4 N u ) L + 16 M + M b 7 

SRLS 24 L 2 + 32 L 

ERLS 12 L 2 + 16 L 

FRLS direct 2 ML (L + 1) + 4 L 3 

Fig. 3. Complexity of the SRLS and FRLS-based algorithms; the window length is 

M = 3 L + 1 . 

l
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Fig. 4. The performance of the fLBF algorithms with different pre-estimators when 

identifying fast-varying channels, K is the approximation interval used for the post- 

filtering. 
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ower complexity than the classical SRLS algorithm, and signifi- 

antly lower complexity than the direct implementation of the so- 

ution in (2) , especially for high L . 

We now show that the FRLS algorithm with the Hanning win- 

ow as a pre-estimator in the fLBF algorithm can significantly im- 

rove the fLBF identification performance compared to the use of 

he ERLS algorithm for this purpose. As recommended in [24] , the 

orgetting factor of the ERLS algorithm is set to λ = max (0 . 9 , 1 −
 /L ) = 0 . 96 . In the FRLS algorithm, we set M = 3 L + 1 = 151 . We

onsider the cases with P = 3 and P = 5 basis functions. Fig. 4

hows the MSD performance of the fLBF algorithm with differ- 

nt pre-estimators against K. The original fLBF algorithm (with the 
4 
RLS pre-estimator), provides an MSD of −22 . 7 dB and −23 . 8 dB

or P = 3 and P = 5 , respectively. The FRLS pre-estimator with N u =
 DCD iterations shows an improvement of, respectively, 3.5 dB 

nd 3.8 dB against the classical-ERLS pre-estimator. Against the 

RLS-DCD pre-estimator, this improvement is higher, 4.6 dB and 

.9 dB, respectively. 

. Conclusion 

We have proposed the FRLS algorithm that allows RLS adaptive 

ltering with any finite-length window in the cost function (1) to 

e implemented at a complexity dominated by the term O((M + 

 ) log 2 (M + L )) , which is comparable or lower than that of the

lassical ERLS and SRLS algorithms. As demonstrated by the sim- 

lation results, the use of a non-uniform window in the FRLS al- 

orithm, such as the Hanning window, significantly improves the 

dentification performance compared to that of the classical ERLS 

nd SRLS algorithms in time-varying scenarios. Same conclusion 

as been reached when the FRLS algorithm is used as the pre- 

stimator of the fLBF algorithm. The Matlab code of the FRLS al- 

orithm is provided in [25] . 
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